Skip to main content
Log in

Ta3N5/CdS Core–Shell S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Removal of Antibiotic Tetracycline and Cr(VI): Performance and Mechanism Insights

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Ta3N5/CdS core–shell S-scheme heterojunction nanofibers are fabricated by in situ growing CdS nanodots on Ta3N5 nanofibers via a simple wet-chemical method. These Ta3N5/CdS nanofibers not only affords superior photocatalytic tetracycline degradation and mineralization performance, but also cause an efficient photocatalytic Cr(VI) reduction performance. The creation of favorable core–shell fiber-shaped S-scheme hetero-structure with tightly contacted interface and the maximum interface contact area promises the effective photo-carrier disintegration and the optimal photo-redox capacity synchronously, thus leading to the preeminent photo-redox ability.  Some critical environmental factors on the photo-behavior of Ta3N5/CdS are also evaluated in view of the complexity of the authentic aquatic environment. The degradation products of tetracycline were confirmed by HPLC–MS analyses. Furthermore, the effective decline in eco-toxicity of TC intermediates is confirmed by QSAR calculation. This work provides cutting-edge guidelines for the design of high-performance Ta3N5-based S-scheme heterojunction nanofibers for environment restoration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data is available when required.

References

  1. Yang H, Lu G, Yan Z, Liu J, Dong H, Bao X, Zhang X, Sun Y. Residues, bioaccumulation, and trophic transfer of pharmaceuticals and personal care products in highly urbanized rivers affected by water diversion. J Hazard Mater. 2020;391:122245.

    Article  CAS  Google Scholar 

  2. Melchionna M, Fornasiero P. Updates on the roadmap for photocatalysis. ACS Catal. 2020;10:5493.

    Article  CAS  Google Scholar 

  3. Zhang Y, Sun A, Xiong M, Macharia DK, Liu J, Chen Z, Li M, Zhang L. TiO2/BiOI p-n junction-decorated carbon fibers as weavable photocatalyst with UV-vis photoresponsive for efficiently degrading various pollutants. Chem Eng J. 2021;415:129019.

    Article  CAS  Google Scholar 

  4. Wen S, Wu T, Long H, Ke L, Deng S, Huang L, Zhang J, Tan S. Mechanism insight into rapid photodriven sterilization based on silver bismuth sulfide quantum dots. ACS Appl Mater Interfaces. 2021;13:21979.

    Article  CAS  Google Scholar 

  5. Gao C, Low J, Long R, Kong T, Zhu J, Xiong Y. Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem Rev. 2020;120:12175.

    Article  CAS  Google Scholar 

  6. Jeon I, Ryberg E, Alvarez P, Kim J. Technology assessment of solar disinfection for drinking water treatment. Nat Sustain. 2022;5:801.

    Article  Google Scholar 

  7. Jeon TH, Koo MS, Kim H, Choi W. Dual functional photocatalytic and photoelectrocatalytic systems for energy and resource-recovering water treatment. ACS Catal. 2018;8:11542.

    Article  CAS  Google Scholar 

  8. Zhou D, Luo H, Zhang F, Wu J, Yang J, Wang H. Efficient photocatalytic degradation of the persistent PET fiber-based microplastics over Pt nanoparticles decorated N-doped TiO2 nanoflowers. Adv Fiber Mater. 2022;4:1094.

    Article  CAS  Google Scholar 

  9. Meng X, Xu W, Li Z, Zhai H, Liu Z, Xu L, Fan Y, Jin L, Dong R, Yi Y, Li Y. Waste textile reutilization via a scalable dyeing technology: A strategy to enhance dyestuffs degradation efficiency. Adv Fiber Mater. 2022;4:1595.

    Article  Google Scholar 

  10. Jing H, Zhu P, Zheng X, Zhang Z, Wang D, Li Y. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv Powder Mater. 2022;1:100013.

    Article  Google Scholar 

  11. Jiang X, Huang J, Bi Z, Ni W, Gurzadyan G, Zhu Y, Zhang Z. Plasmonic active “Hot Spots”-confined photocatalytic CO2 reduction with high selectivity for CH4 production. Adv Mater. 2022;34:2109330.

    Article  CAS  Google Scholar 

  12. Andrei V, Reuillard B, Reisner E. Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite-BiVO4 tandems. Nature Mater. 2020;19:189.

    Article  CAS  Google Scholar 

  13. Zhang C, Huang Y, Zhao B, Yu Y, Yu Y, Zhang B. CuOx clusters decorated TiO2 for photocatalytic oxidation of nitrogen in air into nitric oxide under ambient conditions. J Catal. 2022;409:70.

    Article  CAS  Google Scholar 

  14. Wang K, Wang Q, Zhang K, Wang G, Wang H. Nb-O-C charge transfer bridge in 2D/2D Nb2O5/g-C3N4 S-scheme heterojunction for boosting solar-driven CO2 reduction: In situ illuminated X-ray photoelectron spectroscopy investigation and mechanism insight. Sol RRL. 2022;6:2200434.

    Article  CAS  Google Scholar 

  15. Chen F, Zhao B, Sun M, Liu C, Shi Y, Yu Y, Zhang B. Mechanistic insight into the controlled synthesis of metal phosphide catalysts from annealing of metal oxides with sodium hypophosphite. Nano Res. 2022.

  16. Huang Y, Wang C, Yu Y, Yu Y, Wang W, Zhang B. Atomically dispersed Ru-decorated TiO2 nanosheets for thermally assisted solar-driven nitrogen oxidation into nitric oxide. CCS Chem. 2022;4:1208.

    Article  CAS  Google Scholar 

  17. Wang Y, Li H, Zhou W, Zhang X, Zhang B, Yu Y. Structurally disordered RuO2 nanosheets with eich oxygen vacancies for enhanced nitrate electroreduction to ammonia. Angew Chem Int Ed. 2022;61:e202202604.

    CAS  Google Scholar 

  18. Yin Q, Alexandrov EV, Si D, Huang Q, Fang Z, Zhang Y, Zhang A, Qin W-K, Li Y, Liu T, Proserpio DM. Metallization-prompted robust porphyrin-based hydrogen-bonded organic frameworks for photocatalytic CO2 reduction. Angew Chem Int Ed. 2022;61:e202115854.

    Article  CAS  Google Scholar 

  19. Giannakakis G, Flytzani-Stephanopoulos M, Sykes ECH. Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts. Acc Chem Res. 2019;52:237.

    Article  CAS  Google Scholar 

  20. Chandrasekaran S, Yao L, Deng L, Bowen CR, Zhang Y, Sanming C, Lin Z, Peng F, Zhang P. Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem Soc Rev. 2019;48:4178.

    Article  CAS  Google Scholar 

  21. Zou Y, Xiao K, Qin Q, Shi J, Heil T, Markushyna Y, Jiang L, Antonietti M, Savateev A. Enhanced organic photocatalysis in confined flow through a carbon nitride nanotube membrane with conversions in the millisecond regime. ACS Nano. 2021;15:6551.

    Article  CAS  Google Scholar 

  22. Wang C, Liu K, Wang D, Wang G, Chu P, Meng Z, Wang X. Hierarchical CuO-ZnO/SiO2 fibrous membranes for efficient removal of congo red and 4-nitrophenol from water. Adv Fiber Mater. 2022;4:1069.

    Article  CAS  Google Scholar 

  23. Shu Y, Liang S, Xiao J, Tu Z, Huang H. Phosphate- and Mn-modified mesoporous TiO2 for efficient catalytic oxidation of toluene in VUV-PCO system. Acta Phys Chim Sin. 2021;37:2010001.

    Google Scholar 

  24. Pan L, Ai M, Huang C, Yin L, Liu X, Zhang R, Jiang SWZ, Zhang X, Zou JJ, Mi W. Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nat Commun. 2020;11:418.

    Article  CAS  Google Scholar 

  25. Zheng Y, Chen Y, Gao B, Lin B, Wang X. Phosphorene-based heterostructured photocatalysts. Engineering. 2021;7:991.

    Article  CAS  Google Scholar 

  26. Li J, Wang S, Chang J, Feng L. A review of Ni based powder catalyst for urea oxidation in assisting water splitting reaction. Adv Powder Mater. 2022;1:100030.

    Article  Google Scholar 

  27. Wang W, Wang Z, Hu Y, Liu Y, Chen S. A potential-driven switch of activity promotion mode for the oxygen evolution reaction at Co3O4/NiOxHy interface. eScience. 2022;2:438.

    Article  Google Scholar 

  28. Rao P, Wu D, Wang T, Li J, Deng P, Chen Q, Shen Y, Chen Y, Tian X. Single atomic cobalt catalyst for efficient oxygen reduction reaction. eScience. 2022;2:399.

    Article  Google Scholar 

  29. Matsui Y, Yamada T, Suzuki S, Yoshii T, Nishihara H, Teshima K. One-step fabrication of homogeneous Ta3N5 crystal photoanodes using TaF5 evaporation supply for photoelectrochemical water splitting. ACS Appl Energy Mater. 2021;4:2690.

    Article  CAS  Google Scholar 

  30. Luo Y, Li H, Luo Y, Li Z, Qi Y, Zhang F, Li C. Heterostructure of Ta3N5 nanorods and CaTaO2N nanosheets fabricated using a precursor template to boost water splitting under visible light. J Energy Chem. 2022;67:27.

    Article  CAS  Google Scholar 

  31. Fu J, Fan Z, Nakabayashi M, Ju H, Pastukhova N, Xiao Y, Feng C, Shibata N, Domen K, Li Y. Interface engineering of Ta3N5 thin film photoanode for highly efficient photoelectrochemical water splitting. Nat Commun. 2022;13:729.

    Article  CAS  Google Scholar 

  32. Nandal V, Pihosh Y, Higashi T, Minegishi T, Yamada T, Seki K, Sugiyama M, Domen K. Probing fundamental losses in nanostructured Ta3N5 photoanodes: design principles for efficient water oxidation. Energy Environ Sci. 2021;14:4038.

    Article  CAS  Google Scholar 

  33. Xiao J, Vequizo JJ, Hisatomi T, Domen K. Simultaneously tuning the defects and surface properties of Ta3N5 nanoparticles by Mg-Zr codoping for significantly accelerated photocatalytic H2 evolution. J Am Chem Soc. 2021;143:10059.

    Article  CAS  Google Scholar 

  34. Cui J, Liu T, Dong B, Qi Y, Yuan H, Gao J, Yang D, Zhang F. Flux-assisted synthesis of prism-like octahedral Ta3N5 single-crystals with controllable facets for promoted photocatalytic H2 evolution. Solar RRL. 2020;5:2000574.

    Article  Google Scholar 

  35. Wang Q, Ma X, Wu P, Li B, Zhang L, Shi J. CoNiFe-LDHs decorated Ta3N5 nanotube array photoanode for remarkably enhanced photoelectrochemical glycerol conversion coupled with hydrogen generation. Nano Energy. 2021;89:106326.

    Article  CAS  Google Scholar 

  36. Zhang Q, Gao L. Ta3N5 nanoparticles with enhanced photocatalytic efficiency under visible light irradiation. Langmuir. 2004;20:9821.

    Article  CAS  Google Scholar 

  37. Li Y, Takata T, Cha D, Takanabe K, Minegishi T, Kubota J, Domen K. Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting. Adv Mater. 2013;25:125.

    Article  CAS  Google Scholar 

  38. Wang T, Arakaki A, Kisailus D. Template-free synthesis of Ta3N5 hollow nanospheres as a visible-light-driven photocatalyst. J Phys Commun. 2019;3:75010.

    Article  CAS  Google Scholar 

  39. Zhou C, Zhou J, Lu L, Wang J, Shi Z, Wang B, Pei L, Yan S, Yu Z, Zou Z. Surface electric field driven directional charge separation on Ta3N5 cuboids enhancing photocatalytic solar energy conversion. Appl Catal B. 2018;237:742.

    Article  CAS  Google Scholar 

  40. Li S, Chen J, Hu S, Wang H, Jiang W, Chen X. Facile construction of novel Bi2WO6/Ta3N5 Z-scheme heterojunction nanofibers for efficient degradation of harmful pharmaceutical pollutants. Chem Eng J. 2020;402:126165.

    Article  CAS  Google Scholar 

  41. Zhu Q, Xu Z, Qiu B, Xing M, Zhang J. Emerging cocatalysts on g-C3N4 for photocatalytic hydrogen evolution. Small. 2021;17:2101070.

    Article  CAS  Google Scholar 

  42. Pihosh Y, Nandal V, Minegishi T, Katayama M, Yamada T, Seki K, Sugiyama M, Domen K. Development of a core-shell heterojunction Ta3N5-nanorods/BaTaO2N photoanode for solar water splitting. ACS Energy Lett. 2020;5:2492.

    Article  CAS  Google Scholar 

  43. Li X, Liu T, Zhang Y, Cai J, He M, Li M, Chen Z, Zhang L. Growth of BiOBr/ZIF-67 nanocomposites on carbon fiber cloth as filter-membrane-shaped photocatalyst for degrading pollutants in flowing wastewater. Adv Fiber Mater. 2022;4:1620.

    Article  CAS  Google Scholar 

  44. Wang Q, Fang Z, Zhang W, Zhang D. High-efficiency g-C3N4 based photocatalysts for CO2 reduction: Modification methods. Adv Fiber Mater. 2022;4:342.

    Article  CAS  Google Scholar 

  45. Xiong X, Zhang J, Chen C, Yang S, Lin J, Xi J, Kong Z. Novel 0D/2D Bi2WO6/MoSSe Z-scheme heterojunction for enhanced photocatalytic degradation and photoelectrochemical activity. Ceram Int. 2022;48:31970.

    Article  CAS  Google Scholar 

  46. Huang Y, Guo Z, Liu H, Zhang S, Wang P, Lu J, Tong Y. Heterojunction architecture of N-doped WO3 nanobundles with Ce2S3 nanodots hybridized on a carbon textile rnables a highly effcient flexible photocatalyst. Adv Funct Mater. 2019;29:1903490.

    Article  CAS  Google Scholar 

  47. Alkanad K, Hezam A, Drmosh Q, Chandrasekar SSG, AlObaid AA, Warad I, Bajiri M, Neratur LK. Construction of Bi2S3/TiO2/MoS2 S-scheme heterostructure with a switchable charge migration pathway for selective CO2 reduction. Solar RRL. 2021;5:2100501.

    Article  CAS  Google Scholar 

  48. Xia P, Cao S, Zhu B, Liu M, Shi M, Yu J, Zhang Y. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew Chem Int Edit. 2020;59:5218.

    Article  CAS  Google Scholar 

  49. Goodman ED, Zhou C, Cargnello M. Design of organic/inorganic hybrid catalysts for energy and environmental applications. ACS Cent Sci. 1916;2020:6.

    Google Scholar 

  50. Xia P, Pan X, Jiang S, Yu J, He B, Ismail PM, Bai W, Yang J, Yang L, Zhang H, Cheng M, Li H, Zhang Q, Xiao C, Xie Y. Designing a redox heterojunction for photocatalytic “overall nitrogen fixation” under mild conditions. Adv Mater. 2022;34:2200563.

    Article  CAS  Google Scholar 

  51. Zhang L, Zhang J, Yu H, Yu J. Emerging S-scheme photocatalyst. Adv Mater. 2022;34:2107668.

    Article  CAS  Google Scholar 

  52. Li S, Cai M, Liu Y, Wang C, Yan R, Chen X. Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction. Adv Powder Mater. 2023;2:100073.

    Article  Google Scholar 

  53. Sun R, Yin H, Zhang Z, Wang Y, Liang T, Zhang S, Jing L. Graphene-modulated PDI/g-C3N4 all-organic S-scheme heterojunction photocatalysts for efficient CO2 reduction under full-spectrum irradiation. J Phys Chem C. 2021;125:23830.

    Article  CAS  Google Scholar 

  54. Wang K, Du Y, Li Y, Wu X, Hu H, Wang G, Xiao Y, Chou S, Zhang G. Atomic-level insight of sulfidation-engineered Aurivillius-related Bi2O2SiO3 nanosheets enabling visible light low-concentration CO2 conversion. Carbon Energy. 2022;1.

  55. Chen Y, Zhong W, Chen F, Wang P, Fan J, Yu H. Photoinduced self-stability mechanism of CdS photocatalyst: the dependence of photocorrosion and H2-evolution performance. J Mater Sci Technol. 2022;121:19.

    Article  Google Scholar 

  56. Cao HL, Cai FY, Yu K, Zhang YQ, Lü J, Cao R. Photocatalytic degradation of tetracycline antibiotics over CdS/Nitrogen-doped carbon composites derived from in situ carbonization of metal-organic frameworks. ACS Sustain Chem Eng. 2019;7:10847.

    Article  CAS  Google Scholar 

  57. Wang B, Feng W, Zhang L, Zhang Y, Huang X, Fang Z, Liu P. In situ construction of a novel Bi/CdS nanocomposite with enhancedvisible light photocatalytic performance. Appl Catal B. 2017;206:510.

    Article  CAS  Google Scholar 

  58. Yang K, Yang Z, Zhang C, Gu Y, Wei J, Li Z, Ma C, Yang X, Song K, Li Y, Fang Q, Zhou J. Recent advances in CdS-based photocatalysts for CO2 photocatalytic conversion. Chem Eng J. 2021;418:129344.

    Article  CAS  Google Scholar 

  59. Wang F, Hou T, Zhao X, Yao W, Fang R, Shen K, Li Y. Ordered macroporous carbonous frameworks implanted with CdS quantum dots for efficient photocatalytic CO2 reduction. Adv Mater. 2021;33:2102690.

    Article  CAS  Google Scholar 

  60. Xu J, Liu X, Huang H, Xu Y, Zhong Z, Li Y, Zeng RJ, Lü J, Cao R. Facile synthesis of compact CdS-CuS heterostructures for optimal CO2-to-syngas photoconversion. Inorg Chem Front. 2022;9:2150.

    Article  CAS  Google Scholar 

  61. Liu S, Wang K, Yang M, Jin Z. Rationally designed Mn0.2Cd0.8S@CoAl LDH S-scheme heterojunction for efficient photocatalytic hydrogen production. Acta Phys Chim Sin. 2021;38:2109023.

    Article  Google Scholar 

  62. Zhao H, Xing Z, Su S, Song S, Li Z, Zhou W. Gear-shaped mesoporous NH2-MIL-53(Al)/CdS p-n heterojunctions as efficient visible-light-driven photocatalysts. Appl Catal B. 2021;291:120106.

    Article  CAS  Google Scholar 

  63. Qin N, Xiong J, Liang R, Liu Y, Zhang S, Li Y, Li Z, Wu L. Highly efficient photocatalytic H2 evolution over MoS2/CdS-TiO2 nanofibers prepared by an electrospinning mediated photodeposition method. Appl Catal B. 2017;202:374.

    Article  CAS  Google Scholar 

  64. Xu X, Su Y, Dong Y, Luo X, Wang S, Zhou W, Li R, Homewood KP, Xia X, Gao Y, Chen X. Designing and fabricating a CdS QDs/Bi2MoO6 monolayer S-scheme heterojunction for highly efficient photocatalytic C2H4 degradation under visible light. J Hazard Mater, 2021;127685

  65. Wang K, Wang Q, Zhang K, Wang G, Wang H. 0D/3D Bi3TaO7/ZnIn2S4 heterojunction photocatalyst towards degradation of antibiotics coupled with simultaneous H2 evolution: In situ irradiated XPS investigation and S-scheme mechanism insight. Appl Surf Sci. 2022;596:153444.

    Article  CAS  Google Scholar 

  66. Bai S, Qiu H, Song M, He G, Wang F, Liu Y, Guo L. Porous fixed-bed photoreactor for boosting C-C coupling in photocatalytic CO2 reduction. eScience. 2022;2:428.

    Article  Google Scholar 

  67. Li S, Cai M, Liu Y, Wang C, Lv K, Chen X. S-scheme photocatalyst TaON/Bi2WO6 nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr(VI): intermediate eco-toxicity analysis and mechanistic insights. Chin J Catal. 2022;43:2652.

    Article  CAS  Google Scholar 

  68. Li M, Zhang J, Wang L, Cheng X, Gao X, Wang Y, Zhang G, Qi Y, Zhai H, Guan R, Zhao Z. Direct Z-Scheme oxygen-vacancy-rich TiO2/Ta3N5 heterojunction for degradation of ciprofloxacin under visible light: Degradation pathways and mechanism insight. Appl Surf Sci. 2022;583:152516.

    Article  CAS  Google Scholar 

  69. Niu B, Xu Z. A stable Ta3N5@PANI core-shell photocatalyst: shell thickness effect, high-efficient photocatalytic performance and enhanced mechanism. J Catal. 2019;371:175.

    Article  CAS  Google Scholar 

  70. Jiang Y, Jing X, Zhu K, Peng Z, Zhang J, Liu Y, Zhang W, Ni L, Liu Z. Ta3N5 nanoparticles/TiO2 hollow sphere (0D/3D) heterojunction: facile synthesis, enhanced photocatalytic activities of levofloxacin degradation and H2 evolution. Dalton Trans. 2018;47:13113.

    Article  CAS  Google Scholar 

  71. Jia X, Bai X, Ji Z, Li Y, Sun Y, Mi X, Zhan S. Insight into the effective removal of ciprofloxacin using a two-dimensional layered NiO/g-C3N4 composite in Fe-free photo-electro-fenton system. Acta Phys Chim Sin. 2021;37:2010042.

    Google Scholar 

  72. Verma P, Kondo Y, Kuwahara Y, Kamegawa T, Mori K, Raja R, Yamashita H. Design and application of photocatalysts using porous materials. Catal Rev. 2021;63:1.

    Article  Google Scholar 

  73. Chen LH, Li Y, Su BL. Hierarchy in materials for maximized efficiency. Natl Sci Rev. 2020;7:1626.

    Article  CAS  Google Scholar 

  74. Nishioka S, Hojo K, Xiao L, Gao T, Shi Z, Miseki Y, Yasuda S, Yokoi T, Sayama T, Mallouk K, Maeda K. Surface-modified, dye-sensitized niobate nanosheets enabling an efficient solar-driven Z-scheme for overall water splitting. Sci Adv. 2022;8:eadc9115.

    Article  CAS  Google Scholar 

  75. Kim C, Cho KM, Park K, Kim KH, Gereige I, Jung HT. Ternary hybrid aerogels of g-C3N4/α-Fe2O3 on a 3D graphene network: an efficient and recyclable Z-scheme photocatalyst. ChemPlusChem. 2019;85:169.

    Article  Google Scholar 

  76. Pei L, Yuan Y, Zhong J, Li T, Yang T, Yan S, Ji Z, Zou Z. Ta3N5 nanorods encapsulated into 3D hydrangea-like MoS2 for enhanced photocatalytic hydrogen evolution under visible light irradiation. Dalton Trans. 2019;48:13176.

    Article  CAS  Google Scholar 

  77. Ghoreishian SM, Ranjith KS, Park B, Hwang S-K, Hosseini R, Behjatmanesh-Ardakani R, Pourmortazavi SM, Lee HU, Son B, Mirsadeghi S, Han Y-K, Huh YS. Full-spectrum-responsive Bi2S3@CdS S-scheme heterostructure with intimated ultrathin RGO toward photocatalytic Cr(VI) reduction and H2O2 production: experimental and DFT studies. Chem Eng J. 2021;419:129530.

    Article  CAS  Google Scholar 

  78. Zhang E, Zhu Q, Huang J, Liu J, Tan G, Sun C, Li T, Liu S, Li Y, Wang H, Wan X, Wen Z, Fan F, Zhang J, Ariga K. Visually resolving the direct Z-scheme heterojunction in CdS@ZnIn2S4 hollow cubes for photocatalytic evolution of H2 and H2O2 from pure water. Appl Catal B. 2021;293:120213.

    Article  CAS  Google Scholar 

  79. Ali Khan A, Tahir M, Rahman MA. Constructing S-scheme heterojunction of carbon nitride nanorods (g-CNR) assisted trimetallic CoAlLa LDH nanosheets with electron and holes moderation for boosting photocatalytic CO2 reduction under solar energy. Chem Eng J. 2021;433:133693.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the Natural Science Foundation of Zhejiang Province (LY20E080014), the Science and Technology Project of Zhoushan (2022C41011, 2020C21009), and the National Natural Science Foundation of China (51708504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijie Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing interests that could influence the research reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 9386 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Cai, M., Wang, C. et al. Ta3N5/CdS Core–Shell S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Removal of Antibiotic Tetracycline and Cr(VI): Performance and Mechanism Insights. Adv. Fiber Mater. 5, 994–1007 (2023). https://doi.org/10.1007/s42765-022-00253-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00253-5

Keywords

Navigation