Skip to main content
Log in

Efficient Photocatalytic Degradation of the Persistent PET Fiber-Based Microplastics over Pt Nanoparticles Decorated N-Doped TiO2 Nanoflowers

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Fiber-based microplastics (FMPs) are highly persistent and ubiquitously exist in the wastewater of textile industry and urban sewage. It remains challenging to completely remove such newly emerged organic pollutants by the predominant physical techniques. In this work, we investigated a photocatalytic degradation catalyzed by TiO2 catalyst to demonstrate the feasibility of implementing efficient chemical protocol to fast degrading polyethylene terephthalate (PET)-FMPs (a major FMP type existing in environment). The result shows that a hydrothermal pretreatment (180 °C/12 h) is necessary to induce the initial rough appearance and molecular weight reduction. With the comprehensive action of the nano-flower shaped N doped-TiO2 catalyst (Pt@N-TiO2-1.5%) on the relatively low molecular weight intermediates, an approximate 29% weight loss was induced on the pretreated PET-FMPs, which is about 8 times superior to the untreated sample. This work not only achieves a superior degradation effect of PET-FMPs, but also provides a new inspiration for the proposal of reduction strategies in the field of environmental remediation in the future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Broda J, Przybylo S, Gawlowski A, Grzybowska-Pietras J, Sarna E, Rom M, Laszczak R. Utilisation of textile wastes for the production of geotextiles designed for erosion protection. J Text I 2019;110:435.

    Google Scholar 

  2. MacDonald S, Pan SW, Hudson D, Tuan F. Chinese domestic textile demand: where they buy does matter. China Agr Econ Rev 2013;5:312.

    Article  Google Scholar 

  3. Dahlbo H, Aalto K, Eskelinen H, Salmenpera H. Increasing textile circulation-consequences and requirements. Sustain Pro Consump 2017;9:44.

    Article  Google Scholar 

  4. Shen MC, Zhang YX, Almatrafi E, Hu T, Zhou CY, Song B, Zeng ZT, Zeng GM (2022) Efficient removal of microplastics from wastewater by an electrocoagulation process. Chem Eng J. 428: 131161.

  5. Rao WH, Cai CY, Tang JY, Wei YM, Gao CY, Yu L, Ding JD. Coordination insertion mechanism of ring-opening polymerization of lactide catalyzed by stannous octoate. Chinese J Chem 2021;39:1965.

    Article  CAS  Google Scholar 

  6. Zhou DW, Chen JL, Wu J, Yang JP, Wang HP. Biodegradation and catalytic-chemical degradation strategies to mitigate microplastic pollution. Sustain Mater Techno 2021; 28: e00251.

  7. Chen JL, Wu J, Wang HP, Yang JP. Research prospect of fibrous microplastics removal in aquatic environment. J Textile Res 2021;42:19.

    Google Scholar 

  8. Chen F, Zhang Y, Wang Q, Gao MY, Kirby N, Peng ZX, Deng YF, Li MM, Ye L. High T-g polymer insulator yields organic photovoltaic blends with superior thermal stability at 150 degrees C. Chinese J Chem 2021;39:2570.

    Article  CAS  Google Scholar 

  9. Sharma S, Basu S, Shetti NP, Nadagouda MN, Aminabhavi TM (2021) Microplastics in the environment: Occurrence, perils, and eradication. Chem Eng J 408: 127317.

  10. Guo Q, Zhou CY, Ma ZB, Ren ZF, Fan HJ, Yang XM. Fundamental processes in surface photocatalysis on TiO2. Acta Phys-Chim Sin 2016;32:28.

    Article  Google Scholar 

  11. Zhang QL, Hua WQ, Feng JC. A facile strategy to fabricate multishape memory polymers with controllable mechanical properties. Macromol Rapid Commun 2016;37:1262.

    Article  CAS  Google Scholar 

  12. Garcia F, de Carvalho AR, Riem-Galliano L, Tudesque L, Albignac M, ter Halle A, Cucherousset J. Stable isotope insights into microplastic contamination within freshwater food webs. Environ Sci Technol 2021;55:1024.

    Article  CAS  Google Scholar 

  13. Lee H, Byun DE, Kim JM, Kwon JH. Desorption modeling of hydrophobic organic chemicals from plastic sheets using experimentally determined diffusion coefficients in plastics. Mar Pollut Bull 2018;126:312.

    Article  CAS  Google Scholar 

  14. Wang F, Shih KM, Li XY. The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics. Chemosphere 2015;119:841.

    Article  CAS  Google Scholar 

  15. Ma ZQ, Li BK, Tang RK. Biomineralization: biomimetic synthesis of materials and biomimetic regulation of organisms. Chinese J Chem 2021;39:2071.

    Article  CAS  Google Scholar 

  16. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R. Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 2021;45:9175.

    Article  Google Scholar 

  17. Nava V, Leoni B (2021) A critical review of interactions between microplastics, microalgae and aquatic ecosystem function. Water Res. 188: 116476.

  18. Wang TK, Zhang Y, Gu ZC, Cheng W, Lei H, Qin M, Xue B, Wang W, Cao Y. Regulating mechanical properties of polymer-supramolecular double-network hydrogel by supramolecular self-assembling structures. Chin J Chem 2021;39:2711.

    Article  CAS  Google Scholar 

  19. Francesca D, Gennaro G, Roberto A, Emanuela EM, Emilia D, Veronica A, Maurizio A, Mariacristina C. Pectin based finishing to mitigate the impact of microplastics released by polyamide fabrics. Carbohyd Polym 2018;198:175.

    Article  Google Scholar 

  20. Villa K, Dekanovsky L, Plutnar J, Kosina J, Pumera M. Swarming of perovskite-like Bi(2)WO(6) microrobots destroy textile fibers under visible light. Adv Funct Mater 2020;30:2007073.

    Article  CAS  Google Scholar 

  21. Guo Q, Zhou C, Ma ZB, Yang XM. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv Mater 2019;31:1901997.

    Article  CAS  Google Scholar 

  22. Li GW, Wu JN, Fang J, Guo X, Zhu L, Liu F, Zhang MJ, Li YF. A non-fullerene acceptor with chlorinated thienyl conjugated side chains for high-performance polymer solar cells via toluene processing. Chinese J Chem 2020;38:697.

    Article  CAS  Google Scholar 

  23. Rengifo-Herrera JA, Pierzchala K, Sienkiewicz A, Forro L, Kiwi J, Pulgarin C. Abatement of organics and Escherichia coli by N, S co-doped TiO2 under UV and visible light. Implications of the formation of singlet oxygen (O-1(2)) under visible light. Appl Catal B-Environ 2009; 88: 398.

  24. Chen WJ, Hsu KC, Fang TH, Lee CI, Chen TH, Hsieh TH. Structural, optical characterization and photocatalytic behavior of Ag/TiO2 nanofibers. Dig J Nanomater Bios 2021;16:1227.

    Google Scholar 

  25. Li WG, Zuo YJ, Jiang L, Yao DC, Chen ZJ, He GY, Chen HQ. Bi2Ti2O7/TiO2/RGO composite for the simulated sunlight-driven photocatalytic degradation of ciprofloxacin. Mater Chem Phys 2020; 256: 123650.

  26. Cai JM, Wu MQ, Wang YT, Zhang H, Meng M, Tian Y, Li XG, Zhang J, Zheng LR, Gong JL. Synergetic enhancement of light harvesting and charge separation over surface-disorder-engineered TiO2 photonic crystals. Chem 2017;2:877.

    Article  CAS  Google Scholar 

  27. Khan TT, Bari GAKMR, Kang HJ, Lee TG, Park JW, Hwang HJ, Hossain SM, Mun JS, Suzuki N, Fujishima A, Kim JH, Shon HK, Jun YS. Synthesis of N-Doped TiO2 for efficient photocatalytic degradation of atmospheric NOx. Catalysts. 2021; 11: 109.

  28. Liu XY, Zhu GL, Wang X, Yuan XT, Lin TQ, Huang FQ. Progress in black titania: a new material for advanced photocatalysis. Adv Energy Mater 2016; 6.

  29. Qiu H, Ma XJ, Sun CY, Zhao B, Chen F. Surface oxygen vacancies enriched Pt/TiO2 synthesized with a defect migration strategy for superior photocatalytic activity. Appl Surf Sci 2020; 506: 145021.

  30. Wu SY, Wang WJ, Tu WG, Yin SM, Sheng Y, Manuputty MY, Kraft M, Xu R. Premixed stagnation flame synthesized TiO2 nanoparticles with mixed phases for efficient photocatalytic hydrogen generation. ACS Sustain Chem Eng 2018;6:14470.

    Article  CAS  Google Scholar 

  31. Dutta H, Sahu P, Pradhan SK, De M. Microstructure characterization of polymorphic transformed ball-milled anatase TiO2 by Rietveld method. Mater Chem Phys 2003;77:153.

    Article  CAS  Google Scholar 

  32. Hu JF, Qin HW, Sui ZG, Lu HL. Characteristic of mechanically milled TiO2 powders. Mater Lett 2002;53:421.

    Article  CAS  Google Scholar 

  33. Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclair E, Kamionka E, Desrousseaux ML, Texier H, Gavalda S, Cot M, Guemard E, Dalibey M, Nomme J, Cioci G, Barbe S, Chateau M, Andre I, Duquesne S, Marty A. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 2020;580:216.

    Article  CAS  Google Scholar 

  34. Zhang HB, Zuo SW, Qiu M, Wang SB, Zhang YF, Zhang J, Lou XW. Direct probing of atomically dispersed Ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution. Sci Adv 2020; 6: eabb9823.

  35. Ma JY, Tan XJ, Zhang QQ, Wang Y, Zhang JL, Wang LZ. Exploring the size effect of Pt nanoparticles on the photocatalytic nonoxidative coupling of methane. ACS Catal 2021;11:3352.

    Article  CAS  Google Scholar 

  36. Huang SS, Ma D, Hu ZJ, He QQ, Zai JT, Chen DY, Sun H, Chen ZW, Qao QQ, Wu MH, Qian XF. Synergistically enhanced electrochemical performance of Ni3S4-PtX (X = Fe, Ni) heteronanorods as heterogeneous catalysts in dye-sensitized solar cells. ACS Appl Mater Inter 2017;9:27607.

    Article  CAS  Google Scholar 

  37. Liu YH, Wu YW, Zhou Y, Wang YT, Yang LY, Li CC. Direct synthesis of urchin-like N-doped TiO2 microstructures with enhanced photocatalytic properties. T Indian Ceram Soc 2016;75:155.

    Article  CAS  Google Scholar 

  38. Esmat M, El-Hosainy H, Tahawy R, Jevasuwan W, Tsunoji N, Fukata N, Ide Y. Nitrogen doping-mediated oxygen vacancies enhancing co-catalyst-free solar photocatalytic H-2 production activity in anatase TiO2 nanosheet assembly. Appl Catal B-Environ. 2021; 285: 119755.

  39. Yang YT, Zhang ZS, Fang WH, Fernandez-Alberti S, Long R. Unraveling the quantum dynamics origin of high photocatalytic activity in nitrogen-doped anatase TiO2: time-domain ab initio analysis. J Mater Chem A 2020;8:25235.

    Article  CAS  Google Scholar 

  40. Xu T, Wang M, Wang T. Effects of N doping on the microstructures and optical properties of TiO2. J Wuhan Univ Technol 2019;34:55.

    Article  CAS  Google Scholar 

  41. Ding J, Dai Z, Qin F, Zhao HP, Zhao S, Chen R. Z-scheme BiO1-xBr/Bi2O2CO3 photocatalyst with rich oxygen vacancy as electron mediator for highly efficient degradation of antibiotics. Appl Catal B-Environ 2017;205:281.

    Article  CAS  Google Scholar 

  42. Hao L, Huang HW, Zhang YH, Ma TY. Oxygen Vacant Semiconductor Photocatalysts. Adv Funct Mater 2021;31:2100919.

    Article  CAS  Google Scholar 

  43. Hu JS, Li J, Cui JF, An WJ, Liu L, Liang YH, Cui WQ. Surface oxygen vacancies enriched FeOOH/Bi2MoO6 photocatalysis- fenton synergy degradation of organic pollutants. J Hazard Mater 2020; 384: 121399.

  44. Sun BJ, Zhou W, Li HZ, Ren LP, Qiao PZ, Xiao F, Wang L, Jiang BJ, Fu HG. Magnetic Fe2O3/mesoporous black TiO2 hollow sphere heterojunctions with wide-spectrum response and magnetic separation. Appl Catal B-Environ 2018;221:235.

    Article  CAS  Google Scholar 

  45. Lin ZY, Liu P, Yan JH, Yang GW. Matching energy levels between TiO2 and alpha-Fe2O3 in a core-shell nanoparticle for visible-light photocatalysis. J Mater Chem A 2015; 3: 14853.

  46. Kuang PY, Wang YR, Zhu BC, Xia FJ, Tung CW, Wu JS, Chen HM, Yu JG. Pt single atoms supported on N-doped mesoporous hollow carbon spheres with enhanced electrocatalytic H-2-evolution activity. Adv Mater 2021;33:2008599.

    Article  CAS  Google Scholar 

  47. Wang YR, Zhao JJ, Xiong XQ, Liu SW, Xu YM. Role of Ni2+ ions in TiO2 and Pt/TiO2 photocatalysis for phenol degradation in aqueous suspensions. Appl Catal B-Environ 2019; 258: 117903.

  48. Zhou DW, Wu J, Yang JP, Chen Y, Ji P, Wang HP. Research progress of fibrous microplastics and mitigation strategies. J Textile Res 2021;42:8.

    Google Scholar 

  49. Wakerley DW, Kuehnel MF, Orchard KL, Ly KH, Rosser TE, Reisner E. Solar-driven reforming of lignocellulose to H-2 with a CdS/CdOx photocatalyst. Nat Energy 2017;2:17021.

    Article  CAS  Google Scholar 

  50. Kang J, Zhou L, Duan XG, Sun HQ, Ao ZM, Wang SB. Degradation of cosmetic microplastics via functionalized carbon nanosprings. Matter 2019;1:745.

    Article  CAS  Google Scholar 

  51. Miao F, Liu YF, Gao MM, Yu X, Xiao PW, Wang M, Wang SG, Wang XH. Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode. J Hazard Mater 2020; 399: 123023.

  52. Chen JL, Wu J, Sherrell PC, Chen J, Wang HP, Zhang WX, Yang JP. How to build a microplastics-free environment: strategies for microplastics degradation and plastics recycling. Adv Sci 2022: 2103764.

Download references

Acknowledgements

The authors are grateful for financial support from the Fundamental Research Funds for the Central Universities (2232021A-02), Shanghai Committee of Science and Technology, China (No. 21ZR1480000), National Natural Science Foundation of China (No. 52122312), State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Wu or Huaping Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3322 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, D., Luo, H., Zhang, F. et al. Efficient Photocatalytic Degradation of the Persistent PET Fiber-Based Microplastics over Pt Nanoparticles Decorated N-Doped TiO2 Nanoflowers. Adv. Fiber Mater. 4, 1094–1107 (2022). https://doi.org/10.1007/s42765-022-00149-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00149-4

Keywords

Navigation