Skip to main content

Advertisement

Log in

Critical Review on Titania-Based Nanoparticles: Synthesis, Characterization, and Application as a Photocatalyst

  • Review
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

TiO2 nanoparticle is very important due to its non-toxicity, inexpensive, thermal, and chemical stability. TiO2 exists in three crystalline forms: anatase, brookite, and, rutile. The crystal structure of anatase and rutile is tetragonal and brookite is orthogonal. TiO2 is widely known for its photocatalytic behavior, which makes it a useful material in various applications. When exposed to light, TiO2 generates electron–hole pairs, which can react with water and oxygen to produce reactive oxygen species (ROS) such as hydroxyl radicals. TiO2 as a photocatalyst is used to remove environmental pollutants and convert solar energy into H2 and electricity and detach pharmaceuticals and toxicity of photo products. The smaller size of TiO2 has better photocatalytic properties as compared to the larger size. TiO2 nanoparticles are prepared by various methods: sol–gel synthesis, hydrothermal method, solvothermal method, electrochemical method, organometallic synthesis, green synthesis, etc. TiO2 nanoparticles are the heterogeneous catalyst and the transfer of electrons from TiO2 particles by absorption of light causes a redox reaction which is used for organic transformation. TiO2 nanoparticles also have various other important applications including wastewater treatment, air purification, reducing the toxicity of dyes, gas sensors, food and personal care, lithium-ion batteries, water splitting, etc. Herein, we summarized the mode of synthesis, characterization, and various organic transformations using titania-based nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1:
Scheme 2:
Scheme 3:
Scheme 4:
Scheme 5:
Scheme 6:
Scheme 7:
Scheme 8:
Scheme 9:
Scheme 10:

Similar content being viewed by others

References

  1. Akira F, Kenichi H (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  2. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  3. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  4. Thompson TL, Yates JT (2006) Surface science studies of the photoactivation of TiO2—new photochemical processes. Chem Rev 106:4428–4453

    Article  CAS  PubMed  Google Scholar 

  5. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem Rev 107:2891–2959

    Article  CAS  PubMed  Google Scholar 

  6. Chen H, Nanayakkara CE, Grassian VH (2012) Titanium dioxide photocatalysis in atmospheric chemistry. Chem Rev 112:5919–5948

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Z, Yates JT (2012) Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev 112:5520–5551

    Article  CAS  PubMed  Google Scholar 

  8. Henderson MA, Lyubinetsky I (2013) Molecular-level insights into photocatalysis from scanning probe microscopy studies on TiO2 (110). Chem Rev 113:4428–4455

    Article  CAS  PubMed  Google Scholar 

  9. Pang CL, Lindsay R, Thornton G (2013) Structure of clean and adsorbate-covered single-crystal rutile TiO2 surfaces. Chem Rev 113:3887–3948

    Article  CAS  PubMed  Google Scholar 

  10. Maynard AD, Kuempel ED (2005) Airborne nanostructured particles and occupational health. J Nanoparticle Res 7:587–614

    Article  CAS  Google Scholar 

  11. Tsuji JS et al (2006) Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol Sci 89:42–50

    Article  CAS  PubMed  Google Scholar 

  12. Varghese OK, Gong D, Paulose M, Ong KG, Grimes CA (2003) Hydrogen sensing using titania nanotubes. Sens Actuators B Chem 93:338–344

    Article  CAS  Google Scholar 

  13. Zhu Y, Shi J, Zhang Z, Zhang C, Zhang X (2002) Anal Chem 74:120–124

    Article  CAS  PubMed  Google Scholar 

  14. Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316

    Article  CAS  PubMed  Google Scholar 

  15. Fujishima A, Shuin T, Hashimoto K, Fujishima A (1992) Induction of cytotoxicity by photoexcited TiO2 particles. Cancer Res 52:2346–2348

    PubMed  Google Scholar 

  16. Song YY, Schmidt-Stein F, Bauer S, Schmuki P (2009) Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. J Am Chem Soc 131:4230–4232

    Article  CAS  PubMed  Google Scholar 

  17. Shrestha NK et al (2009) Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. Angew Chem Int Ed 48:969–972

    Article  CAS  Google Scholar 

  18. Majewski LA, Schroeder R, Grell M (2005) Low-voltage, high-performance organic field-effect transistors with an ultra-thin TiO2 layer as gate insulator. Adv Funct Mater 15:1017–1022

    Article  CAS  Google Scholar 

  19. Maliakal A, Katz H, Cotts PM, Subramoney S, Mirau P (2005) Inorganic oxide core, polymer shell nanocomposite as a high K gate dielectric for flexible electronics applications. J Am Chem Soc 127:14655–14662

    Article  CAS  PubMed  Google Scholar 

  20. Sundström V (2000) Light in elementary biological reactions. Progr Quantum Electron 24:187–238

    Article  Google Scholar 

  21. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  22. Weir A, Westerhoff P, Fabricius L, Hristovski K, Von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ani IJ, Akpan UG, Olutoye MA, Hameed BH (2018) Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2- and ZnO-based photocatalysts: recent development. J Clean Prod 205:930–954

    Article  CAS  Google Scholar 

  24. Prabhu S, Murugan G, Cary M, Arulperumjothi M, Liu JB (2020) On certain distance and degree based topological indices of Zeolite LTA frameworks. Mater Res Express 7:055006

    Article  CAS  Google Scholar 

  25. Kumar SG, Rao KSRK (2017) Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO). Appl Surf Sci 391:124–148

    Article  CAS  Google Scholar 

  26. Kumar A, Khan M, He J, Lo IMC (2020) Recent developments and challenges in practical application of visible–light–driven TiO2–based heterojunctions for PPCP degradation: a critical review. Water Res 170:115356

    Article  CAS  PubMed  Google Scholar 

  27. Meng Y et al (2017) Competition between insertion of Li+ and Mg2+: an example of TiO2-B nanowires for Mg rechargeable batteries and Li+/Mg2+ hybrid-ion batteries. J Power Sources 346:134–142

    Article  CAS  Google Scholar 

  28. Laskova B, Zukalova M, Zukal A, Bousa M, Kavan L (2014) Capacitive contribution to Li-storage in TiO2 (B) and TiO2 (anatase). J Power Sources 246:103–109

    Article  CAS  Google Scholar 

  29. Inaba M et al (2009) TiO2 (B) as a promising high potential negative electrode for large-size lithium-ion batteries. J Power Sources 189:580–584

    Article  CAS  Google Scholar 

  30. Lan T, Qiu H, Xie F, Yang J, Wei M (2015) Rutile TiO2 mesocrystals/reduced graphene oxide with high-rate and long-term performance for lithium-ion batteries. Sci Rep 5:3–8

    Article  Google Scholar 

  31. Alkaim AF, Kandiel TA, Hussein FH, Dillert R, Bahnemann DW (2013) Solvent-free hydrothermal synthesis of anatase TiO2 nanoparticles with enhanced photocatalytic hydrogen production activity. Appl Catal A Gen 466:32–37

    Article  CAS  Google Scholar 

  32. Moriarty P, Honnery D (2012) What is the global potential for renewable energy? Renew Sustain Energy Rev 16:244–252

    Article  Google Scholar 

  33. Lior N (2010) Sustainable energy development: the present (2009) situation and possible paths to the future. Energy 35:3976–3994

    Article  CAS  Google Scholar 

  34. Balzani V, Credi A, Venturi M (2008) Photochemical conversion of solar energy. Chemsuschem. https://doi.org/10.1002/cssc.200700087

    Article  PubMed  Google Scholar 

  35. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    Article  CAS  PubMed  Google Scholar 

  36. Kamat PV (2007) Meeting clean energy demand with nanostructure architectures. ACS Natl Meet B Abstr 111:2834–2860

    CAS  Google Scholar 

  37. Schneider J et al (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  CAS  PubMed  Google Scholar 

  38. Zhang F et al (1998) TiO2-assisted photodegradation of dye pollutants II. Adsorption and degradation kinetics of eosin in TiO2. Appl Catal B Environ 15:147–156

    Article  Google Scholar 

  39. Chen C et al (2002) Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation: a probe for the interfacial electron transfer process and reaction mechanism. J Phys Chem B 106:318–324

    Article  CAS  Google Scholar 

  40. Li W et al (2012) Evidence for the active species involved in the photodegradation process of methyl orange on TiO2. J Phys Chem C 116:3552–3560

    Article  CAS  Google Scholar 

  41. Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC (2015) Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. J Photochem Photobiol C Photochem Rev 25:1–29

    Article  CAS  Google Scholar 

  42. Barnard AS, Zapol P, Curtiss LA (2005) Modeling the morphology and phase stability of TiO2 nanocrystals in water. J Chem Theory Comput 1:107–116

    Article  CAS  PubMed  Google Scholar 

  43. Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Particle Fibre Toxicol. https://doi.org/10.1186/1743-8977-10-15

    Article  Google Scholar 

  44. Tao P et al (2011) TiO2 nanocomposites with high refractive index and transparency. J Mater Chem 21:18623–18629

    Article  CAS  Google Scholar 

  45. Mont FW, Kim JK, Schubert MF, Schubert EF, Siegel RW (2008) High-refractive-index TiO2-nanoparticle-loaded encapsulants for light-emitting diodes. J Appl Phys. https://doi.org/10.1063/1.2903484

    Article  Google Scholar 

  46. Scanlon DO et al (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12:798–801

    Article  CAS  PubMed  Google Scholar 

  47. Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110:24287–24293

    Article  CAS  PubMed  Google Scholar 

  48. Asahi R, Taga Y, Mannstadt W (2000) Electronic and optical properties of anatase. Phys Rev B Condens Matter Mater Phys 61:7459–7465

    Article  CAS  Google Scholar 

  49. Pillai SC et al (2007) Synthesis of high temperature stable anatase TiO2 photocatalyst. J Phys Chem 4:1–28

    Google Scholar 

  50. Asahi R, Morikawa T, Irie H, Ohwaki T (2014) Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev 114:9824–9852

    Article  CAS  PubMed  Google Scholar 

  51. Ansari SA, Khan MM, Ansari MO, Cho MH (2016) Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J Chem 40:3000–3009

    Article  CAS  Google Scholar 

  52. Li G, Chen L, Dimitrijevic NM, Gray KA (2008) Visible light photocatalytic properties of anion-doped TiO2 materials prepared from a molecular titanium precursor. Chem Phys Lett 451:75–79

    Article  CAS  Google Scholar 

  53. Wang H, Lewis JP (2006) Second-generation photocatalytic materials: anion-doped TiO2. J Phys Condens Matter 18:421–434

    Article  CAS  Google Scholar 

  54. Banerjee S, Dionysiou DD, Pillai SC (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B Environ 176–177:396–428

    Article  Google Scholar 

  55. Ullattil SG, Narendranath SB, Pillai SC, Periyat P (2018) Black TiO2 nanomaterials: a review of recent advances. Chem Eng J 343:708–736

    Article  CAS  Google Scholar 

  56. Doganli G et al (2016) Functionalization of cotton fabric with nanosized TiO2 coating for self-cleaning and antibacterial property enhancement. J Coat Technol Res 13:257–265

    Article  CAS  Google Scholar 

  57. Lai Y et al (2016) Recent advances in TiO2-based nanostructured surfaces with controllable wettability and adhesion. Small 12:2203–2224

    Article  CAS  PubMed  Google Scholar 

  58. Lang X, Chen X, Zhao J (2014) Heterogeneous visible light photocatalysis for selective organic transformations. Chem Soc Rev 43:473–486

    Article  CAS  PubMed  Google Scholar 

  59. Haarstrick A, Kut OM, Heinzle E (1996) TiO2-assisted degradation of environmentally relevant organic compounds in wastewater using a novel fluidized bed photoreactor. Environ Sci Technol 30:817–824

    Article  CAS  Google Scholar 

  60. Lin Y et al (2012) Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite. J Phys Chem C 116:5764–5772

    Article  CAS  Google Scholar 

  61. Pho TV et al (2016) Efficient light-driven oxidation of alcohols using an organic chromophore-catalyst assembly anchored to TiO2. ACS Appl Mater Interfaces 8:9125–9133

    Article  CAS  PubMed  Google Scholar 

  62. Tian L et al (2017) Broad range energy absorption enabled by hydrogenated TiO2 nanosheets: from optical to infrared and microwave. J Mater Chem C 5:4645–4653

    Article  CAS  Google Scholar 

  63. Xia T et al (2015) Strong microwave absorption of hydrogenated wide bandgap semiconductor nanoparticles. ACS Appl Mater Interfaces 7:10407–10413

    Article  CAS  PubMed  Google Scholar 

  64. Tian L et al (2015) Effect of hydrogenation on the microwave absorption properties of BaTiO3 nanoparticles. J Mater Chem A 3:12550–12556

    Article  CAS  Google Scholar 

  65. Xia T, Zhang C, Oyler NA, Chen X (2014) Enhancing microwave absorption of TiO2 nanocrystals via hydrogenation. J Mater Res 29:2198–2210

    Article  CAS  Google Scholar 

  66. Xia T, Zhang C, Oyler NA, Chen X (2013) Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv Mater 25:6905–6910

    Article  CAS  PubMed  Google Scholar 

  67. Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science (80-) 331:746–750

    Article  CAS  Google Scholar 

  68. Kong L, Wang C, Zheng H, Zhang X, Liu Y (2015) Defect-induced yellow color in Nb-doped TiO2 and its impact on visible-light photocatalysis. J Phys Chem C 119:16623–16632

    Article  CAS  Google Scholar 

  69. Zhao J, Zhang L, Xing W, Lu K (2015) A novel method to prepare B/N codoped anatase TiO2. J Phys Chem C 119:7732–7737

    Article  CAS  Google Scholar 

  70. Xu N et al (1999) Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions. Ind Eng Chem Res 38:373–379

    Article  CAS  Google Scholar 

  71. Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52:3581–3599

    Article  CAS  Google Scholar 

  72. Malekshahi Byranvand M, Nemati Kharat A, Fatholahi L, Malekshahi Beiranvand Z (2013) A review on synthesis of nano-TiO2 via different methods. J. Nanostruct 3:1–9

    Google Scholar 

  73. Lakshmi BB, Patrissi CJ, Martin CR (1997) Sol-gel template synthesis of semiconductor oxide micro- and nanostructures. Chem Mater 9:2544–2550

    Article  CAS  Google Scholar 

  74. Sharma A, Karn RK, Pandiyan SK (2014) Synthesis of TiO2 nanoparticles by sol-gel method and their characterization. J Basic Appl Eng Res 1:1-5

    Google Scholar 

  75. Serp P, Feurer R, Morancho R, Kalck P (1995) A versatile one-step method for the preparation of highly dispersed metal supported catalysts. J Mol Catal A Chem 101:8–11

    Article  Google Scholar 

  76. Hierso JC, Feurer R, Kalck P (2000) Platinum and palladium films obtained by low-temperature MOCVD for the formation of small particles on divided supports as catalytic materials. Chem Mater 12:390–399

    Article  CAS  Google Scholar 

  77. Chaudret B (2005) Organometallic approach to nanoparticles synthesis and self-organization. Comptes Rendus Phys 6:117–131

    Article  CAS  Google Scholar 

  78. Tang J et al (2005) An organometallic synthesis of TiO2 nanoparticles. Nano Lett 5:543–548

    Article  CAS  PubMed  Google Scholar 

  79. Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Char Mater 53:117–166

    Article  CAS  Google Scholar 

  80. Zhang Q, Gao L (2003) Preparation of oxide nanocrystals with tunable morphologies by the moderate hydrothermal method: insights from rutile TiO2. Langmuir 19:967–971

    Article  CAS  Google Scholar 

  81. Feng X, Zhai J, Jiang L (2005) The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angew Chem 117:5245–5248

    Article  Google Scholar 

  82. Huang Q, Gao L (2003) A simple route for the synthesis of rutile TiO2 nanorods. Chem Lett 32:638–639

    Article  CAS  Google Scholar 

  83. Yang S, Gao L (2005) A facile and one-pot synthesis of high aspect ratio anatase nanorods based on aqueous solution. Chem Lett 34:972–973

    Article  CAS  Google Scholar 

  84. Yang S, Gao L (2005) Fabrication and characterization of nanostructurally flowerlike aggregates of TiO2 via a surfactant-free solution route: effect of various reaction media. Chem Lett 34:1044–1045

    Article  CAS  Google Scholar 

  85. Yang S, Gao L (2005) Low-temperature synthesis of crystalline TiO2 nanorods: Mass production assisted by surfactant. Chem Lett 34:964–965

    Article  CAS  Google Scholar 

  86. Armstrong AR, Armstrong G, Canales J, García R, Bruce PG (2005) Lithium-ion intercalation into TiO2-B nanowires. Adv Mater 17:862–865

    Article  CAS  Google Scholar 

  87. Armstrong AR, Armstrong G, Canales J, Bruce PG (2004) TiO2-B nanowires. Angew Chem Int Ed 43:2286–2288

    Article  CAS  Google Scholar 

  88. Yoshida R, Suzuki Y, Yoshikawa S (2005) Syntheses of TiO2 (B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments. J Solid State Chem 178:2179–2185

    Article  CAS  Google Scholar 

  89. Zhang YX et al (2002) Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chem Phys Lett 365:300–304

    Article  CAS  Google Scholar 

  90. Nian JN, Teng H (2006) Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor. J Phys Chem B 110:4193–4198

    Article  CAS  PubMed  Google Scholar 

  91. Tan Z, Sato K, Ohara S (2015) Synthesis of layered nanostructured TiO2 by hydrothermal method. Adv Powder Technol 26:296–302

    Article  Google Scholar 

  92. Qian Y (1999) Solvothermal synthesis of nanocrystalline III–V semiconductors. Adv Mater 11:1101–1102

    Article  CAS  Google Scholar 

  93. Wang C, Deng ZX, Li Y (2001) The synthesis of nanocrystalline anatase and rutile titania in mixed organic media. Inorg Chem 40:5210–5214

    Article  CAS  PubMed  Google Scholar 

  94. Zhu Z, Tsung LY, Tomkiewicz M (1995) Morphology of TiO2 aerogels. 1. Electron microscopy. J Phys Chem 99:15945–15949

    Article  CAS  Google Scholar 

  95. Li XL, Peng Q, Yi JX, Wang X, Li Y (2006) Near monodisperse TiO2 nanoparticles and nanorods. Chem A Eur J 12:2383–2391

    Article  CAS  Google Scholar 

  96. Tang JL, Wu FS, Chen M (2008) Solvothermal synthesis of monodisperse CdS nanocrystals. Acta Chim Sin 66:1647–1650

    CAS  Google Scholar 

  97. Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124

    Article  CAS  PubMed  Google Scholar 

  98. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177

    Article  CAS  Google Scholar 

  99. Xue B et al (2011) Facile synthesis of mesoporous core-shell TiO2 nanostructures from TiCl3. Mater Res Bull 46:1524–1529

    Article  CAS  Google Scholar 

  100. Yan XM, Kang J, Gao L, Xiong L, Mei P (2013) Solvothermal synthesis of carbon coated N-doped TiO2 nanostructures with enhanced visible light catalytic activity. Appl Surf Sci 265:778–783

    Article  CAS  Google Scholar 

  101. Dinh C, Nguyen T, Kleitz F, Do T (2012) A solvothermal single-step route towards. Can J Chem Eng 90:8–17

    Article  CAS  Google Scholar 

  102. Suslick KS (1991) The sonochemical hot spot. J Acoust Soc Am 89:1885–1886

    Article  Google Scholar 

  103. Guo WL, Wang XK, Lin ZM, Song GZ (2002) Sonochemical synthesis of nanocrystalline TiO2 by hydrolysis of titanium alkoxides. Kao Teng Hsueh Hsiao Hua Heush Hsueh Pao Chem J Chin Univ 23:1593–1594

    Google Scholar 

  104. Bleši MD, Šaponji ZV, Nedeljkovi JM, Uskokovi DP (2002) TiO2 films prepared by ultrasonic spray pyrolysis of nanosize precursor. Mater Lett 54:298–302

    Article  Google Scholar 

  105. Yu JC, Yu J, Zhang L, Ho W (2002) Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO2 powders. J Photochem Photobiol A Chem 148:263–271

    Article  CAS  Google Scholar 

  106. Yu JC et al (2003) Sonochemical preparation of nanoporous composites of titanium oxide and size-tunable strontium titanate crystals. Langmuir 19:7673–7675

    Article  CAS  Google Scholar 

  107. Yun CY, Chah S, Kang SK, Yi J (2004) The effect of ultrasonic waves on the fabrication of TiO2 nanoparticles on a substrate using a self-assembly method. Korean J Chem Eng 21:1062–1065

    Article  CAS  Google Scholar 

  108. Zhu Y, Li H, Koltypin Y, Hacohen R, Gedanken A (2001) Sonochemical synthesis of titania whiskers and nanotube. Cem Commun. https://doi.org/10.1039/b108968b

    Article  Google Scholar 

  109. Yu JC, Zhang L, Yu J (2002) Rapid synthesis of mesoporous TiO2 with high photocatalytic activity by ultrasound-induced agglomeration. New J Chem. https://doi.org/10.1039/b109173e

    Article  Google Scholar 

  110. Jokanović V, Spasić AM, Uskoković D (2004) Designing of nanostructured hollow TiO2 spheres obtained by ultrasonic spray pyrolysis. J Colloid Interface Sci 278:342–352

    Article  PubMed  Google Scholar 

  111. Li J, Tang Z, Zhang Z (2007) Converting industrial TiO2 into titanate nanotubes by simple sonochemical-hydrothermal processing. Key Eng Mater 283:651–654

    Article  Google Scholar 

  112. Nife O et al (2006) Ultrasonically assisted hydrothermal synthesis of nanocrystalline. Ultrason Sonochem 13:47–53

    Article  Google Scholar 

  113. Xia H, Wang Q (2002) Ultrasonic irradiation : a novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites. Chem Mater 14:2158–2165

    Article  CAS  Google Scholar 

  114. Yu JC, Zhang L, Yu J (2002) Direct sonochemical preparation and characterization of highly active mesoporous TiO2 with a bicrystalline framework. Chem Mater 14:4647–4653

    Article  CAS  Google Scholar 

  115. Schwarz JA, Contescu C, Contescu A (1995) Methods for preparation of catalytic materials. Chem Rev 95:477–510

    Article  CAS  Google Scholar 

  116. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  PubMed  Google Scholar 

  117. You X, Chen F, Zhang J, Anpo M (2005) A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide. Catal Lett 102:247–250

    Article  CAS  Google Scholar 

  118. Wu JM, Qi B (2007) Low-temperature growth of a nitrogen-doped titania nanoflower film and its ability to assist photodegradation of rhodamine B in water. J Phys Chem C 111:666–673

    Article  CAS  Google Scholar 

  119. Lee JH, Yang YS (2005) Effect of HCl concentration and reaction time on the change in the crystalline state of TiO2 prepared from aqueous TiCl4 solution by precipitation. J Eur Ceram Soc 25:3573–3578

    Article  CAS  Google Scholar 

  120. Kavan L, O’Regan B, Kay A, Grätzel M (1993) Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3. J Electroanal Chem 346:291–307

    Article  CAS  Google Scholar 

  121. Matsumoto Y, Adachi H, Hombo J (1993) New preparation method for PZT films using electrochemical reduction. J Am Ceram Soc 76:769–772

    Article  CAS  Google Scholar 

  122. Zhang X et al (2001) Electrochemical Fabrication of single-crystalline anatase TiO2 nanowire arrays. J Electrochem Soc 148:G398

    Article  CAS  Google Scholar 

  123. Natarajan C, Nogami G (1996) Cathodic electrodeposition of nanocrystalline titanium dioxide thin films. J Electrochem Soc 143:1547–1550

    Article  CAS  Google Scholar 

  124. Matsumoto Y, Ishikawa Y, Nishida M, Ii S (2000) A new electrochemical method to prepare mesoporous titanium(IV) oxide photocatalyst fixed on alumite substrate. J Phys Chem B 104:4204–4209

    Article  CAS  Google Scholar 

  125. Ishikawa Y, Matsumoto Y (2001) Electrodeposition of TiO2 photocatalyst into nano-pores of hard alumite. Electrochim Acta 46:2819–2824

    Article  CAS  Google Scholar 

  126. Zhitomirsky I (1998) Electrophoretic and electrolytic deposition of ceramic coatings on carbon fibers. J Eur Ceram Soc 18:849–856

    Article  CAS  Google Scholar 

  127. Kamada K, Mukai M, Matsumoto Y (2002) Electrodeposition of titanium(IV) oxide film from sacrificial titanium anode in I2-added acetone bath. Electrochim Acta 47:3309–3313

    Article  CAS  Google Scholar 

  128. Anandgaonker P, Kulkarni G, Gaikwad S, Rajbhoj A (2019) Synthesis of TiO2 nanoparticles by electrochemical method and their antibacterial application. Arab J Chem 12:1815–1822

    Article  CAS  Google Scholar 

  129. Salari M, Mousavi Khoie SM, Marashi P, Rezaee M (2009) Synthesis of TiO2 nanoparticles via a novel mechanochemical method. J Alloys Compd 469:386–390

    Article  CAS  Google Scholar 

  130. Avvakumov EG, Karakchiev LG (2004) Features of the procedures to obtain ultrafine zirconium dioxide by mechanochemical method. J Mater Sci 39:5181–5184

    Article  CAS  Google Scholar 

  131. Senna M (1993) Incipient chemical interaction between fine particles under mechanical stress—a feasibility of producing advanced materials via mechanochemical routes. Solid State Ionics 65:3–9

    Article  Google Scholar 

  132. Billik P, Plesch G (2007) Mechanochemical synthesis of anatase and rutile nanopowders from TiOSO4. Mater Lett 61:1183–1186

    Article  CAS  Google Scholar 

  133. Bégin-Colin S, Girot T, Le Caër G, Mocellin A (2000) Kinetics and mechanisms of phase transformations induced by ball-milling in anatase TiO2. J Solid State Chem 149:41–48

    Article  Google Scholar 

  134. Isobe T, Senna M (1991) Effects of mechanical activation of inorganic gels on their thermal behavior. 2. Comparison of structure and thermal behavior between zirconia and titania gels. Solid State Chem 93:368–377

    Article  CAS  Google Scholar 

  135. Zhang Q, Wang J, Yin S, Sato T, Saito F (2004) Synthesis of a visible-light active TiO2−xSx photocatalyst by means of mechanochemical doping. J Am Ceram Soc 87:1161–1163

    Article  CAS  Google Scholar 

  136. Yin S et al (2006) Low temperature synthesis of TiO2–xNy powders and films with visible light responsive photocatalytic activity. Solid State Commun 137:132–137

    Article  CAS  Google Scholar 

  137. Yin S, Zhang Q, Saito F, Sato T (2003) Preparation of visible light-activated titania photocatalyst by mechanochemical method. Chem Lett 32:358–359

    Article  CAS  Google Scholar 

  138. Zhang QH, Gao L, Guo JK (1999) Preparation and characterization of nanosized TiO2 powders from aqueous TiCl4 solution. Nanostruct Mater 11:1293–1300

    Article  CAS  Google Scholar 

  139. Billik P, Plesch G (2007) Mechanochemical synthesis of nanocrystalline TiO2 from liquid TiCl4. Scr Mater 56:979–982

    Article  CAS  Google Scholar 

  140. Mahshid S, Askari M, Ghamsari MS (2007) Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. J Mater Process Technol 189:296–300

    Article  CAS  Google Scholar 

  141. Marques Zoccal JV, de Oliveira Arouca F, Silveira Goncalves JA (2010) Síntesis y caracterización de nanopartículas de TiO2 por el método Pechini. Mater Sci Forum 660–61:6

    Google Scholar 

  142. Abdul Jalill RD, Nuaman RS, Abd AN (2016) Biological synthesis of titanium dioxide nanoparticles by Curcuma longa plant extract and study its biological properties. Wsn 49:204–222

    CAS  Google Scholar 

  143. Song L, Lam YM, Boothroyd C, Teo PW (2007) One-step synthesis of titania nanoparticles from PS-P4VP diblock copolymer solution. Nanotechnology 18:135605

    Article  PubMed  Google Scholar 

  144. Sankar R, Rizwana K, Shivashangari KS, Ravikumar V (2015) Ultra-rapid photocatalytic activity of Azadirachta indica engineered colloidal titanium dioxide nanoparticles. Appl Nanosci 5:731–736

    Article  CAS  Google Scholar 

  145. Rao KG, Ashok C, Rao KV, Shilpa Chakra C, Rajendar V (2015) Synthesis of TiO2 nanoparticles from orange fruit waste. Int J Multidiscip Adv Res Trends II:2349–7408

    Google Scholar 

  146. Rao KG (2016) Green synthesis of TiO2 nanoparticles using aloe vera extract. Int J Adv Res Phys Sci 2:28–34

    Google Scholar 

  147. Hudlikar M, Joglekar S, Dhaygude M, Kodam K (2012) Green synthesis of TiO2 nanoparticles by using aqueous extract of Jatropha curcas L. latex. Mater Lett 75:196–199

    Article  CAS  Google Scholar 

  148. Ranga Rao A, Dutta V (2007) Low-temperature synthesis of TiO2 nanoparticles and preparation of TiO2 thin films by spray deposition. Sol Energy Mater Sol Cells 91:1075–1080

    Article  CAS  Google Scholar 

  149. Trung T, Cho W, Ha C (2003) Preparation of TiO2 nanoparticles in glycerol-containing solutions. Mater Lett 57:2746–2750

    Article  CAS  Google Scholar 

  150. Nagaveni K, Hegde MS, Ravishankar N, Subbanna GN, Madras G (2004) Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 20:2900–2907

    Article  CAS  PubMed  Google Scholar 

  151. Sundrarajan M, Gowri S (2011) Green synthesis of titanium dioxide nanoparticles by nyctanthes arbor-tristis leaves extract. Chalcogenide Lett 8:447–451

    CAS  Google Scholar 

  152. Nabi G et al (2020) Green synthesis of TiO2 nanoparticles using lemon peel extract: their optical and photocatalytic properties. Int J Environ Anal Chem 00:1–9

    CAS  Google Scholar 

  153. Jha AK, Prasad K, Kulkarni AR (2009) Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surfaces B Biointerfaces 71:226–229

    Article  CAS  PubMed  Google Scholar 

  154. Tarafdar A, Raliya R, Wang W, Biswas P, Tarafdar JC (2017) Green synthesis of TiO2 nanoparticle using. Int Res J Eng Technol 4:1–7

    Google Scholar 

  155. Santhoshkumar T et al (2014) Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac J Trop Med 7:968–976

    Article  CAS  PubMed  Google Scholar 

  156. Marimuthu S et al (2013) Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa. Asian Pac J Trop Med 6:682–688

    Article  CAS  PubMed  Google Scholar 

  157. Banerjee S et al (2014) New insights into the mechanism of visible light photocatalysis. J Phys Chem Lett 5:2543–2554

    Article  CAS  PubMed  Google Scholar 

  158. Etacheri V, Seery MK, Hinder SJ, Pillai SC (2012) Nanostructured Ti1−xSxO2-yNy heterojunctions for efficient visible-light-induced photocatalysis. Inorg Chem 51:7164–7173

    Article  CAS  PubMed  Google Scholar 

  159. Tryk DA, Fujishima A, Honda K (2000) Recent topics in photoelectrochemistry: achievements and future prospects. Electrochim Acta 45:2363–2376

    Article  CAS  Google Scholar 

  160. Anpo M, Takeuchi M (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J Catal 216:505–516

    Article  CAS  Google Scholar 

  161. Heidari A, Safa KD, Teimuri-Mofrad R (2023) Chlorophyll b-modified TiO2 nanoparticles for visible-light-induced photocatalytic synthesis of new tetrahydroquinoline derivatives. Mol Catal 547:113338

    Article  CAS  Google Scholar 

  162. Kuang D et al (2008) Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2:1113–1116

    Article  CAS  PubMed  Google Scholar 

  163. Kamat PV (1993) Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 93:267–300

    Article  CAS  Google Scholar 

  164. Fox MA (1983) Organic heterogeneous photocatalysis: chemical conversions sensitized by irradiated semiconductors. Acc Chem Res 16:314–321

    Article  CAS  Google Scholar 

  165. McTiernan CD, Pitre SP, Ismaili H, Scaiano JC (2014) Heterogeneous light-mediated reductive dehalogenations and cyclizations utilizing platinum nanoparticles on titania (PtNP@TiO2). Adv Synth Catal 356:2819–2824

    Article  CAS  Google Scholar 

  166. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357

    Article  CAS  Google Scholar 

  167. Füldner S et al (2010) Green-light photocatalytic reduction using dye-sensitized TiO2 and transition metal nanoparticles. Green Chem 12:400–440

    Article  Google Scholar 

  168. Hoffmann N (2015) Photocatalysis with TiO2 applied to organic synthesis. Aust J Chem 68:1621–1639

    Article  CAS  Google Scholar 

  169. Boochakiat S, Inceesungvorn B, Nattestad A, Chen J (2023) Bismuth-based oxide photocatalysts for selective oxidation transformations of organic compounds. ChemNanoMat 9:e202300140

    Article  CAS  Google Scholar 

  170. Nosaka Y, Nosaka AY (2017) Generation and detection of reactive oxygen species in photocatalysis. Chem Rev 117:11302–11336

    Article  CAS  PubMed  Google Scholar 

  171. Maldotti A, Molinari A, Amadelli R (2002) Photocatalysis with organized systems for the oxofunctionalization of hydrocarbons by O2. Chem Rev 102:3811–3836

    Article  CAS  PubMed  Google Scholar 

  172. Higashimoto S et al (2009) Selective photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible light irradiation. J Catal 266:279–285

    Article  CAS  Google Scholar 

  173. Augugliaro V, Loddo V, Palmisano G, Palmisano L, Bölümü K, Fakültesi F-E, Afyon Kocatepe Üniversitesi, Ahmet Necdet Sezer Kampüsü (2013) “Schiavello-Grillone ” Photocatalysis Group, Dipartimento di Energia, Ingegneria dell’ Informazione e Modelli Matema, Afyon, Turkey. pp 456–461

  174. Mogica-Betancourt JC et al (2014) Interaction effects of nickel polyoxotungstate with the Al2O3–MgO support for application in dibenzothiophene hydrodesulfurization. J Catal 313:9–23

    Article  CAS  Google Scholar 

  175. Ohtani B, Tsuru S, Nishimoto S, Kagiya T, Izawa K (1990) Photocatalytic one-step syntheses of cyclic imino acids by aqueous semiconductor suspensions. J Org Chem 55:5551–5553

    Article  CAS  Google Scholar 

  176. Lang X et al (2012) Visible-light-induced selective photocatalytic aerobic oxidation of amines into imines on TiO2. Chem A Eur J 18:2624–2631

    Article  CAS  Google Scholar 

  177. Parrino F, Ramakrishnan A, Kisch H (2008) Semiconductor-photocatalyzed sulfoxidation of alkanes. Angew Int Ed Chem. https://doi.org/10.1002/anie.200800326

    Article  Google Scholar 

  178. Demina PA et al (2014) Adsorption ability of samples with nanoscale anatase to extract Nb(V) and Ta(V) ions from aqueous media. Crystallogr Rep 59:430–436

    Article  CAS  Google Scholar 

  179. 清家 篤 (2001) 21世紀の労働 (特集 21世紀の日本) – (21世紀の日本展望). 統計 52:24–26

  180. Wang H, Partch RE, Li Y (1997) Synthesis of 2-alkylbenzimidazoles via TiO2-mediated photocatalysis. J Org Chem 36:5943–5946

    Google Scholar 

  181. Park KH, Joo HS, Ahn K, Jun K (1995) One step synthesis of 4-ethoxy-l,2,3,4-tetrahydroquinoline from nitroarene and ethanol: a TiO2 mediated photocatalytic reaction. Tetrahedron Lett 36:5943–5946

    Article  CAS  Google Scholar 

  182. Manley DW, Buzzetti L, Mackessack-leitch A, Walton JC (2014) Hydrogenations without hydrogen: titania photocatalyzed reductions of maleimides and aldehydes. Molecules 24:15324–15338. https://doi.org/10.3390/molecules190915324

    Article  CAS  Google Scholar 

  183. Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43–69

    Article  CAS  PubMed  Google Scholar 

  184. Quétel CR, Vassileva E, Petrov I, Chakarova K, Hadjiivanov KI (2010) First results on Fe solid-phase extraction from coastal seawater using anatase TiO2 nano-particles. Anal Bioanal Chem 396:2349–2361

    Article  PubMed  Google Scholar 

  185. Mukherjee A, Kundu S, Chatterjee D, Dhak D (2022) A critical review on photoreduction using metal-organic frameworks: kinetics, pH and mechanistic studies and anthropogenic/natural sources of Cr(VI). Chem Africa 5:1783–1796

    Article  CAS  Google Scholar 

  186. Zheng R, Yang D, Chen Y, Bian Z, Li H (2023) Fe2O3/ TiO2/reduced graphene oxide-driven recycled visible-photocatalytic Fenton reactions to mineralize organic pollutants in a wide pH range. J Environ Sci (China) 134:11–20

    Article  CAS  PubMed  Google Scholar 

  187. Mukherjee A et al (2019) Efficient fluoride removal and dye degradation of contaminated Water using Fe/Al/Ti oxide nanocomposite. ACS Omega 4:9686–9696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Mukherjee A, Dhak P, Mandal D, Dhak D (2023) Solvothermal synthesis of 3D rod-shaped Ti/Al/Cr nano-oxide for photodegradation of wastewater micropollutants under sunlight: a green way to achieve SDG:6. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-023-30112-8

    Article  Google Scholar 

  189. Rezaee A et al (2008) Photocatalytic decomposition of gaseous toluene by TiO2 nanoparticles coated on activated carbon. Iran J Environ Heal Sci Eng 5:305–310

    CAS  Google Scholar 

  190. Ivanković S, Gotić M, Jurin M, Musić S (2003) Photokilling squamous carcinoma cells SCCVII with ultrafine particles of selected metal oxides. J Sol Gel Sci Technol 27:225–233

    Article  Google Scholar 

  191. Zhang AP, Sun YP (2004) Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells. World J Gastroenterol 10:3191–3193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Mahmoodi NM, Arami M, Limaee NY, Tabrizi NS (2005) Decolorization and aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst. Chem Eng J 112:191–196

    Article  CAS  Google Scholar 

  193. Raliya R, Biswas P, Tarafdar JC (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol Rep 5:22–26

    Article  Google Scholar 

  194. Manuscript, A. Metallomics.

  195. Yuan Y, Ding J, Xu J, Deng J, Guo J (2010) TiO2 nanoparticles co-doped with silver and nitrogen for antibacterial application. J Nanosci Nanotechnol 10:4868–4874

    Article  CAS  PubMed  Google Scholar 

  196. Szaciłowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G (2005) Bioinorganic photochemistry: frontiers and mechanisms. Chem Rev 105:2647–2694

    Article  PubMed  Google Scholar 

  197. Wiesenthal A, Hunter L, Wang S, Wickliffe J, Wilkerson M (2011) Nanoparticles: small and mighty. Int J Dermatol 50:247–254

    Article  CAS  PubMed  Google Scholar 

  198. Wang Y et al (2018) Heteroatom-doped porous carbon from methyl orange dye wastewater for oxygen reduction. Green Energy Environ 3:172–178

    Article  Google Scholar 

  199. Li Y et al (2019) Enhanced photocatalytic degradation of organic dyes via defect-rich TiO2 prepared by dielectric barrier discharge plasma. Nanomaterials 9:720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Yang Z et al (2009) Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J Power Sources 192:588–598

    Article  CAS  Google Scholar 

  201. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946

    Article  CAS  Google Scholar 

  202. Aricò AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2010) Nanostructured materials for advanced energy conversion and storage devices. Mater Sustain Energy A Collect Peer Rev Res Rev Artic Nat Publ Gr 7:148–159

    Google Scholar 

  203. Tsai CC, Teng H (2006) Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem Mater 18:367–373

    Article  CAS  Google Scholar 

  204. Mor GK, Carvalho MA, Varghese OK, Pishko MV, Grimes CA (2004) A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J Mater Res 19:628–634

    Article  CAS  Google Scholar 

  205. Miyazaki H, Hyodo T, Shimizu Y, Egashira M (2005) Hydrogen-sensing properties of anodically oxidized TiO2 film sensors: effects of preparation and pretreatment conditions. Sens Actuators B Chem 108:467–472

    Article  CAS  Google Scholar 

  206. Ruiz AM, Cornet A, Morante JR (2004) Study of La and Cu influence on the growth inhibition and phase transformation of nano-TiO2 used for gas sensors. Sens Actuators B Chem 100:256–260

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledgment Dr. Shalu for her valuable support. The authors also thankful to SRM Institute of Science and Technology, Delhi-NCR Campus for support. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Tomar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangeeta, Onisha, Sandhu, N. et al. Critical Review on Titania-Based Nanoparticles: Synthesis, Characterization, and Application as a Photocatalyst. Chemistry Africa 7, 1749–1768 (2024). https://doi.org/10.1007/s42250-023-00875-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00875-1

Keywords

Navigation