Skip to main content

Advertisement

Log in

Technical Challenges and Their Solutions for Integration of Sensible Thermal Energy Storage with Concentrated Solar Power Applications—a Review

  • Review Article
  • Published:
Process Integration and Optimization for Sustainability Aims and scope Submit manuscript

Abstract

Concentrated solar power (CSP) uses solar insolation to increase the temperature of heat transfer fluid (HTF), which can be used in a power block to produce power either by using a steam turbine or gas turbine. In CSP, the levelized cost of electricity is higher than conventional sources due to the intermittent nature of solar energy. The levelized cost of electricity can be reduced by integrating CSP with thermal energy storage (TES) system. This paper comprehensively reviews sensible thermal energy storage technologies for concentrated solar power applications. It includes a brief discussion of various sensible heat TES systems, i.e., two-tank molten salt TES system, single-media TES system, and dual-media TES systems. Recent advances in the TES system show that dual-media thermocline is economically more viable as compared to others. However, it has a few technical challenges like a mechanical failure due to thermal ratcheting and varying outlet temperature. Additionally, the review presented here is useful in thermodynamic modeling of the TES system using various heat transfer models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

\({{\varvec{a}}}_{{\varvec{w}}}\) :

Superficial area per unit volume

\({{\varvec{U}}}_{{\varvec{w}}}\) :

Overall heat transfer coefficient

X :

Mole fraction

P :

Pressure

Ε:

Void fraction

\({{\varvec{V}}}_{{\varvec{s}}}\) :

Interstitial velocity

Μ:

Dynamic viscosity

D :

Pebbles diameter

T :

Temperature

Y :

Axial length

H :

Convective heat transfer coefficient

R :

Radius

K :

Thermal conductivity

C :

Specific heat

A :

Area

\({\boldsymbol{\alpha }}_{{\varvec{a}}{\varvec{x}}}\) :

Axial fluid thermal dispersion coefficient

\(\boldsymbol{\alpha }\) :

Thermal diffusivity

Ρ :

Density

\({\varvec{s}}\) :

Solid

\({\varvec{f}}\) :

Fluid

V :

Volumetric

TES :

Thermal energy storage

CSP :

Concentrated solar power

HTF :

Heat transfer fluid

PV :

Photovoltaic module

DNI :

Direct normal irradiance

PTC :

Parabolic trough collector

LFR :

Linear Fresnel reflector

DSC :

Differential scanning calorimeter

MSTES :

Molten salt thermal energy storage

ORC :

Organic Rankine cycle

HITEC:

NaNO3-KNO3-NaNO2: 7–53-40 wt%)—molten salt

PBSS:

Packed bed sensible storage

STHX:

Shell and tube heat exchanger

LMP:

Low melting point

SMT:

Single-media thermocline

DMT:

Dual-media tank

PCM:

Phase change material

MTR:

Minimum temperature requirement

PBR:

Packed bed generator

References

  • Tian Y, Zhao CY (2013) A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy 104:538–553

    Article  Google Scholar 

  • Shouman ER, Khattab NM (2015) Future economic of concentrating solar power (CSP) for electricity generation in Egypt. Renew Sustain Energy Rev 41:1119–1127

    Article  Google Scholar 

  • Anderson R, Bates L, Johnson E, Morris JF (2015) Packed bed thermal energy storage: a simplified experimentally validated model. J Energy Storage 4:14–23

    Article  Google Scholar 

  • I. Sarbu, “A comprehensive review of thermal energy storage,” 2018.

  • J. Stekli, L. Irwin, and R. Pitchumani, “Technical challenges and opportunities for concentrating solar power with thermal energy storage,” J Thermal Sci Eng Appl 5 2 021011 2013.

  • Li P, Van Lew J, Chan C, Karaki W, Stephens J, Brien JEO (2012) Similarity and generalized analysis of ef fi ciencies of thermal energy storage systems. Renew Energy 39(1):388–402

    Article  Google Scholar 

  • Bijarniya JP, Sudhakar K, Baredar P (2016) Concentrated solar power technology in India: A review. Renew Sustain Energy Rev 63:593–603

    Article  Google Scholar 

  • “Concentrating solar power – tracking power – analysis - IEA.” [Online]. Available: https://www.iea.org/reports/tracking-power-2019/concentrating-solar-power. [Accessed: 03-Jun-2020].

  • Py X, Azoumah Y, Olives R (2013) Concentrated solar power: current technologies, major innovative issues and applicability to West African countries. Renew Sustain Energy Rev 18:306–315

    Article  Google Scholar 

  • K. Ellingwood, S. M. Safdarnejad, K. Rashid, and K. Powell, “Leveraging energy storage in a solar-tower and combined cycle hybrid power plant,” Energies, vol. 12, no. 1, 2019.

  • “Definition: Concentrating solar power | Open Energy Information.” [Online]. Available: https://openei.org/wiki/Definition:Concentrating_solar_power. [Accessed: 08-Dec-2021].

  • R. E. N. Members, Renewables 2020 global status report 2020. 2020.

  • R. P. Merchán, M. J. Santos, A. Medina, and A. C. Hernández, “High temperature central tower plants for concentrated solar power: 2021 overview,” Renew Sustain Energy Rev 155 111828 2022.

  • “Concentrated Solar Power (CSP): A Potential Solution for India | CAG.” [Online]. Available: https://www.cag.org.in/newsletters/public-newsense/concentrated-solar-power-csp-potential-solution-india. [Accessed: 09-Dec-2021].

  • “Concentrated solar power (CSP) in India: An outlook to 2024 – HELIOSCSP.” [Online]. Available: http://helioscsp.com/concentrated-solar-power-csp-in-india-an-outlook-to-2024/. [Accessed: 13-Jul-2020].

  • Zhang HL, Baeyens J, Degrève J, Cacères G (2013) Concentrated solar power plants: Review and design methodology. Renew Sustain Energy Rev 22:466–481

    Article  Google Scholar 

  • Xu B, Li P, Chan C (2015) Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energy 160:286–307

    Article  Google Scholar 

  • Moser M, Trieb F, Fichter T (2013) Potential of concentrating solar power plants for the combined production of water and electricity in MENA countries. J Sustain Develop Energy Water Environ Syst 1(2):122–140

    Article  Google Scholar 

  • U. States, U. States, and T. Southwest, “Power : energy from mirrors,” 2001.

  • Barlev D, Vidu R, Stroeve P (2011) Innovation in concentrated solar power. Sol Energy Mater Sol Cells 95(10):2703–2725

    Article  Google Scholar 

  • Santos JJCS, Palacio JCE, Reyes AMM, Carvalho M, Freire AJR, Barone MA (2018) Concentrating Solar Power. Adv Renew Energies Power Technol 1(2):373–402

    Article  Google Scholar 

  • Guillot S et al (2012) Corrosion effects between molten salts and thermal storage material for concentrated solar power plants. Appl Energy 94:174–181

    Article  Google Scholar 

  • Kusch-Brandt, Urban renewable energy on the upswing: a spotlight on renewable energy in cities in REN21’s “Renewables 2019 Global Status Report,” vol. 8, no. 3. 2019.

  • L. F. Cabeza, I. Martorell, L. Miró, A. I. Fernández, and C. Barreneche, Introduction to thermal energy storage (TES) systems. Woodhead Publishing Limited, 2015.

  • Z. Wang, “Chapter 6 - Thermal Storage Systems,” Des Solar Thermal Power Plants no. 1, pp. 387–415, 2019.

  • E. Alptekin and M. A. Ezan, “Performance investigations on a sensible heat thermal energy storage tank with a solar collector under variable climatic conditions,” Appl Thermal Eng 164 114423, 2020.

  • Chang ZS, Li X, Xu C, Chang C, Wang ZF (2015) The design and numerical study of a 2MWh molten salt thermocline tank. Energy Procedia 69:779–789

    Article  Google Scholar 

  • Kuravi S, Trahan J, Goswami DY, Rahman MM, Stefanakos EK (2013) Thermal energy storage technologies and systems for concentrating solar power plants. Prog Energy Combust Sci 39(4):285–319

    Article  Google Scholar 

  • Koller M, Hofmann R, Walter H (2019) MILP model for a packed bed sensible thermal energy storage. Comput Chem Eng 125:40–53

    Article  Google Scholar 

  • A. Mehari, Z. Y. Xu, and R. Z. Wang, “Thermal energy storage using absorption cycle and system : a comprehensive review,” vol. 206, no. December 2019, 2020.

  • Boretti A, Castelletto S, Al-Zubaidy S (2019) Concentrating solar power tower technology: Present status and outlook. Nonlin Eng 8(1):10–31

    Article  Google Scholar 

  • A. K. A. Araújo and G. I. Medina T., “Analysis of the effects of climatic conditions, loading level and operating temperature on the heat losses of two-tank thermal storage systems in CSP,” Solar Energy, vol. 176, no. September, pp. 358–369, 2018.

  • J. E. Pacheco, S. K. Showalter, and W. J. Kolb, “Development of a molten-salt thermocline thermal storage system for parabolic trough,” vol. 124, no. May 2002, 2013.

  • S. Ushak, A. G. Fernández, and M. Grageda, Using molten salts and other liquid sensible storage media in thermal energy storage (TES) systems. Woodhead Publishing Limited, 2015.

  • “Advances in thermal energy storage systems: methods and applications - Google Books.” .

  • Nunes VMB, Queirós CS, Lourenço MJV, Santos FJV, Nieto de Castro CA (2016) Molten salts as engineering fluids – a review: Part I. Molten alkali nitrates. Appl Energy 183:603–611

    Article  Google Scholar 

  • X. Li, S. Wu, Y. Wang, and L. Xie, “Experimental investigation and thermodynamic modeling of an innovative molten salt for thermal energy storage (TES),” Appl Energy, 212 July 2017, pp. 516–526, 2018.

  • Peiró G, Prieto C, Gasia J, Jové A, Miró L, Cabeza LF (2018) Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: Lessons learnt and recommendations for its design, start-up and operation. Renew Energy 121:236–248

    Article  Google Scholar 

  • Y. Zhu, Y. Yuan, C. Zhang, M. Xie, and H. Tan, “Numerical study on heat transfer enhancement of thermal energy storage systems considering radiation of molten salt,” Solar Energy, vol. 183, no. December 2018, pp. 337–344, 2019.

  • Torras S, Pérez-Segarra CD, Rodríguez I, Rigola J, Oliva A (2015) Parametric Study of Two-tank TES Systems for CSP Plants. Energy Procedia 69:1049–1058

    Article  Google Scholar 

  • Cocco D, Serra F (2015) Performance comparison of two-tank direct and thermocline thermal energy storage systems for 1 MWe class concentrating solar power plants. Energy 81:526–536

    Article  Google Scholar 

  • Li S, Li Y, Zhang X, Wen C (2013) Experimental study on the discharging performance of solar storage tanks with different inlet structures. Int J Low-Carbon Technol 8(3):203–209

    Article  Google Scholar 

  • Reddy KS, Jawahar V, Sivakumar S, Mallick TK (2017) Performance investigation of single-tank thermocline storage systems for CSP plants. Sol Energy 144:740–749

    Article  Google Scholar 

  • Y. Filali Baba, A. Al Mers, and H. Ajdad, “Dimensionless model based on dual phase approach for predicting thermal performance of thermocline energy storage system: Towards a new approach for thermocline thermal optimization,” Renew Energy, vol. 153, pp. 440–455, 2020.

  • P. Gajbhiye, N. Salunkhe, S. Kedare, and M. Bose, “Experimental investigation of single media thermocline storage with eccentrically mounted vertical porous fl ow distributor,” Solar Energy, vol. 162, no. December 2017, pp. 28–35, 2018.

  • Erregueragui Z, Boutammachte N, Bouatem A (2016) Packed-bed Thermal Energy Storage Analysis : Quartzite and Palm- Oil Performance. Energy Procedia 99(March):370–379

    Article  Google Scholar 

  • A. Gautam and R. P. Saini, “A review on technical, applications and economic aspect of packed bed solar thermal energy storage system,” J Energy Storage, vol. 27, no. October 2019, p. 101046, 2020.

  • Haller MY, Cruickshank CA, Streicher W, Harrison SJ, Andersen E, Furbo S (2009) Methods to determine stratification efficiency of thermal energy storage processes - Review and theoretical comparison. Sol Energy 83(10):1847–1860

    Article  Google Scholar 

  • Zanganeh G, Pedretti A, Zavattoni S, Barbato M, Steinfeld A (2012) Packed-bed thermal storage for concentrated solar power – pilot-scale demonstration and industrial-scale design. Sol Energy 86(10):3084–3098

    Article  Google Scholar 

  • D. Laing and S. Zunft, Using concrete and other solid storage media in thermal energy storage (TES) systems. Woodhead Publishing Limited, 2015.

  • Almendros-Ibáñez JA, Fernández-Torrijos M, Díaz-Heras M, Belmonte JF, Sobrino C (2019) A review of solar thermal energy storage in beds of particles: Packed and fluidized beds. Sol Energy 192(January):193–237

    Article  Google Scholar 

  • Lugolole R, Mawire A, Okello D, Lentswe KA, Nyeinga K, Shobo AB (2019) Experimental analyses of sensible heat thermal energy storage systems during discharging. Sustain Energy Technol Assess 35(February):117–130

    Google Scholar 

  • Singh H, Saini RP, Saini JS (2010) A review on packed bed solar energy storage systems. Renew Sustain Energy Rev 14(3):1059–1069

    Article  MathSciNet  Google Scholar 

  • Wang L, Yang Z, Duan Y (2015) Influence of flow distribution on the thermal performance of dual-media thermocline energy storage systems. Appl Energy 142:283–292

    Article  Google Scholar 

  • Bruch A, Fourmigue JF, Couturier R, Molina S (2014a) Experimental and numerical investigation of stability of packed bed thermal energy storage for CSP power plant. Energy Procedia 49:743–751

    Article  Google Scholar 

  • Nandi BR, Bandyopadhyay S, Banerjee R (2018) Numerical modeling and analysis of dual medium thermocline thermal energy storage. J Energy Storage 16:218–230

    Article  Google Scholar 

  • Liu M et al (2016) Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renew Sustain Energy Rev 53:1411–1432

    Article  Google Scholar 

  • Oró E, Castell A, Chiu J, Martin V, Cabeza LF (2013) Stratification analysis in packed bed thermal energy storage systems. Appl Energy 109:476–487

    Article  Google Scholar 

  • C. Ravi, C. Rao, H. Niyas, and P. Muthukumar, “Performance tests on Lab–scale sensible heat storage prototypes,” Applied Thermal Engineering, 2017.

  • Z. Wan, J. Wei, M. A. Qaisrani, J. Fang, and N. Tu, “Evaluation on thermal and mechanical performance of the hot tank in the two-tank molten salt heat storage system,” Appl Thermal Eng vol. 167, p. 114775, 2020.

  • E. Saad, Z. Liao, C. Xu, and X. Du, “International Journal of Heat and Mass Transfer Dynamic characteristics of solid packe d-b e d thermocline tank using molten-salt as a heat transfer fluid,” Int J Heat Mass Transfer, vol. 165, p. 120677, 2021.

  • Kumar R, Pathak AK, Patil AK, Kumar M (2020) An experimental investigation of sensible heat storage system with multi-tubular cavities. Energy Sourc Part A: Recover Utilizat Environ Effects 00(00):1–13

    Google Scholar 

  • Y. F. Baba, A. Al Mers, and H. Ajdad, “Dimensionless model based on dual phase approach for predicting thermal performance of thermocline energy storage system : Towards a new approach for thermocline thermal optimization,” Renew Energy, vol. 153, pp. 440–455, 2020.

  • E. Johnson, L. Bates, A. Dower, P. C. Bueno, and R. Anderson, “Thermal energy storage with supercritical carbon dioxide in a packed bed : Modeling charge-discharge cycles,” J Supercrit Fluids, vol. 137, no. December 2017, pp. 57–65, 2020.

  • Elouali A et al (2019) Physical models for packed bed: Sensible heat storage systems. J Energy Storage 23(January):69–78

    Article  Google Scholar 

  • K. Vigneshwaran, G. S. Sodhi, P. Muthukumar, A. Guha, and S. Senthilmurugan, “Experimental and numerical investigations on high temperature cast steel based sensible heat storage system,” Appl Energy, vol. 251, no. December 2018, p. 113322, 2019.

  • F. Cabello Núñez, J. López Sanz, and F. Zaversky, “Analysis of steel making slag pebbles as filler material for thermocline tanks in a hybrid thermal energy storage system,” Solar Energy, vol. 188, no. February, pp. 1221–1231, 2019.

  • Niedermeier K, Marocco L, Flesch J, Mohan G, Coventry J, Wetzel T (2018) Performance of molten sodium vs. molten salts in a packed bed thermal energy storage. Appl Therm Eng 141:368–377

    Article  Google Scholar 

  • Kocak B, Paksoy H (2020) Performance of laboratory scale packed-bed thermal energy storage using new demolition waste based sensible heat materials for industrial solar applications. Sol Energy 211(May):1335–1346

    Article  Google Scholar 

  • Els. S. ELSihy, Z. Liao, C. Xu, and X. Du, “Dynamic characteristics of solid packed-bed thermocline tank using molten-salt as a heat transfer fluid,” Int J Heat Mass Trans vol. 165, p. 120677, 2021.

  • C. Mira-hern and S. M. Flueckiger, “Comparative analysis of single- and dual-media thermocline tanks for thermal energy storage in concentrating solar power plants,” vol. 137, no. June, 2015.

  • Baghapour B, Rouhani M, Sharafian A, Kalhori SB, Bahrami M (2018) A pressure drop study for packed bed adsorption thermal energy storage. Appl Therm Eng 138:731–739

    Article  Google Scholar 

  • P. Of, “Analysis and optimisation of,” 2016.

  • Ergun S, Orning AA (1949) Fluid flow through randomly packed columns and fluidized beds. Ind Eng Chem 41(6):1179–1184

    Article  Google Scholar 

  • P. Media, “Teach Second Law of Thermodynamics via Analysis,” 2019.

  • Mehta D, Hawley MC (1969) Wall effect in packed columns. Ind Eng Chem Process Des Dev 8(2):280–282

    Article  Google Scholar 

  • Bruch A, Fourmigué JF, Couturier R (2014b) Experimental and numerical investigation of a pilot-scale thermal oil packed bed thermal storage system for CSP power plant. Sol Energy 105:116–125

    Article  Google Scholar 

  • Thabet A, Straatman AG (2018) The development and numerical modelling of a Representative Elemental Volume for packed sand. Chem Eng Sci 187:117–126

    Article  Google Scholar 

  • Erdim E, Akgiray Ö, Demir I (2015) A revisit of pressure drop-flow rate correlations for packed beds of spheres. Powder Technol 283:488–504

    Article  Google Scholar 

  • Rong LW, Zhou ZY, Yu AB (2015) Lattice-Boltzmann simulation of fluid flow through packed beds of uniform ellipsoids. Powder Technol 285:146–156

    Article  Google Scholar 

  • Mayerhofer M, Govaerts J, Parmentier N, Jeanmart H, Helsen L (2011) Experimental investigation of pressure drop in packed beds of irregular shaped wood particles. Powder Technol 205(1–3):30–35

    Article  Google Scholar 

  • Li L, Ma W (2011) Experimental Study on the Effective Particle Diameter of a Packed Bed with Non-Spherical Particles. Transp Porous Media 89(1):35–48

    Article  Google Scholar 

  • Ozahi E, Gundogdu MY, Carpinlioglu MÖ (2008) A modification on Ergun’s correlation for use in cylindrical packed beds with non-spherical particles. Adv Powder Technol 19(4):369–381

    Article  Google Scholar 

  • du Plessis JP, Woudberg S (2008) Pore-scale derivation of the Ergun equation to enhance its adaptability and generalization. Chem Eng Sci 63(9):2576–2586

    Article  Google Scholar 

  • Partopour B, Dixon AG (2017) An integrated workflow for resolved-particle packed bed models with complex particle shapes. Powder Technol 322:258–272

    Article  Google Scholar 

  • Guo Z, Sun Z, Zhang N, Ding M, Wen J (2017) Experimental characterization of pressure drop in slender packed bed (1 < D/d < 3). Chem Eng Sci 173:578–587

    Article  Google Scholar 

  • Doretti L, Martelletto F, Mancin S (2019) A simplified analytical approach for concrete sensible thermal energy storages simulation. J Energy Storage 22(January):68–79

    Article  Google Scholar 

  • K. A. R. Ismail and R. S. Jr, “A parametric study on possible ® xed bed models for pcm and sensible heat storage,” vol. 19, 1999.

  • J. F. Tuttle, N. White, K. Mohammadi, and K. Powell, “A novel dynamic simulation methodology for high temperature packed-bed thermal energy storage with experimental validation,” Sustain Energy Technol Assess 42 October 100888, 2020.

  • Suhas V. Patankar, Numerical Heat Transferand Fluid Flow. Taylor & Francis.

  • Kaguei S, Shiozawa B, Wakao N (1976) Dispersion-concentric packed bed heat. Chem Eng Sci 32(8):507–513

    Google Scholar 

  • Fernández-Torrijos M, Sobrino C, Almendros-Ibáñez JA (2017) Simplified model of a dual-media molten-salt thermocline tank with a multiple layer wall. Sol Energy 151:146–161

    Article  Google Scholar 

  • Flueckiger SM, Iverson BD, Garimella SV, Pacheco JE (2014) System-level simulation of a solar power tower plant with thermocline thermal energy storage. Appl Energy 113:86–96

    Article  Google Scholar 

  • Schumann TEW (1929) Heat transfer: A liquid flowing through a porous prism. J Franklin Inst 208(3):405–416

    Article  MATH  Google Scholar 

  • Agalit H, Zari N, Maalmi M, Maaroufi M (2015) Numerical investigations of high temperature packed bed TES systems used in hybrid solar tower power plants. Sol Energy 122:603–616

    Article  Google Scholar 

  • Modi A, Pérez-Segarra CD (2014) Thermocline thermal storage systems for concentrated solar power plants: one-dimensional numerical model and comparative analysis. Sol Energy 100:84–93

    Article  Google Scholar 

  • J. D. Mctigue and A. J. White, “Segmented packed beds for improved thermal energy storage performance,” vol. 10, no. Oses 2015, pp. 1498–1505, 2020.

  • Mctigue JD, Markides CN, White AJ (2018) Performance response of packed-bed thermal storage to cycle duration perturbations. J Energy Storage 19(July):379–392

    Article  Google Scholar 

  • Bayón R, Rojas E (2013) Simulation of thermocline storage for solar thermal power plants: from dimensionless results to prototypes and real-size tanks. Int J Heat Mass Transf 60(1):713–721

    Article  Google Scholar 

  • C. Odenthal, W. D. Steinmann, and S. Zunft, “Analysis of a horizontal flow closed loop thermal energy storage system in pilot scale for high temperature applications – Part II: Numerical investigation,” Appl Energy, vol. 263, no. September 2019, p. 114576, 2020.

  • Zhao B, Cheng M, Liu C, Dai Z (2017) An efficient tank size estimation strategy for packed-bed thermocline thermal energy storage systems for concentrated solar power. Sol Energy 153:104–114

    Article  Google Scholar 

  • Galione PA, Pérez-Segarra CD, Rodríguez I, Torras S, Rigola J (2015) Multi-layered solid-PCM thermocline thermal storage for CSP. Numerical evaluation of its application in a 50MWe plant. Sol Energy 119:134–150

    Article  Google Scholar 

  • Ahmed N, Elfeky KE, Lu L, Wang QW (2019) Thermal and economic evaluation of thermocline combined sensible-latent heat thermal energy storage system for medium temperature applications. Energy Convers Manage 189:14–23

    Article  Google Scholar 

  • X. Yang and Z. Cai, “An analysis of a packed bed thermal energy storage system using sensible heat and phase change materials,” Int J Heat Mass Trans vol. 144, p. 118651, 2019.

  • Zaversky F, García-Barberena J, Sánchez M, Astrain D (2013) Transient molten salt two-tank thermal storage modeling for CSP performance simulations. Sol Energy 93:294–311

    Article  Google Scholar 

  • Grirate H, Agalit H, Zari N, Elmchaouri A, Molina S, Couturier R (2016) Experimental and numerical investigation of potential filler materials for thermal oil thermocline storage. Sol Energy 131:260–274

    Article  Google Scholar 

  • I. González, C. D. Pérez-segarra, O. Lehmkuhl, S. Torras, and A. Oliva, “Thermo-mechanical parametric analysis of packed-bed thermocline energy storage tanks,” vol. 179, pp. 1106–1122, 2016.

  • Wu M, Li M, Xu C, He Y, Tao W (2014) The impact of concrete structure on the thermal performance of the dual-media thermocline thermal storage tank using concrete as the solid medium. Appl Energy 113:1363–1371

    Article  Google Scholar 

  • Xu C, Wang Z, He Y, Li X, Bai F (2012) Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system. Appl Energy 92:65–75

    Article  Google Scholar 

  • Esence T, Bruch A, Molina S, Stutz B, Fourmigué JF (2017) A review on experience feedback and numerical modeling of packed-bed thermal energy storage systems. Sol Energy 153:628–654

    Article  Google Scholar 

  • Bayón R, Rivas E, Rojas E (2014) Study of thermocline tank performance in dynamic processes and stand-by periods with an analytical function. Energy Procedia 49:725–734

    Article  Google Scholar 

  • J. T. Van Lew, P. Li, and J. Stephens, “Analysis of heat storage and delivery of a thermocline tank,” no. May, 2011.

  • Lu J, Yu T, Ding J, Yuan Y (2015) Thermal storage performance of molten salt thermocline system with packed phase change bed. Energy Convers Manage 102:267–274

    Article  Google Scholar 

  • U. States, T. E. Storage, T. Tes, and H. T. Fluid, “3 [13].,” vol. 32, no. 4, pp. 269–270, 2011.

  • S. Bell, T. Steinberg, and G. Will, “Corrosion mechanisms in molten salt thermal energy storage for concentrating solar power,” Renew Sustain Energy Rev vol. 114, no. November 2018, p. 109328, 2019.

  • C. Prieto, J. Gasia, L. F. Cabeza, C. Prieto, J. Gasia, and F. Cabeza, “Accepted Manuscript,” 2018.

  • L. Geissbühler, A. Mathur, A. Mularczyk, and A. Haselbacher, “An assessment of thermocline-control methods for packed-bed thermal- energy storage in CSP plants , Part 1 : Method descriptions,” Solar Energy, vol. 178, no. December 2018, pp. 341–350, 2019.

  • D. M. Crandall and E. F. Thacher, “Segmented thermal storage,” vol. 77, no. May 2003, pp. 435–440, 2004.

  • L. Geissbühler, M. Kolman, G. Zanganeh, A. Haselbacher, and A. Steinfeld, “Analysis of industrial-scale high-temperature combined sensible/latent thermal energy storage,” Appl Thermal Eng vol. 101, 2016.

  • Thaker S, Oni AO, Kumar A (2017) Techno-economic evaluation of solar-based thermal energy storage systems. Energy Convers Manage 153(September):423–434

    Article  Google Scholar 

  • M. Petrollese, S. Arena, M. Cascetta, E. Casti, and G. Cau, “Techno-economic comparison of different thermal energy storage technologies for medium-scale CSP plants,” AIP Conference Proceedings, vol. 2191, no. December, 2019.

  • Mehos M, Jorgenson J, Denholm P, Turchi C (2015) An Assessment of the Net Value of CSP Systems Integrated with Thermal Energy Storage. Energy Procedia 69:2060–2071

    Article  Google Scholar 

  • Mostafavi SS, Taylor RA, Nithyanandam K, Shafiei A (2017) Annual comparative performance and cost analysis of high temperature, sensible thermal energy storage systems integrated with a concentrated solar power plant. Sol Energy 153:153–172

    Article  Google Scholar 

  • Dowling AW, Zheng T, Zavala VM (2017) Economic assessment of concentrated solar power technologies: A review. Renew Sustain Energy Rev 72(January):1019–1032

    Article  Google Scholar 

  • S. S. Mostafavi Tehrani, Y. Shoraka, K. Nithyanandam, and R. A. Taylor, “Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems,” Appl Energy, vol. 238, no. October 2018, pp. 887–910, 2019.

  • Liu M, Jacob R, Belusko M, Riahi S, Bruno F (2021) Techno-economic analysis on the design of sensible and latent heat thermal energy storage systems for concentrated solar power plants. Renew Energy 178:443–455

    Article  Google Scholar 

  • Z. Ma, X. Wang, P. Davenport, J. Gifford, and J. Martinek, “Economic analysis of an electric thersmal energy storage system using solid particles for grid electricity storage,” Proc ASME 2021 15th Int Confer Energy Sustain ES 2021, no. August, 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Kunwer.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunwer, R., Pandey, S. & Pandey, G. Technical Challenges and Their Solutions for Integration of Sensible Thermal Energy Storage with Concentrated Solar Power Applications—a Review. Process Integr Optim Sustain 6, 559–585 (2022). https://doi.org/10.1007/s41660-022-00231-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41660-022-00231-9

Keywords

Navigation