Skip to main content

Advertisement

Log in

Recent Developments in Integrated Solar Combined Cycle Power Plants

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Global concern for depleting fossil fuel reserves have been compelling for evolving power generation options using renewable energy sources. The solar energy happens to be a potential source for running the power plants among renewable energy sources. Integrated Solar Combined Cycle (ISCC) power plants have gained popularity among the thermal power plants. Traditional ISCC power plants use Direct Steam Generation (DSG) approach. However, with the DSG method, the ISCC plant’s overall thermal efficiency does not increase significantly due to variations in the availability of solar energy. Thermal Energy Storage (TES) systems when integrated into the solar cycle can address such issues related to energy efficiency, process flexibility, reducing intermittency during non-solar hours. This review work focuses and discusses the developments in various components of the ISCC system including its major cycles and related parameters. The main focus is on CSP technologies, Heat Transfer Fluid (HTF), and Phase Change Material (PCM) used for thermal energy storage. Further, study includes heat enhancement methods with HTF and latent heat storage system. This study will be beneficial to the power plant professionals intending to modify the solar-based Combined Cycle Power Plant (CCPP) and to retrofit the existing Natural Gas Combined Cycle (NGCC) plant with the advanced solar cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Omu A., Hsieh S., Orehounig K., Mixed integer linear programming for the design of solar thermal energy systems with short-term storage. Applied Energy, 2016, 180: 313–326.

    Article  Google Scholar 

  2. Bohtz C., Gokarn S., Conte E., Integrated solar combined cycles (ISCC) to meet renewable targets and reduce CO2 emissions. In Power-Gen Europe, Vienna, Austria, 2013, p. 20.

    Google Scholar 

  3. Johansson T.B., Kelly H., Reddy A.K.N., Williams R.H., Renewable fuels and electricity for a growing world economy: defining and achieving the potential. In Renewable Energy Sources for Fuels and Electricity, 1993, pp. 1–71. Island Press Washington, DC.

    Google Scholar 

  4. Schwarzbözl P., Buck R., Sugarmen C., et al., Solar gas turbine systems: design, cost and perspectives. Solar Energy, 2006, 80(10): 1231–1240.

    Article  ADS  Google Scholar 

  5. Dersch J., Geyer M., Herrmann U., et al., Trough integration into power plants—a study on the performance and economy of integrated solar combined cycle systems. Energy, 2004, 29(5–6): 947–959.

    Article  Google Scholar 

  6. Alqahtani B.J., Patiño-Echeverri D., Integrated solar combined cycle power plants: paving the way for thermal solar. Applied Energy, 2016, 169: 927–936.

    Article  Google Scholar 

  7. Antonanzas J., Alia-Martinez M., Martinez-de-Pison F.J., et al., Towards the hybridization of gas-fired power plants: a case study of Algeria. Renewable and Sustainable Energy Reviews, 2015, 51: 116–124.

    Article  Google Scholar 

  8. Vergura S., Lameira V., Technical-financial comparison between a PV plant and a CSP plant. Revista Eletrônica Sistemas & Gestão, 2011, 6(2): 210–220.

    Article  Google Scholar 

  9. Mills D., Advances in solar thermal electricity technology. Solar Energy, 2004, 76(1–3): 19–31.

    Article  ADS  Google Scholar 

  10. Garg H.P., Mullick S.C., Bhargava V.K., Solar thermal energy storage. Springer Science & Business Media, 2012.

    Google Scholar 

  11. Lovegrove K., Stein W., editors. Concentrating solar power technology: principles, developments and applications. Elsevier, 2012.

    Google Scholar 

  12. Power C.S., Technology roadmap concentrating solar power. Current, 2010, 5: 1–52.

    Google Scholar 

  13. Roldán M.I., Fernández J., Valenzuela L., Vidal A., Zarza E., CFD modelling in solar thermal engineering. In book: Engineering Applications of Computational Fluid Dynamics (pp. 47–84) Chapter: 2, Publisher: International Energy and Environment Foundation (www.IEEFoundation.org), Editors: Maher A.R. Sadiq Al-Baghdadi, 2015.

    Google Scholar 

  14. Zhang H.L., Baeyens J., Degrève J., Cacères G., et al., Concentrated solar power plants: Review and design methodology. Renewable and Sustainable Energy Reviews, 2013, 22: 466–481.

    Article  Google Scholar 

  15. Desideri U., Campana P.E., Analysis and comparison between a concentrating solar and a photovoltaic power plant. Applied Energy, 2014, 113: 422–433.

    Article  Google Scholar 

  16. El Gharbi N., Derbal H., Bouaichaoui S., Said N., et al., A comparative study between parabolic trough collector and linear Fresnel reflector technologies. Energy Procedia, 2011, 6: 565–572.

    Article  Google Scholar 

  17. Häberle A., Zahler C., Lerchenmüller H., Mertins M., Wittwer C., Trieb, F. and Dersch, J., September. The Solarmundo line focussing Fresnel collector. Optical and thermal performance and cost calculations. In Proceedings of the 2002 Solar PACES international symposium. Website: {rshttps://fox.ino.it/STAR/solarpaces_fresnel_9_2002.pdfurl}.

  18. Quoilin Sylvain, Experimental study and modeling of a low temperature Rankine cycle for small scale cogeneration. Université de Liège, Belgium, 2007.

    Google Scholar 

  19. China Greentech Initiative, Uncover, Create and Promote Greentech Opportunities in China, Renewable Energy Sector–Solar Energy, August 2009. Website: http://lce.tsinghua.edu.cn/cn/uploadfile/2009-9-4/20090904143930283.pdf.

  20. Sargent Lundy, Assessment of parabolic trough and power tower solar technology cost and performance forecast (final). Chicago: SL-5641; 2003. DOI: 10.2172/15005520.

  21. DLR. European concentrated solar thermal road-mapping (ECOSTAR). EU funded study SES6-CT-2003-502578, 2005. Website: https://www.promes.cnrs.fr/uploads/pdfs/ecostar/ECOSTAR.Roadmap.pdf.

  22. Müller-Steinhagen Hans, Trieb Franz, Concentrating solar power: A review of the technology. Ingenia Inform QR Acad Eng, 2004, 18: 43–50. Website: https://www.ingenia.org.uk/Ingenia/Articles/cb679c4f-9298-44aa-8356-ca9bff45704c.

    Google Scholar 

  23. Barlev D., Vidu R., Stroeve P., et al., Innovation in concentrated solar power. Solar Energy Materials and Solar Cells, 2011, 95(10): 2703–2725.

    Article  Google Scholar 

  24. National Renewable Energy Laboratory (US), Assessment of parabolic trough and power tower solar technology cost and performance forecasts, 2003, vol. 550, No. 34440. Diane Publishing.

    Google Scholar 

  25. Peterseim J.H., White S., Tadros A., Hellwig U., et al., Concentrated solar power hybrid plants, which technologies are best suited for hybridization. Renewable Energy, 2013, 57: 520–532.

    Article  Google Scholar 

  26. Thirugnanasambandam M., Iniyan S., Goic R., et al., A review of solar thermal technologies. Renewable and Sustainable Energy Reviews, 2010, 14(1): 312–322.

    Article  Google Scholar 

  27. Srivastva U., Malhotra R.K., Kaushik S.C., et al., Review of heat transport properties of solar heat transfer fluids. Journal of Thermal Analysis and Calorimetry, 2017, 130(2): 605–621.

    Article  Google Scholar 

  28. Zhai R.R., Yang Y.P., Yan Q., Yong Z., et al., Modeling and characteristic analysis of a solar parabolic trough system: thermal oil as the heat transfer fluid. Journal of Renewable Energy, 2013. DOI: 10.1155/2013/389514.

    Google Scholar 

  29. Godson L., Raja B., Lal D.M., Wongwises S., el al., Enhancement of heat transfer using nanofluids—an overview. Renewable and Sustainable Energy Reviews, 2010, 14(2): 629–641.

    Article  Google Scholar 

  30. Vignarooban K., Xu X., Arvay A., Hsu K., Kannan A.M., et al., Heat transfer fluids for concentrating solar power systems–a review. Applied Energy, 2015, 146: 383–396.

    Article  Google Scholar 

  31. Flamant G., Gauthier D., Benoit H., Sans J.L., Boissière B., Ansart R., Hemati M., et al., A new heat transfer fluid for concentrating solar systems: Particle flow in tubes. Energy Procedia, 2014, 49: 617–626.

    Article  Google Scholar 

  32. Flamant G., Gauthier D., Benoit H., Sans, J.L., Garcia, R., Boissière, B., Ansart, R. Hemati M., et al., Dense suspension of solid particles as a new heat transfer fluid for concentrated solar thermal plants: On-sun proof of concept. Chemical Engineering Science, 2013, 102: 567–576.

    Article  Google Scholar 

  33. Bergles A.E., ExHFT for fourth generation heat transfer technology. Experimental Thermal and Fluid Science, 2002, 26(2–4): 335–344.

    Article  Google Scholar 

  34. Ravigururajan T.S., Bergles A.E., Development and verification of general correlations for pressure drop and heat transfer in single-phase turbulent flow in enhanced tubes. Experimental Thermal and Fluid Science, 1996, 13(1): 55–70.

    Article  Google Scholar 

  35. Siddique M., Khaled A.R., Abdulhafiz, N.I., Boukhary A.Y., et al., Recent advances in heat transfer enhancements: a review report. International Journal of Chemical Engineering, 2010. DOI: 10.1155/2010/106461.

    Google Scholar 

  36. Kumar A., and Prasad B.N., Investigation of twisted tape inserted solar water heaters—heat transfer, friction factor and thermal performance results. Renewable Energy, 2000, 19(3): 379–398.

    Article  Google Scholar 

  37. Trinkl C., Zörner W., Hanby, V., et al., Simulation study on a domestic solar/heat pump heating system incorporating latent and stratified thermal storage. Journal of Solar Energy Engineering, 2009, 131(4): 41008.

    Article  Google Scholar 

  38. Chow T.T., Ji J., He W., et al., Photovoltaic-thermal collector system for domestic application. Journal of Solar Energy Engineering, 2007, 129(2): 205–209.

    Article  Google Scholar 

  39. Kribus A., Mittelman G., Potential of polygeneration with solar thermal and photovoltaic systems. Journal of Solar Energy Engineering, 2008, 130(1): 011001.

    Article  Google Scholar 

  40. Ghobeity A., Mitsos A., Optimal design and operation of a solar energy receiver and storage. Journal of Solar Energy Engineering, 2012, 134(3): 031005.

    Article  Google Scholar 

  41. Ali M.I., Joseph B., Karthikeyan R., Yuvaraj R., et al., Performance investigation of solar still integrated to solar pond. Bonfring International Journal of Power Systems and Integrated Circuits, 2012, 2(1): 01–07.

    Article  Google Scholar 

  42. Luminosu I., Zaharie I., Negrea R., Ignea D., et al., The study of a static paraboloidal concentrator through the ray-tracing method, incorporated in the southern wall of a building. In National Forum of Energy-FOREN, Neptun, June 15–19, 2008.

    Google Scholar 

  43. De Sabata, C., Marcu, C., Bica, S., Ivan, P., Barvinschi, F., Building of a sports facility on the Săcălaz lake. Ecological considerations. Proc. of the National Conference in Solar Energy, “Politehnica” University of Timişoara, pp 66–69, 1989. (in French)

    Google Scholar 

  44. Kurt H., Ozkaymak M., Binark A.K., et al., Experimental and numerical analysis of sodium-carbonate salt gradient solar-pond performance under simulated solar-radiation. Applied Energy, 2006, 83(4): 324–342.

    Article  Google Scholar 

  45. Vanderhulst P., Lanser H., Bergmeyer P., Foeth F., Albers R., et al., Solar energy: small scale applications in developing countries. International Food Journal, 1990, 8: 138–145.

    Google Scholar 

  46. Tamme R., Laing D., Steinmann W.D., et al., Advanced thermal energy storage technology for parabolic trough. Journal of Solar Energy Engineering, 2004, 126(2): 794–800.

    Article  Google Scholar 

  47. Suresh N.S., Thirumalai N.C., Rao B.S., Ramaswam M.A., et al., Methodology for sizing the solar field for parabolic trough technology with thermal storage and hybridization. Solar Energy, 2014, 110: 247–259.

    Article  ADS  Google Scholar 

  48. El Gharbi N., Derbal H., Bouaichaoui S., Said N., et al., A comparative study between parabolic trough collector and linear Fresnel reflector technologies. Energy Procedia, 2011, 6: 565–572.

    Article  Google Scholar 

  49. Johansson T.B., Kelly H., Reddy A.K., Williams, R.H., et al., Renewable energy: sources for fuels and electricity. Island Press, Washington D.C., 1993.

    Google Scholar 

  50. Schwarzbözl P., Buck R., Sugarmen C., Ring A., Crespo M.J.M., Altwegg P., Enrile J., et al., Solar gas turbine systems: design, cost and perspectives. Solar Energy, 2006, 80(10): 1231–1240.

    Article  ADS  Google Scholar 

  51. Barlev D., Vidu R., Stroeve P., et al., Innovation in concentrated solar power. Solar Energy Materials & Solar Cells, 2011, 95(10): 2703–2725.

    Article  Google Scholar 

  52. Li, Y., Yang, Y., Thermodynamic analysis of a novel integrated solar combined cycle. Applied Energy, 2014, 122: 133–142.

    Article  Google Scholar 

  53. Behar O., Khellaf A., Mohammedi K., Ait-Kaci S., et al., A review of integrated solar combined cycle system (ISCCS) with a parabolic trough technology. Renewable and Sustainable Energy Reviews, 2014, 39: 223–250.

    Article  Google Scholar 

  54. Antonanzas J., Jimenez E., Blanco J., Antonanzas-Torres F., et al., Potential solar thermal integration in Spanish combined cycle gas turbines. Renewable and Sustainable Energy Reviews, 2014, 37: 36–46.

    Article  Google Scholar 

  55. Xu C., Wang Z., He Y., Li X., Bai F., et al., Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system. Applied Energy, 2012, 92: 65–75.

    Article  Google Scholar 

  56. Tian Y., Zhao C.Y., A review of solar collectors and thermal energy storage in solar thermal applications. Applied Energy, 2012, 104: 538–553.

    Article  Google Scholar 

  57. Lane G.A., Solar heat storage: latent heat materials, Vol. I: Background and Scientific Principles. Journal of Solar Energy Engineering, 1983, 105(4): 467.

    Article  Google Scholar 

  58. Abhat A., Low temperature latent heat thermal energy storage: heat storage materials. Solar Energy, 1983, 30(4): 313–332.

    Article  ADS  Google Scholar 

  59. Regin A.F., Solanki S.C., Saini, J.S., et al., Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renewable and Sustainable Energy Reviews, 2008, 12(9): 2438–2458.

    Article  Google Scholar 

  60. Pilkington Solar International GmbH, Survey of thermal storage for parabolic trough power plants. National Renewable Energy Laboratory (Golden, CO, United States), Golden, Colorado, 2000. Website: https://digital.library.unt.edu/ark:/67531/metadc722507/.

    Google Scholar 

  61. Zhao C.Y., Wu Z.G., Thermal property characterization of a low melting-temperature ternary nitrate salt mixture for thermal energy storage systems. Solar Energy Materials and Solar Cells, 2011, 95(12): 3341–3346.

    Article  Google Scholar 

  62. Zhao C.Y., Zhou D., Wu Z.G., Heat transfer enhancement of phase change materials (PCMs) in low and high temperature thermal storage by using porous materials. 2010 14th International Heat Transfer Conference, Volume 7, Washington, DC, USA, Paper No.: IHTC14-22463, pp. 435–441.

    Google Scholar 

  63. Prieto C., Cooper P., Fernández A.I., Cabeza L.F., et al., Review of technology: thermochemical energy storage for concentrated solar power plants. Renewable and Sustainable Energy Reviews, 2016, 60: 909–929.

    Article  Google Scholar 

  64. Ervin G., Solar heat storage using chemical reactions. Journal of Solid-State Chemistry, 1977, 22(1): 51–61.

    Article  ADS  Google Scholar 

  65. Müller-Steinhagen H., Trieb F., Concentrating solar power. A review of the technology. Ingenia Inform QR Acad Eng, 2004, 18: 43–50.

    Google Scholar 

  66. Fernandes D., Pitié F., Cáceres G., Baeyens J., et al., Thermal energy storage: How previous findings determine current research priorities. Energy, 2012, 39(1): 224–257.

    Article  Google Scholar 

  67. Pelay U., Luo L., Fan Y., Stitou D., Rood, M., Technical data for concentrated solar power plants in operation, under construction and in project. Data in Brief, 2017, 13: 597–599.

    Article  Google Scholar 

  68. Wongsuwan W., Kumar S., Neveu P., Meunier F., et al., A review of chemical heat pump technology and applications. Applied Thermal Engineering, 2001, 21(15): 1489–1519.

    Article  Google Scholar 

  69. Zhang H.L., Baeyens J., Degrève J., Cacères G., et al., Concentrated solar power plants: Review and design methodology. Renewable and Sustainable Energy Reviews, 2013, (22): 466–481.

    Google Scholar 

  70. Barlev D., Vidu R., Stroeve P., et al., Innovation in concentrated solar power. Solar Energy Materials and Solar Cells, 2011, 95(10): 2703–2725.

    Article  Google Scholar 

  71. Pardo P., Deydier A., Anxionnaz-Minvielle Z., Rougé S., Cabassud M., Cognet P., et al., A review on high temperature thermochemical heat energy storage. Renewable and Sustainable Energy Reviews, 2014, 32: 591–610.

    Article  Google Scholar 

  72. Michel B., Mazet N., Mauran S., Stitou D., Xu J., et al., Thermochemical process for seasonal storage of solar energy: characterization and modeling of a high density reactive bed. Energy, 2012, 47(1): 553–563.

    Article  Google Scholar 

  73. Pelay U., Luo L., Fan Y., Stito D., Rood M., et al., Thermal energy storage systems for concentrated solar power plants. Renewable and Sustainable Energy Reviews, 2017, 7: 82–100.

    Article  Google Scholar 

  74. Herrmann U., Kelly B., Price H., et al., Two-tank molten salt storage for parabolic trough solar power plants. Energy, 2004, 29(5–6): 883–893.

    Article  Google Scholar 

  75. Müller-Steinhagen, H., Trieb, F., Concentrating solar power. A review of the technology. Ingenia Inform QR Acad Eng, 2004, 18: 43–50. (repeated)

    Google Scholar 

  76. Erickson L., Muren R., Coupled chemical-thermal solar power system and method. U.S. Patent Application Publication, Appl. No.: 14/430,036, PCT Filed: Oct 10, 2013; PCT No.: PCT/US13/64226, Date: Mar 20, 2015.

    Google Scholar 

  77. Laing D., Bahl C., Bauer T., Lehmann D., Steinmann W.D., et al., Thermal energy storage for direct steam generation. Solar Energy, 2011, 85(4): 627–633.

    Article  ADS  Google Scholar 

  78. Zanganeh G., Commerford M., Haselbacher A., Pedretti A., Steinfeld A., Stabilization of the outflow temperature of a packed-bed thermal energy storage by combining rocks with phase change materials. Applied Thermal Engineering, 2014, 70(1): 316–320.

    Article  Google Scholar 

  79. Muren R., Erickson L., Abengoa Solar LLC, Concentrating solar power methods and systems with liquid-solid phase change material for heat transfer. U.S. Patent Application Publication, Appl. No.: 14/130, 617, PCT Filed: Jul. 3, 2012; PCT No.: PCT/US12/45425, Date: Jan 2, 2014.

    Google Scholar 

  80. Ma Z.W., inventor; Alliance for Sustainable Energy LLC, assignee. Chemical looping fluidized-bed concentrating solar power system and method. United States Patent US 9,702,348. Jul 11, 2017.

    Google Scholar 

  81. Research centre for Energy, Environment and Technology., DISTOR Annual report 2007. Almeria; 2007. https://www.psa.es/en/techrep/2007/ATR2007-ing.pdf.

    Google Scholar 

  82. Michels H., Pitz-Paal R., Cascaded latent heat storage for parabolic trough solar power plants. Solar Energy, 2007, 81(6): 829–837.

    Article  ADS  Google Scholar 

  83. Laing D., Bahl C., Bauer T., Lehmann D., Steinmann W.D., et al., Thermal energy storage for direct steam generation. Solar Energy, 2011, 85(4): 627–633.

    Article  ADS  Google Scholar 

  84. Ma Z., Mehos M., Glatzmaier G., Sakadjian B.B., et al., Development of a concentrating solar power system using fluidized-bed technology for thermal energy conversion and solid particles for thermal energy storage. Energy Procedia, 2015, 69: 1349–1359.

    Article  Google Scholar 

  85. Iniesta A.C., Diago M., Delclos T., Falcoz Q., Shamim T., Calvet N., et al., Gravity-fed combined solar receiver/storage system using sand particles as heat collector, heat transfer and thermal energy storage media. Energy Procedia, 2015, 69: 802–811.

    Article  Google Scholar 

  86. Abhat A., Low temperature latent heat thermal energy storage: heat storage materials. Solar Energy, 1983, 30(4): 313–332.

    Article  ADS  Google Scholar 

  87. Beghi C., Thermal energy storage. Dordrect, Holland: D. Reidel Publication Co, 2015.

    Google Scholar 

  88. Buddhi D., Sawhney R.L., Seghal P.N., Bansal N.K., et al., A simplification of the differential thermal analysis method to determine the latent heat of fusion of phase change materials. Journal of Physics D Applied Physics, 1987, 20: 1601–1605.

    Article  ADS  Google Scholar 

  89. Zalba B., Marın J.M., Cabeza L.F., Mehling H., et al., Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering, 2003, 23(3): 251–283.

    Article  Google Scholar 

  90. Hale D.V., Hoover M.J., O’Neill M.J., et al., Phase change materials handbook. Report No. NASA CR-61363, Report no. HREC-5183-2LMSC-HREC D225138. NASA, Marshal Space Flight Center, Alabama, 1971.

    Google Scholar 

  91. Abhat A., Heine D., Heinisch M., Malatidis NA., Neuer G., et al., Development of a modular heat exchanger with integrated latent heat energy store. 1981, Report No. BMFT FBT.

    Google Scholar 

  92. Lane G.A., Glew D.N., Clark E.C., Rossow H.E., Quiley S.W., et al., Drake S.S., Best, J.S., Heat of fusion systems for solar energy storage. In Proc. Workshop on Solar Energy Storage Subsystems for the Heating and Cooling of Buildings, Charlottesville, Virginia, USA, 1975, pp. 43–55.

    Google Scholar 

  93. Herrick C.S., rolling cylinder latent heat-storage device for solar heating-cooling. In ASHRAE Journal-American Society of Heating Refrigerating and Air-Conditioning Engineers. 1978, 20(12): 56–56.

    Google Scholar 

  94. Tamme R., Laing D., Steinmann, W.D., et al., Advanced thermal energy storage technology for parabolic trough. Journal of Solar Energy Engineering, 2004, 126(2): 794–800.

    Article  Google Scholar 

  95. George A., Hand book of thermal design. In: Guyer C, editor. Phase change thermal storage materials. McGraw Hill Book Co., 1989.

    Google Scholar 

  96. Lain, D., Bahl C., Bauer T., Lehmann D., Steinmann W.D., et al., Thermal energy storage for direct steam generation. Solar Energy, 2011, 85(4): 627–633.

    Article  ADS  Google Scholar 

  97. Dinçer I., Rosen M.A., Thermal energy storage - systems and applications. 2nd ed. Chichester: John Wiley & Sons Ltd, 2011.

    Google Scholar 

  98. Adinberg R., Zvegilsky D., Epstein M., et al., Heat transfer efficient thermal energy storage for steam generation. Energy Conversion and Management, 2010, 51(1): 9–15.

    Article  Google Scholar 

  99. Medrano M., Yilmaz M.O., Nogués M., Martorell I., Roca J., Cabeza L.F., et al., Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. Applied Energy, 2009, 86(10): 2047–2055.

    Article  Google Scholar 

  100. Sari A., Kaygusuz K., Thermal performance of a eutectic mixture of lauric and stearic acids as PCM encapsulated in the annulus of two concentric pipes. Solar Energy, 2002, 72(6): 493–504.

    Article  ADS  Google Scholar 

  101. Bauer T., Tamme R., Christ M., Öttinger O., et al., PCM-graphite composites for high temperature thermal energy storage, International Conference on Thermal Energy Storage, Stockton, USA. 2006.

    Google Scholar 

  102. Shabgard H., Robak C.W., Bergman T.L., Faghri A., et al., Heat transfer and exergy analysis of cascaded latent heat storage with gravity-assisted heat pipes for concentrating solar power applications. Solar Energy, 2012, 86(3): 816–830.

    Article  ADS  Google Scholar 

  103. Garg H.P., Advances in solar energy technology: Volume 3 Heating, agricultural and photovoltaic applications of solar energy. Springer Science & Business Media; 2012.

    Google Scholar 

  104. Delgado M., Lázaro A., Mazo J., Zalba B., et al., Review on phase change material emulsions and microencapsulated phase change material slurries: materials, heat transfer studies and applications. Renewable and Sustainable Energy Reviews, 2012, 16(1): 53–273.

    Article  Google Scholar 

  105. Yang R., Xu H., Zhang Y., et al., Preparation, physical property and thermal physical property of phase change microcapsule slurry and phase change emulsion. Solar Energy Materials and Solar Cells, 2003, 80(4): 405–416.

    Article  Google Scholar 

  106. Gschwander S., Schossig P., Henning H.M., el al., Micro-encapsulated paraffin in phase-change slurries. Solar Energy Materials and Solar Cells, 2005, 89(2–3): 307–315.

    Article  Google Scholar 

  107. Huang L., Petermann M., Doetsch C., et al., Evaluation of paraffin/water emulsion as a phase change slurry for cooling applications. Energy, 2009, 34(9): 1145–1155.

    Article  Google Scholar 

  108. Mathur A., Heat transfer and latent heat storage in inorganic molten salts for concentrating solar power plants. Terrafore Inc., CSP Program Review Meeting, 2010. http://www.terraforetechnologies.com/wp-content/uploads/2014/03/Terrafore-FTR-18148-Report-part2.pdf.

    Google Scholar 

  109. Zipf V., Neuhäuser A., Willert D., Nitz P., Gschwander S., Platzer W., et al., High temperature latent heat storage with a screw heat exchanger: Design of prototype. Applied Energy, 2013, 109: 462–469.

    Article  Google Scholar 

  110. Zipf V., Neuhäuser A., Nitz P., Gschwander S., Platzer W., et al., High temperature latent heat storage for CSP: testing of prototype with thermal oil. In 12th International Conference on Energy Storage, Innostock 2012.

    Google Scholar 

  111. Tao Y.B., You Y. He Y.L., et al., Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material. Applied Thermal Engineering, 2016, 93: 476–485.

    Article  Google Scholar 

  112. Zhao Y., Zhao C.Y., Xu Z.G., Xu, H.J., et al., Modeling metal foam enhanced phase change heat transfer in thermal energy storage by using phase field method. International Journal of Heat and Mass Transfer, 2016, 99: 170–181.

    Article  Google Scholar 

  113. Liang W., Zhang G., Sun H., Chen P., Zhu Z., Li A., et al., Graphene–nickel/n-carboxylic acids composites as form-stable phase change materials for thermal energy storage. Solar Energy Materials and Solar Cells, 2015, 132: 425–430.

    Article  Google Scholar 

  114. Li T., Lee J.H., Wang R., Kang Y.T., et al., Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes. Energy, 2013, 55: 752–761.

    Article  Google Scholar 

  115. Ibari S.T., Mehrali M., Mahlia T.M.I., Sadeghinezhad E., Metselaar H.S.C., et al., Preparation of nitrogen-doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage. Applied Energy, 2014, 135: 339–349.

    Article  Google Scholar 

  116. Babapoor A., Karimi G., Thermal properties measurement and heat storage analysis of paraffin nanoparticles composites phase change material: Comparison and optimization. Applied Thermal Engineering, 2015, 90: 945–951.

    Article  Google Scholar 

  117. Tao Y.B., Lin C.H., He Y.L., Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material. Energy Conversion and Management, 2015, 97: 103–110.

    Article  Google Scholar 

  118. Sharma R.K., Ganesan P., Tyagi V.V., Metselaar H.S.C., Sandaran S.C., et al., Thermal properties and heat storage analysis of palmitic acid-TiO2 composite as nanoenhanced organic phase change material (NEOPCM). Applied Thermal Engineering, 2016, 99: 1254–1262.

    Article  Google Scholar 

  119. Rathod M.K., Banerjeen J., Thermal performance enhancement of shell and tube Latent Heat Storage Unit using longitudinal fins. Applied Thermal Engineering, 2015, 7: 1084–1092.

    Article  Google Scholar 

  120. Almsater S., Saman W., Bruno F., el al., Performance enhancement of high temperature latent heat storage system using heat pipes with and without fins for concentrating solar thermal power plants. Renewable Energy, 2016, 89: 36–50.

    Article  Google Scholar 

  121. Zauner C., Hengstberger F., Etzel M., Lager D., Hofmann R., Walter H., Experimental characterization and simulation of a fin-tube latent heat storage using high density polyethylene as PCM. Applied Energy, 2016, 179: 237–234.

    Article  Google Scholar 

  122. Zhao D, Tan G., Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application. Applied Energy, 2015, 138: 381–392.

    Article  Google Scholar 

  123. Rathod M.K., Banerjee J., Thermal performance enhancement of shell and tube latent heat storage unit using longitudinal fins. Applied Thermal Engineering, 2015, 75: 1084–1092

    Article  Google Scholar 

  124. Kabbara M., Groulx D., Joseph A., et al., Experimental investigations of a latent heat energy storage unit using finned tubes. Applied Thermal Engineering, 2016, 101: 601–611.

    Article  Google Scholar 

  125. Khalifa A., Tan L., Date A., Akbarzadeh A., et al., A numerical and experimental study of solidification around axially finned heat pipes for high temperature latent heat thermal energy storage units. Applied Thermal Engineering, 2014, 70(1): 609–619.

    Article  Google Scholar 

  126. Khalifa A., Tan L., Date A., Akbarzadeh A., et al., Performance of suspended finned heat pipes in hightemperature latent heat thermal energy storage. Applied Thermal Engineering, 2015, 81: 242–252.

    Article  Google Scholar 

  127. Sarı A., Alkan C., Bilgin C., et al., Micro/nano encapsulation of some paraffin eutectic mixtures with poly (methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties. Applied Energy, 2014, 136: 217–227.

    Article  Google Scholar 

  128. Sarı A., Alkan C., Döğüşcü D.K., Kızıl Ç., et al., Micro/nano encapsulated n-tetracosane and n-octadecane eutectic mixture with polystyrene shell for lowtemperature latent heat thermal energy storage applications. Solar Energy, 2015, 115: 195–203.

    Article  ADS  Google Scholar 

  129. Németh B., Németh Á.S., Tóth J., Fodor-Kardos A., Gyenis J., Feczkó T., et al., Consolidated microcapsules with double alginate shell containing paraffin for latent heat storage. Solar Energy Materials and Solar Cells, 2015, 143: 397–405.

    Article  Google Scholar 

  130. Zheng Y., Barton J.L., Tuzla K., Chen J.C., Neti S., Oztekin A., Misiolek W.Z., Experimental and computational study of thermal energy storage with encapsulated NaNO3 for high temperature applications. Solar Energy, 2015, 115: 180–194.

    Article  ADS  Google Scholar 

  131. Nithyanandam K., Pitchumani R., Mathur A., et al., Analysis of a latent thermocline storage system with encapsulated phase change materials for concentrating solar power. Applied Energy, 2014, 113: 1446–1460.

    Article  Google Scholar 

  132. Bellan S., Gonzalez-Aguilar J., Romero M., Rahman M.M., Goswami D.Y., Stefanakos E.K., et al., Couling D., Numerical analysis of charging and discharging performance of a thermal energy storage system with encapsulated phase change material. Applied Thermal Engineering, 2014, 71(1): 481–500.

    Article  Google Scholar 

  133. Alam T.E., Dhau J.S., Goswami D.Y., Stefanakos E., Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems. Applied Energy, 2015, 154: 92–101.

    Article  Google Scholar 

  134. Fukahori R., Nomura T., Zhu C., Sheng N., Okinaka N., Akiyama T., et al., Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage. Applied Energy, 2016, 170: 324–328.

    Article  Google Scholar 

  135. Bhagat K., Saha S.K., Numerical analysis of latent heat thermal energy storage using encapsulated phase change material for solar thermal power plant. Renewable Energy, 2016, 95: 323–336.

    Article  Google Scholar 

  136. Zheng Y., Zhao W., Sabol J.C., Tuzla K., Neti S., Oztekin A., Chen J.C., et al., Encapsulated phase change materials for energy storage–characterization by calorimetry. Solar Energy, 2013, 87: 117–126.

    Article  ADS  Google Scholar 

  137. Zheng Y., Barton J.L., Tuzla K., Chen J.C., Neti S., Oztekin A., Misiolek W.Z., Experimental and computational study of thermal energy storage with encapsulated NaNO3 for high temperature applications. Solar Energy, 2015, 115: 180–194.

    Article  ADS  Google Scholar 

  138. Bhagat K., Saha S.K., Numerical analysis of latent heat thermal energy storage using encapsulated phase change material for solar thermal power plant. Renewable Energy, 2016, 95: 323–336.

    Article  Google Scholar 

  139. Michels H., Pitz-Paal R., Cascaded latent heat storage for parabolic trough solar power plants. Solar Energy, 2007, 81(6): 829–837.

    Article  ADS  Google Scholar 

  140. Chiu J.W., Martin V., Multistage latent heat cold thermal energy storage design analysis. Applied Energy, 2013; 112: 1438–1445.

    Article  Google Scholar 

  141. Oguz R., A solar energy system. WO 2014/037386 A: 2014.

    Google Scholar 

  142. Baghernejad A., Yaghoubi M., Exergy analysis of an integrated solar combined cycle system. Renewable Energy, 2010, 35(10): 2157–2164.

    Article  Google Scholar 

  143. Khaldi F., Energy and exergy analysis of the first hybrid solar-gas power plant in Algeria. Proceedings of ECOS 2012, the 25th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, June 26–29, 2012, Perugia, Italy.

    Google Scholar 

  144. Baghernejad A., Yaghoubi M., Energy, exergy and second law performance of parabolic trough collector integration into combined cycle system (ISCCS). In Proceedings of the Fourth International Conference on Thermal Engineering: Theory and Applications, January 12–14, 2009, Abu Dhabi, UAE.

    Google Scholar 

  145. Behar O., Kellaf A., Mohamedi K., Belhamel M., et al., Instantaneous performance of the first integrated solar combined cycle system in Algeria. Energy Procedia, 2011, 6: 185–193.

    Article  Google Scholar 

  146. Behar O., Khellaf A., Mohammedi K., Ait-Kaci, S., el al., A review of integrated solar combined cycle system (ISCCS) with a parabolic trough technology. Renewable and Sustainable Energy Reviews, 2014, 39: 223–250.

    Article  Google Scholar 

  147. Elhaj M.A., Matrawy K.K., Yassin J.S., et al., Modeling and performance prediction of a solar powered rankin cycle/gas turbine cycle. In Challenges of Power Engineering and Environment Springer, Berlin, Heidelberg, 2007: 103–107. DOI: 10.1007/978-3-540-76694-0_18.

    Chapter  Google Scholar 

  148. Brakmann G., Mohammad F., Dolejsi M., Wiemann M., et al., Construction of the ISCC Kuraymat. In Proceedings of 15th International Solar PACES Conference, September 15–18, 2009, Berlin.

    Google Scholar 

  149. Yaghoubi M., Azizian K., Kenary A., et al., Simulation of Shiraz solar power plant for optimal assessment. Renewable Energy, 2003, 28(12): 1985–1998.

    Article  Google Scholar 

  150. Ghadiri, J., Yaghoubi M. Exergy analysis of the solar thermal power plant. Proceedings of the First Eco-Energy Urumie, Iran, 2004.

    Google Scholar 

  151. Padilla R.V., Simplified methodology for designing parabolic trough solar power plants. University of South Florida, USA, 2011.

    Google Scholar 

  152. Achour L., Bouharkat M., Behar, O., et al., Performance assessment of an integrated solar combined cycle in the southern of Algeria. Energy Reports, 2018, 4: 207–217.

    Article  Google Scholar 

  153. Galindo J., Ruiz S., Dolz V., Royo-Pascual, L., et al., Advanced exergy analysis for a bottoming organic rankine cycle coupled to an internal combustion engine. Energy Conversion and Management, 2016, 126: 217–227.

    Article  Google Scholar 

  154. Petrakopoulou F., Tsatsaronis G., Morosuk, T., Carassai A., et al., Conventional and advanced exergetic analyses applied to a combined cycle power plant. Energy, 2012, 41(1): 146–152.

    Article  Google Scholar 

  155. Anvari S., Saray R.K., Bahlouli K., et al., Employing a new optimization strategy based on advanced exergy concept for improvement of a tri-generation system. Applied Thermal Engineering, 2017, 113: 1452–1463.

    Article  Google Scholar 

  156. Badescu V., 3D isotropic approximation for solar diffuse irradiance on tilted surfaces. Renewable Energy, 2002, 26(2): 221–233.

    Article  Google Scholar 

  157. Duffie J.A., Beckman W.A., Solar engineering of thermal processes, Fourth Edition. Print ISBN: 9780470873663, John Wiley & Sons, Inc., 2013.

    Book  Google Scholar 

  158. Khaldi F., Energy and exergy analysis of the first hybrid solar-gas power plant in Algeria. Proceedings of ECOS 2012, the 25th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, June 26-29, 2012, Perugia, Italy. (repeated)

    Google Scholar 

  159. Achour L., Bouharkat M., Behar, O., el al., Performance assessment of an integrated solar combined cycle in the southern of Algeria. Energy Reports, 2018, 4: 207–217.

    Article  Google Scholar 

  160. Kaminski DA, Jensen MK. Introduction to thermal and fluids engineering. John Wiley & Sons; 2017.

    Google Scholar 

  161. Khan MS, Abid M, Ratlamwala TA. Energy, exergy and economic feasibility analyses of a 60 MW conventional steam power plant integrated with parabolic trough solar collectors using nanofluids. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering. 2019, 43(1): 193–209.

    Article  Google Scholar 

  162. Luo Y., Du X., Yang L., Xu, C., Amjad M., et al., Impacts of solar multiple on the performance of direct steam generation solar power tower plant with integrated thermal storage. Frontiers in Energy, 2017, 11(4): 461–471.

    Article  Google Scholar 

  163. Brown K.E., Loughlin D.H., Market sensitivity of solar–fossil hybrid electricity generation to price, efficiency, policy, and fuel projections. Clean Technologies and Environmental Policy, 2019, 21(3): 591–604.

    Article  Google Scholar 

  164. Maiorino A., Valentini M., On the technical and economic feasibility of a solar thermodynamic power plant in an area of medium–high direct sunlight intensity: an actual case study. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39(1): 245–257.

    Article  Google Scholar 

  165. Wang F., Li H., Zhao J., Deng S., Yan J., et al., Technical and economic analysis of integrating low-medium temperature solar energy into power plant. Energy Conversion and Management, 2016, 112: 459–469.

    Article  Google Scholar 

  166. Dincer I., Zamfirescu C., Chapter 7-Renewableenergy-based power generating systems, in book: Advanced power generation systems. Elsevier, 2014, pp. 369–453.

    Google Scholar 

  167. Burton T., Sharpe D., Jenkins, N., et al., Handbook of wind energy. John Wiley & Sons. 2001.

    Book  Google Scholar 

  168. Bilgili M., Ozbek A., Sahin B., Kahraman, A., et al., An overview of renewable electric power capacity and progress in new technologies in the world. Renewable and Sustainable Energy Reviews, 2015, 49: 323–334.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neelam Khandelwal or Meeta Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandelwal, N., Sharma, M., Singh, O. et al. Recent Developments in Integrated Solar Combined Cycle Power Plants. J. Therm. Sci. 29, 298–322 (2020). https://doi.org/10.1007/s11630-020-1278-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-020-1278-2

Keywords

Navigation