Skip to main content
Log in

Managing plastic waste with nanotechnology: current sustainability prospects

  • Mini-Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

Plastic plays a significant role in most sectors of the economy. Its widespread applicability leads to its massive scale production and alarming consumption rates, positioning it as the primary pollutant and ecological toxin. In addition, this plastic waste takes hundreds of years to degrade, threatening global biodiversity. To mitigate this burning issue, the nanotechnological approach offers a plethora of methods that can be harnessed to effectively manage waste plastic. One prominent approach involves creation of value-added nanomaterials like graphene sheets, CNTs, carbon spheres, and nanocomposites through a range of meticulously designed physical and chemical treatments (constructive approach). Another eco-friendly approach highlighted in this review revolves around the augmentation of plastic waste degradation through synergistic action of microbes and nanoparticles (degradative approach). Such nanotechnological innovations could be a milestone toward sustainable environmental practices offering economic and green solutions. This review article presents a framework for managing plastic waste through current nanotechnological interventions with special emphasis on its role in the circular economy. The approaches discussed in this review are in line with the SDG-2030 goal of stepping toward environmental sustainability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

All the data in this manuscript is available with the corresponding author and can be supplied upon formal request.

Abbreviations

AD:

Arch discharge

CNSs:

Carbon nanospheres

CNTs:

Carbon nanotubes

CVD:

Chemical vapor deposition

IONPs:

Iron oxide nanoparticles

FJH:

Flash joule heating

GPOP:

Great Pacific Ocean Patch

LA:

Laser ablation

NBT:

Nanobarium titanate

PBT:

Polybutylene terephthalate

PC:

Polycarbonate

PE:

Polyethylene

PET:

Polyethylene terephthalate

PP:

Polypropylene

PVC:

Polyvinyl chloride

PVdc:

Polyvinylidene chloride

References

  1. Akçan R, Aydogan HC, Yildirim MŞ, Taştekin B, Sağlam N (2020) Nanotoxicity: a challenge for future medicine. Turk J Med Sci 50:1180–1196

    Article  Google Scholar 

  2. Algozeeb WA, Savas PE, Luong DX, Chen W, Kittrell C, Bhat M, Shahsavari R, Tour JM (2020) Flash graphene from plastic waste. ACS Nano 14:15595–15604. https://doi.org/10.1021/acsnano.0c06328

    Article  Google Scholar 

  3. Alhokbany N, Ahmed J, Ubaidullah M, Mutehri S, Khan MAM, Ahamad T, Alshehri SM (2020) Cost-effective synthesis of NiCo2O4@nitrogen-doped carbon nanocomposite using waste PET plastics for high-performance supercapacitor. J Mater Sci Mater Electron 31:16701–16707. https://doi.org/10.1007/s10854-020-04224-7

    Article  Google Scholar 

  4. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030

    Article  Google Scholar 

  5. Arepalli S (2004) Laser ablation process for single-walled carbon nanotube production. J Nanosci Nanotechnol 4:317–325. https://doi.org/10.1166/jnn.2004.072

    Article  Google Scholar 

  6. Asmatulu R, Khan WS, Reddy RJ, Ceylan M (2015) Synthesis and analysis of injection-molded nanocomposites of recycled high-density polyethylene incorporated with graphene nanoflakes. Polym Compos 36:1565–1573. https://doi.org/10.1002/pc.23063

    Article  Google Scholar 

  7. Babu A, Somesh TE, Dechamma CA, Hemavathi AB, Kakarla RR, Kulkarni RV, Raghu AV (2023) Ternary structured magnesium cobalt oxide/graphene/polycarbazole nanohybrids for high performance electrochemical supercapacitors. Mater Sci Energy Technol 6:399–408

    Google Scholar 

  8. Bajad GS, Tiwari SK, Vijayakumar RP (2015) Synthesis and characterization of CNTs using polypropylene waste as precursor. Mater Sci Eng B Solid State Mater Adv Technol 194:68–77. https://doi.org/10.1016/j.mseb.2015.01.004

    Article  Google Scholar 

  9. Behera A, Swain B, Sahoo DK (2020) Fiber-reinforced ceramic matrix nanocomposites. In: Han B et al (eds) Fiber-reinforced nanocomposites: fundamentals and applications. Elsevier, Amsterdam, pp 359–368. https://doi.org/10.1016/b978-0-12-819904-6.00016-5

    Chapter  Google Scholar 

  10. Bhatia M, Girdhar A, Chandrakar B, Tiwari A (2013) Implicating nanoparticles as potential biodegradation enhancers: a review. J Nanomed Nanotechol 4:2

    Article  Google Scholar 

  11. Cada EJG, Muyot MLC, Sison JMC, Baculi RQ (2019) Enhanced in vitro biodegradation of low-density polyethylene using alkaliphilic bacterial consortium supplemented with iron oxide nanoparticles. Philipp Sci Lett 12:55–69

    Google Scholar 

  12. Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12:1–39. https://doi.org/10.1590/s1516-14392009000100002

    Article  Google Scholar 

  13. Chamas A, Moon H, Zheng J et al (2020) Degradation rates of plastics in the environment. ACS Sustain Chem Eng 8:3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635

    Article  Google Scholar 

  14. Chan C-M, Wu J, Li J-X, Cheung Y-K (2002) Polypropylene/calcium carbonate nanocomposites. Polymer (Guildf) 43:2981–2992. https://doi.org/10.1016/s0032-3861(02)00120-9

    Article  Google Scholar 

  15. Cui L, Wang X, Chen N, Ji B, Qu L (2017) Trash to treasure: converting plastic waste into a useful graphene foil. Nanoscale 9:9089–9094. https://doi.org/10.1039/c7nr03580b

    Article  Google Scholar 

  16. Das MP, Kumar S (2015) An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biotech 5:81–86. https://doi.org/10.1007/s13205-014-0205-1

    Article  Google Scholar 

  17. Das R, Shahnavaz Z, Ali ME, Islam MM, Abd Hamid SB (2016) Can we optimize arc discharge and laser ablation for well-controlled carbon nanotube synthesis? Nanoscale Res Lett 11:510. https://doi.org/10.1186/s11671-016-1730-0

    Article  Google Scholar 

  18. De Matteis V (2017) Exposure to inorganic nanoparticles: routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics 5:29

    Article  Google Scholar 

  19. Dey T (2023) Microplastic pollutant detection by surface enhanced Raman spectroscopy (SERS): a mini-review. Nanotechnol Environ Eng 8:41–48

    Article  Google Scholar 

  20. Rs D, Ramya R, Kannan K, Antony AR, Kannan VR (2019) Investigation of biodegradation potentials of high density polyethylene degrading marine bacteria isolated from the coastal regions of Tamil Nadu, India. Mar Pollut Bull 138:549–560. https://doi.org/10.1016/j.marpolbul.2018.12.001

    Article  Google Scholar 

  21. Díez N, Sevilla M, Fuertes AB (2021) Dense (non-hollow) CNSs: synthesis and electrochemical energy applications. Mater Today Nano 16:100147. https://doi.org/10.1016/j.mtnano.2021.100147

    Article  Google Scholar 

  22. Dussud C, Ghiglione JF (2014) Bacterial degradation of synthetic plastics. CIESM Workshop Monogr 46:49–54

    Google Scholar 

  23. Evode N, Qamar SA, Bilal M, Barceló D, Iqbal HMN (2021) Plastic waste and its management strategies for environmental sustainability. Case Stud Chem Environ Eng 4:100142. https://doi.org/10.1016/j.cscee.2021.100142

    Article  Google Scholar 

  24. Faisal AD, Aljubouri AA (2016) Synthesis and production of CNSs using noncatalytic CVD method. Int J Adv Mat Res 2:86–91

    Google Scholar 

  25. Gambarini V, Pantos O, Kingsbury JM, Weaver L, Handley KM, Lear G (2021) Phylogenetic distribution of plastic-degrading microorganisms. Msystems 6:10–1128

    Article  Google Scholar 

  26. Garg KK, Pandey S, Kumar A, Rana A, Sahoo NG, Singh RK (2022) Graphene nanosheets derived from waste plastic for cost-effective thermoelectric applications. Res Mater 13:100260. https://doi.org/10.1016/j.rinma.2022.100260

    Article  Google Scholar 

  27. Geyer R (2020) Production, use, and fate of synthetic polymers. In: Letcher T (ed) Plastic waste and recycling. Elsevier, Amsterdam, pp 13–32. https://doi.org/10.1016/B978-0-12-817880-5.00002-5

    Chapter  Google Scholar 

  28. Gigault J, Halle AT, Baudrimont M, Pascal PY, Gauffre F, Phi TL, El Hadri H, Grassl B, Reynaud S (2018) Current opinion: what is a nanoplastic? Environ Pollut 235:1030–1034. https://doi.org/10.1016/j.envpol.2018.01.024

    Article  Google Scholar 

  29. Gong J, Liu J, Wan D, Chen X, Wen X, Mijowska E, Jiang Z, Wang Y, Tang T (2012) Catalytic carbonization of polypropylene by the combined catalysis of activated carbon with Ni2O3 into CNTs and its mechanism. Appl Catal A Gen 449:112–120. https://doi.org/10.1016/j.apcata.2012.09.028

    Article  Google Scholar 

  30. Gong J, Liu J, Wen X, Jiang Z, Chen X, Mijowska E, Tang T (2014) Upcycling waste polypropylene into graphene flakes on organically modified montmorillonite. Ind Eng Chem Res 53:4173–4181. https://doi.org/10.1021/ie4043246

    Article  Google Scholar 

  31. Gupta P, Kumar D, Quraishi MA, Parkash O (2016) Metal matrix nanocomposites and their application in corrosion control. In: Husain M, Khan ZH (eds) Advances in nanomaterials. Springer, New Delhi, pp 231–246. https://doi.org/10.1007/978-81-322-2668-0_6

    Chapter  Google Scholar 

  32. Helen AS, Uche EC, Hamid FS (2017) Screening for polypropylene degradation potential of bacteria isolated from mangrove ecosystems in peninsular Malaysia. Int J Biosci Biochem Bioinform 7:245–251. https://doi.org/10.17706/ijbbb.2017.7.4.245-251

    Article  Google Scholar 

  33. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0

    Article  Google Scholar 

  34. Jagadeesan AK, Thangavelu K, Dhananjeyan V (2020) CNTs: synthesis, properties and applications. In: Pham P, Goel P, Kumar S, Yadav K (eds) 21st century surface science—a handbook. IntechOpen, Rijeka. https://doi.org/10.5772/intechopen.92995

    Chapter  Google Scholar 

  35. Jia X, Qin C, Friedberger T, Guan Z, Huang Z (2016) Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions. Sci Adv 2:e1501591. https://doi.org/10.1126/sciadv.1501591

    Article  Google Scholar 

  36. Jiang X, Drzal LT (2010) Multifunctional high density polyethylene nanocomposites produced by incorporation of exfoliated graphite nanoplatelets 1: morphology and mechanical properties. Polym Compos 31:1091–1098. https://doi.org/10.1002/pc.20896

    Article  Google Scholar 

  37. Kapri A, Zaidi MGH, Goel R, Singh MR, Lipson RH (2009) Nanobarium titanate as supplement to accelerate plastic waste biodegradation by indigenous bacterial consortia. In: AIP conference proceedings. AIP. https://doi.org/10.1063/1.3183475

  38. Kapri A, Zaidi MGH, Goel R (2010) Implications of SPION and NBT nanoparticles upon in-vitro and in-situ biodegradation of LDPE film. J Microbiol Biotechnol 20:1032–1041. https://doi.org/10.4014/jmb.0912.12026

    Article  Google Scholar 

  39. Kapri A, Zaidi MGH, Satlewal A, Goel R (2010) SPION-accelerated biodegradation of low-density polyethylene by indigenous microbial consortium. Int Biodeterior Biodegrad 64:238–244. https://doi.org/10.1016/j.ibiod.2010.02.002

    Article  Google Scholar 

  40. Kaushal J, Khatri M, Arya SK (2021) Recent insight into enzymatic degradation of plastics prevalent in the environment: a mini—review. Clean Eng Technol. https://doi.org/10.1016/j.clet.2021.100083

    Article  Google Scholar 

  41. Khan MZH, Sultana M, Al-Mamun MR, Hasan MR (2016) Pyrolytic waste plastic oil and its diesel blend: fuel characterization. J Environ Public Health 2016:1–6. https://doi.org/10.1155/2016/7869080

    Article  Google Scholar 

  42. Khan WS, Hamadneh NN, Khan WA (2016) Polymer nanocomposites-synthesis techniques, classification, and properties. In: Di Sia P (ed) Science and applications of tailored nanostructures. One Central Press (OCP), Manchester, pp 50–67

    Google Scholar 

  43. Khandare SD, Chaudhary DR, Jha B (2021) Bioremediation of polyvinyl chloride (PVC) films by marine bacteria. Mar Pollut Bull 169:112566. https://doi.org/10.1016/j.marpolbul.2021.112566

    Article  Google Scholar 

  44. Kirstein IV, Wichels A, Gullans E, Krohne G, Gerdts G (2019) The plastisphere—uncovering tightly attached plastic “specific” microorganisms. PLoS ONE 14:e0215859

    Article  Google Scholar 

  45. Kobashi K, Ata S, Yamada T, Futaba DN, Okazaki T, Hata K (2019) Classification of commercialized CNTs into three general categories as a guide for applications. ACS Appl Nano Mater 2:4043–4047. https://doi.org/10.1021/acsanm.9b00941

    Article  Google Scholar 

  46. Kumar N, Salehiyan R, Chauke V, Botlhoko OJ, Setshedi K, Scriba M, Masukume M, Ray SS (2021) Top-down synthesis of graphene: a comprehensive review. FlatChem 27:100224. https://doi.org/10.1016/j.flatc.2021.100224

    Article  Google Scholar 

  47. Kumar VE, Ravikumar G, Jeyasanta KI (2018) Occurrence of microplastics in fishes from two landing sites in Tuticorin, South east coast of India. Mar Pollut Bull 135:889–894

    Article  Google Scholar 

  48. Kure N, Hamidon MN, Azhari S, Mamat NS, Yusoff HM, Isa BM, Yunusa Z (2017) Simple microwave-assisted synthesis of CNTs using polyethylene as carbon precursor. J Nanomater 2017:1–4. https://doi.org/10.1155/2017/2474267

    Article  Google Scholar 

  49. Lebreton L, Slat B, Ferrari F, Sainte-Rose B, Aitken J, Marthouse R, Hajbane S, Cunsolo S, Schwarz A, Levivier A, Noble K, Debeljak P, Maral H, Schoeneich-Argent R, Brambini R, Reisser J (2018) Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci Rep 8:1–15

    Article  Google Scholar 

  50. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388. https://doi.org/10.1126/science.1157996

    Article  Google Scholar 

  51. Lehel J, Murphy S (2021) Microplastics in the food chain: food safety and environmental aspects. Rev Environ Contam Toxicol 259:1–49. https://doi.org/10.1007/398_2021_77

    Article  Google Scholar 

  52. Liu Y, Xie B, Zhang Z, Zheng Q, Xu Z (2012) Mechanical properties of graphene papers. J Mech Phys Solids 60:591–605. https://doi.org/10.1016/j.jmps.2012.01.002

    Article  Google Scholar 

  53. Mahesh R, Vora K, Hanumanthaiah M, Shroff A, Kulkarni P, Makuteswaran S, Ramdas S, Ramachandraih HL, Raghu AV (2023) Removal of pollutants from wastewater using alumina based nanomaterials: a review. Korean J Chem Eng 40:2035–2045

    Article  Google Scholar 

  54. Maitlo G, Ali I, Maitlo HA, Ali S, Unar IN, Ahmad MB, Bhutto DK, Karmani RK, Naich SR, Sajjad RU, Ali S, Afridi MN (2022) Plastic waste recycling, applications, and future prospects for a sustainable environment. Sustainability 14:11637. https://doi.org/10.3390/su141811637

    Article  Google Scholar 

  55. Malhotra BD, Srivastava S, Augustine S (2015) Biosensors for food toxin detection: CNTs and graphene. Mater Res Soc Symp Proc. https://doi.org/10.1557/opl.2015.165

    Article  Google Scholar 

  56. Mishra N, Das G, Ansaldo A, Genovese A, Malerba M, Povia M, Ricci D, Di Fabrizio E, Di Zitti E, Sharon M, Sharon M (2012) Pyrolysis of waste polypropylene for the synthesis of CNTs. J Anal Appl Pyrolysis 94:91–98. https://doi.org/10.1016/j.jaap.2011.11.012

    Article  Google Scholar 

  57. Mohsenian S, Esmaeili MS, Fathi J, Shokri B (2018) Synthesis of carbon nano-spheres and nano-tubes by thermal plasma processing of polypropylene. Appl Phys A Mater Sci Process. https://doi.org/10.1007/s00339-018-1983-9

    Article  Google Scholar 

  58. Mondragón M, Sánchez-Valdés S, Sanchez-Espíndola ME, Rivera-López JE (2011) Morphology, mechanical properties, and thermal stability of rigid PVC/clay nanocomposites. Polym Eng Sci 51:641–646. https://doi.org/10.1002/pen.21867

    Article  Google Scholar 

  59. Mustafa K, Kanwal J, Musaddiq S (2021) Waste plastic-based nanomaterials and their applications. In: Makhlouf ASH, Ali GAM (eds) Waste recycling technologies for nanomaterials manufacturing. Springer, Cham, pp 781–803. https://doi.org/10.1007/978-3-030-68031-2_27

    Chapter  Google Scholar 

  60. Nicolae SA, Au H, Modugno P, Luo H, Szego AE, Qiao M, Li L, Yin W, Heeres HJ, Berge N, Titirici M-M (2020) Recent advances in hydrothermal carbonisation: from tailored carbon materials and biochemicals to applications and bioenergy. Green Chem 22:4747–4800. https://doi.org/10.1039/d0gc00998a

    Article  Google Scholar 

  61. Nieto-Márquez A, Romero R, Romero A, Valverde JL (2011) CNSs: synthesis, physicochemical properties, and applications. J Mater Chem 21:1664–1672. https://doi.org/10.1039/c0jm01350a

    Article  Google Scholar 

  62. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  Google Scholar 

  63. Novoselov KS, Morozov SV, Mohinddin TMG, Ponomarenko LA, Elias DC, Yang R, Barbolina II, Blake P, Booth TJ, Jiang D, Giesbers J, Hill EW, Geim AK (2007) Electronic properties of graphene. Phys Status Solidi B Basic Res 244:4106–4111. https://doi.org/10.1002/pssb.200776208

    Article  Google Scholar 

  64. OECD (2022, Feb22) https://www.oecd.org/newsroom/plastic-pollution-is-growing-relentlessly-as-waste-management-and-recycling-fall-short.htm

  65. Palm GJ, Reisky L, Böttcher D, Müller H, Michels EAP, Walczak MC, Berndt L, Weiss MS, Bornscheuer UT, Weber G (2019) Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nat Commun 10:1717. https://doi.org/10.1038/s41467-019-09326-3

    Article  Google Scholar 

  66. Pandey S, Karakoti M, Dhali S, Karki N, SanthiBhushan B, Tewari C, Rana S, Srivastava A, Melkani AB, Sahoo NG (2019) Bulk synthesis of graphene nanosheets from plastic waste: an invincible method of solid waste management for better tomorrow. Waste Manag 88:48–55. https://doi.org/10.1016/j.wasman.2019.03.023

    Article  Google Scholar 

  67. Pathak VM, Kumar N (2017) Implications of SiO2 nanoparticles for in vitro biodegradation of low-density polyethylene with potential isolates of Bacillus, Pseudomonas, and their synergistic effect on Vigna mungo growth. Energy Ecol Environ 2:418–427. https://doi.org/10.1007/s40974-017-0068-5

    Article  Google Scholar 

  68. Pol SV, Pol VG, Sherman D, Gedanken A (2009) A solvent free process for the generation of strong, conducting carbon spheres by the thermal degradation of waste polyethylene terephthalate. Green Chem 11:448. https://doi.org/10.1039/b819494g

    Article  Google Scholar 

  69. Pop E, Varshney V, Roy AK (2012) Thermal properties of graphene: fundamentals and applications. MRS Bull 37:1273–1281. https://doi.org/10.1557/mrs.2012.203

    Article  Google Scholar 

  70. Popov V (2004) CNTs: properties and application. Mater Sci Eng R Rep 43:61–102. https://doi.org/10.1016/j.mser.2003.10.001

    Article  Google Scholar 

  71. Qu Y, Zhang Z, Wang X, Lai Y, Liu Y, Li J (2013) A simple SDS-assisted self-assembly method for the synthesis of hollow CNSs to encapsulate sulfur for advanced lithium–sulfur batteries. J Mater Chem A Mater Energy Sustain 1:14306. https://doi.org/10.1039/c3ta13306k

    Article  Google Scholar 

  72. Rajput VD, Singh A, Minkina T, Rawat S, Mandzhieva S, Sushkova S, Shuvaeva V, Nazarenko O, Rajput P, Komariah VKK, Singh AK, Rao M, Upadhyay SK (2021) Nano-enabled products: challenges and opportunities for sustainable agriculture. Plants 10:2727

    Article  Google Scholar 

  73. Rani K, Senthil K (2023) Potential of industrial waste and plastic nanomaterials as a danger or a way to create a sustainable environment: a critical review. Nanotechnol Environ Eng. https://doi.org/10.1007/s41204-023-00330-z

    Article  Google Scholar 

  74. Sah A, Kapri A, Zaidi MGH, Negi H, Goel R (2010) Implications of fullerene-60 upon in-vitro LDPE biodegradation. J Microbiol Biotechnol 20:908–916. https://doi.org/10.4014/jmb.0910.10025

    Article  Google Scholar 

  75. Sahoo A, Sethi J, Satapathy KB, Sahoo SK, Panigrahi GK (2022) Nanotechnology for precision and sustainable agriculture: recent advances, challenges and future implications. Nanotechnol Environ Eng. https://doi.org/10.1007/s41204-022-00277-7

    Article  Google Scholar 

  76. Sárközi Z, Kertész K, Koos AA, Osváth Z, Tapasztb L, Horváth Z, Nemes-Incze P, Jenei I, Vértesy Z, Daróczi N, Darabont A (2000) Synthesis of CNTs from liquid hydrocarbons using a spray-pyrolysis method. J Optoelectron Adv Mater 10(9):2307–2310

    Google Scholar 

  77. Sawant SY, Somani RS, Panda AB, Bajaj HC (2013) Utilization of plastic wastes for synthesis of carbon microspheres and their use as a template for nanocrystalline copper(II) oxide hollow spheres. ACS Sustain Chem Eng 1:1390–1397. https://doi.org/10.1021/sc400119b

    Article  Google Scholar 

  78. Saxena J, Choudhary N, Gupta P, Sharma MM, Singh A (2017) Isolation and characterization of neutral proteases producing soil fungus Cladosporium sp. PAB2014 Strain FGCC/BLS2: process optimization for improved enzyme production. J Sci Ind Res 76:707–713

    Google Scholar 

  79. Sedira S, Mendaci B (2020) Hydrothermal synthesis of spherical carbon nanoparticles (CNPs) for supercapacitor electrodes uses. Mater Renew Sustain Energy. https://doi.org/10.1007/s40243-019-0161-0

    Article  Google Scholar 

  80. Sen M (2020) Nanocomposite materials. In: Sen M (ed) Nanotechnology and the environment. IntechOpen, Rijeka. https://doi.org/10.5772/intechopen.93047

    Chapter  Google Scholar 

  81. Sharma B, Rawat H, Ja P, Sharma R (2017) Bioremediation—a progressive approach toward reducing plastic wastes. Int J Curr Microbiol Appl Sci 6:1116–1131. https://doi.org/10.20546/ijcmas.2017.612.126

    Article  Google Scholar 

  82. Sharma U, Sharma S, Rana VS, Rana N, Kumar V, Sharma S, Qadri H, Kumar V, Bhat SA (2023) Assessment of microplastics pollution on soil health and eco-toxicological risk in horticulture. Soil Syst 7:7. https://doi.org/10.3390/soilsystems7010007

    Article  Google Scholar 

  83. Sharuddin SDA, Abnisa F, Wan Daud WMA, Aroua MK (2016) A review on pyrolysis of plastic wastes. Energy Convers Manag 115:308–326. https://doi.org/10.1016/j.enconman.2016.02.037

    Article  Google Scholar 

  84. Shi Z, Lian Y, Liao FH, Zhou X, Gu Z, Zhang Y, Iijima S, Li H, Yue KT, Zhang SL (2000) Large scale synthesis of single-wall CNTs by arc-discharge method. J Phys Chem Solids 61:1031–1036. https://doi.org/10.1016/s0022-3697(99)00358-3

    Article  Google Scholar 

  85. Singh A, Sharma R, Rawat S, Singh AK, Rajput VD, Fedorov Y, Minkina T, Chaplygin V (2022) Nanomaterial-plant interaction: views on the pros and cons. In: Rajput VD et al (eds) Toxicity of nanoparticles in plants. Academic Press, Cambridge, pp 47–68

    Chapter  Google Scholar 

  86. Singh A, Sengar RS, Rajput VD, Minkina T, Singh RK (2022) Zinc oxide nanoparticles improve salt tolerance in rice seedlings by improving physiological and biochemical indices. Agriculture 12:1014

    Article  Google Scholar 

  87. Singh V, Mittal AK (2011) Groundwater pollution by municipal solid waste landfill leachate: a case study of Okhla Landfill Delhi. In: IWRA World Water Congress proceedings, vol 4

  88. Tatrari G, Tewari C, Bohra BS, Pandey S, Karakoti M, Kumar S, Tiwari H, Dhali S, Sahoo NG (2021) Waste plastic derived graphene sheets as nanofillers to enhance mechanical strength of concrete mixture: an inventive approach to deal with universal plastic waste. Clean Eng Technol 5:100275. https://doi.org/10.1016/j.clet.2021.100275

    Article  Google Scholar 

  89. Tavares MIB, da Silva EO, da Silva PRC, de Menezes LR (2017) Polymer nanocomposites. In: Seehra M (ed) Nanostructured materials—fabrication to applications. InTech, Rijeka. https://doi.org/10.5772/intechopen.68142

    Chapter  Google Scholar 

  90. Temporiti MEE, Nicola L, Nielsen E, Tosi S (2022) Fungal enzymes involved in plastics biodegradation. Microorganisms 10:1180

    Article  Google Scholar 

  91. Thiruvengadam M, Rajakumar G, Chung I-M (2018) Nanotechnology: current uses and future applications in the food industry. 3 Biotech. https://doi.org/10.1007/s13205-018-1104-7

    Article  Google Scholar 

  92. Ubaidullah M, Al-Enizi AM, Shaikh S, Ghanem MA, Mane RS (2020) Waste PET plastic derived ZnO@NMC nanocomposite via MOF-5 construction for hydrogen and oxygen evolution reactions. J King Saud Univ Sci 32:2397–2405. https://doi.org/10.1016/j.jksus.2020.03.025

    Article  Google Scholar 

  93. Uddin MN, Desai F, Asmatulu E (2020) Engineered nanomaterials in the environment: bioaccumulation, biomagnification and biotransformation. Environ Chem Lett 18:1073–1083. https://doi.org/10.1007/s10311-019-00947-0

    Article  Google Scholar 

  94. UNEP (2021, Oct 21) https://www.unep.org/resources/pollution-solution-global-assessment-marine-litter-and-plastic-pollution

  95. Vijayalakshmi V, Sadanandan B, Anjanapura RV (2023) In vitro comparative cytotoxic assessment of pristine and carboxylic functionalized multiwalled carbon nanotubes on LN18 cells. J Biochem Mol Toxic 37:e23283

    Article  Google Scholar 

  96. Verma R, Vinoda KS, Papireddy M, Gowda ANS (2016) Toxic pollutants from plastic waste—a review. Procedia Environ Sci 35:701–708. https://doi.org/10.1016/j.proenv.2016.07.069

    Article  Google Scholar 

  97. Wang J, Wang F, Duan H, Li Y, Xu J, Huang Y, Liu B, Zhang T (2020) Polyvinyl chloride-derived carbon spheres for CO2 adsorption. Chemsuschem 13:6426–6432. https://doi.org/10.1002/cssc.202002230

    Article  Google Scholar 

  98. Yang G, Li L, Lee WB, Ng MC (2018) Structure of graphene and its disorders: a review. Sci Technol Adv Mater 19:613–648. https://doi.org/10.1080/14686996.2018.1494493

    Article  Google Scholar 

  99. Zhang H, Zhou X-L, Shao L-M, Lü F, He P-J (2019) Hierarchical porous carbon spheres from low-density polyethylene for high-performance supercapacitors. ACS Sustain Chem Eng 7:3801–3810. https://doi.org/10.1021/acssuschemeng.8b04539

    Article  Google Scholar 

  100. Zhang P, Qiao Z-A, Dai S (2015) Recent advances in CNSs: synthetic routes and applications. Chem Commun (Camb) 51:9246–9256. https://doi.org/10.1039/c5cc01759a

    Article  Google Scholar 

  101. Zhao H, Zhang F, Zhang S, He S, Shen F, Han X, Yin Y, Gao C (2018) Scalable synthesis of sub-100 nm hollow CNSs for energy storage applications. Nano Res 11:1822–1833. https://doi.org/10.1007/s12274-017-1800-3

    Article  Google Scholar 

  102. Zhao N, Wu Q, Zhang X, Yang T, Li D, Zhang X, Ma C, Liu R, Xin L, He M (2022) Chemical vapor deposition growth of single-walled CNTs from plastic polymers. Carbon N Y 187:29–34. https://doi.org/10.1016/j.carbon.2021.10.067

    Article  Google Scholar 

  103. Zhuo C, Hall B, Richter H, Levendis Y (2010) Synthesis of CNTs by sequential pyrolysis and combustion of polyethylene. Carbon N Y 48:4024–4034. https://doi.org/10.1016/j.carbon.2010.07.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juhi Saxena.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandpal, A., Singh, A., Jain, D. et al. Managing plastic waste with nanotechnology: current sustainability prospects. Nanotechnol. Environ. Eng. 8, 1015–1031 (2023). https://doi.org/10.1007/s41204-023-00346-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41204-023-00346-5

Keywords

Navigation