Skip to main content
Log in

Two-Dimensional Resonance Raman Signatures of Vibronic Coherence Transfer in Chemical Reactions

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in condensed phase systems. 2DRR spectroscopy is motivated by knowledge of non-equilibrium effects that cannot be detected with traditional resonance Raman spectroscopy. For example, 2DRR spectra may reveal correlated distributions of reactant and product geometries in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this chapter, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide. We show that signatures of “vibronic coherence transfer” in the photodissociation process can be targeted with particular 2DRR pulse sequences. Key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopy techniques are also addressed. Overall, recent experimental developments and applications of the 2DRR method suggest that it will be a valuable tool for elucidating ultrafast chemical reaction mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced from Guo et al. [23], with the permission of AIP Publishing

Fig. 3

Reproduced from Guo et al. [23], with the permission of AIP Publishing

Fig. 4
Fig. 5

Adapted from Guo et al. [23], with the permission of AIP Publishing

Fig. 6
Fig. 7

Reproduced from Molesky et al [22], with the permission of AIP Publishing

Fig. 8
Fig. 9

Adapted from Guo et al. [23] and Molesky et al [22], with the permission of AIP Publishing

Fig. 10

Adapted from Guo et al. [23], with the permission of AIP Publishing

Fig. 11

Adapted from Guo et al. [23], with the permission of AIP Publishing

Fig. 12

Similar content being viewed by others

References

  1. Mukamel S (1995) Principles of nonlinear optical spectroscopy. Oxford University Press, New York

    Google Scholar 

  2. Nitzan A (2006) Chemical dynamics in condensed phases. Oxford University Press, Oxford

    Google Scholar 

  3. Valkunas L, Abramavicius D, Mančal T (2013) Molecular excitation dynamics and relaxation: quantum theory and spectroscopy. Wiley-VCH, Weinheim

  4. Vos MH, Lambry J-C, Robles SJ, Youvan DC, Breton J, Martin J-L (1991) Proc Natl Acad Sci 88:8885

    Article  CAS  Google Scholar 

  5. Vos MH, Rappaport F, Lambry J-C, Breton J, Martin J-L (1993) Nature 363:320

    Article  CAS  Google Scholar 

  6. Peteanu LA, Schoenlein RW, Wang H, Mathies RA, Shank CV (1993) Proc Natl Acad Sci 90:11762

    Article  CAS  Google Scholar 

  7. Banin U, Kosloff R, Ruhman S (1993) Isr J Chem 33:141

    Article  CAS  Google Scholar 

  8. Benjamin I, Banin U, Ruhman S (1993) J. Chem. Phys. 98:8337

    Article  CAS  Google Scholar 

  9. Zhu L, Sage JT, Champion PM (1994) Science 266:629

    Article  CAS  Google Scholar 

  10. Zewail AH (2000) J Phys Chem A 104:5560

    Article  Google Scholar 

  11. Bixon M, Jortner J (1997) J Chem Phys 107:1470

    Article  CAS  Google Scholar 

  12. Wynne K, Reid GD, Hochstrasser RM (1996) J Chem Phys 105:2287

    Article  CAS  Google Scholar 

  13. Song Y, Clafton SN, Pensack RD, Kee TW, Scholes GD (2014) Nat Commun 5:4933

    Article  Google Scholar 

  14. Fuller FD, Pan J, Gelzinis A, Butkus V, Senlik SS, Wilcox DE, Yocum CF, Valkunas L, Abramavicius D, Ogilvie JP (2014) Nat Chem 6:706

    Article  CAS  Google Scholar 

  15. Mohseni M, Omar Y, Engel GS, Plenio MB (2014) Quantum effects in biology. Cambridge University Press, Cambridge

  16. Chenu A, Scholes GD (2015) Annu Rev Phys Chem 66:69

    Article  CAS  Google Scholar 

  17. Jonas DM (2003) Annu Rev Phys Chem 54:425

    Article  CAS  Google Scholar 

  18. Ogilvie JP, Kubarych KJ (2009) Adv At Mol Opt Phys 57:249

    Article  CAS  Google Scholar 

  19. Loring RF, Mukamel S (1985) J Chem Phys 83:2116

    Article  CAS  Google Scholar 

  20. Tanimura Y, Mukamel S (1993) J Chem Phys 99:9496

    Article  CAS  Google Scholar 

  21. Tanimura Y, Okumura K (1996) J Chem Phys 106:2078

    Article  Google Scholar 

  22. Molesky BP, Giokas PG, Guo Z, Moran AM (2014) J Chem Phys 114:114202

    Article  Google Scholar 

  23. Guo Z, Molesky BM, Cheshire TP, Moran AM (2015) J Chem Phys 143:124202

    Article  Google Scholar 

  24. Molesky BM, Guo Z, Moran AM (2015) J Chem Phys 142:212405

  25. Molesky BM, Guo Z, Cheshire TP, Moran AM (2016) J Chem Phys 145:034203

    Article  Google Scholar 

  26. Molesky BM, Guo Z, Cheshire TP, Moran AM (2016) J Chem Phys 145:180901

    Article  Google Scholar 

  27. McCamant DW, Kukura P, Yoon S, Mathies RA (2004) Rev Sci Instrum 75:4971

    Article  CAS  Google Scholar 

  28. Kukura P, McCamant DW, Mathies RA (2007) Annu Rev Phys Chem 58:461

    Article  CAS  Google Scholar 

  29. Takeuchi S, Ruhman S, Tsuneda T, Chiba M, Taketsugu T, Tahara T (2008) Science 322:1073

    Article  CAS  Google Scholar 

  30. Kraack JP, Wand A, Buckup T, Motzkus M, Ruhman S (2013) Phys Chem Chem Phys 15:14487

    Article  CAS  Google Scholar 

  31. Wang Y, Liu W, Tang L, Oscar B, Han F, Fang C (2013) J Phys Chem A 117:6024

    Article  CAS  Google Scholar 

  32. Hoffman DP, Mathies RA (2016) Acc Chem Res 49:616

    Article  CAS  Google Scholar 

  33. Hutson WO, Spencer AP, Harel E (2016) J Phys Chem Lett 7:3636

    Article  CAS  Google Scholar 

  34. Spencer AP, Hutson WO, Harel E (2017) Nat Commun 8:14732

    Article  Google Scholar 

  35. Harel E (2017) J Chem Phys 146:154201

    Article  Google Scholar 

  36. Banin U, Kosloff R, Ruhman S (1994) Chem Phys 183:289

    Article  CAS  Google Scholar 

  37. Kühne T, Vöhringer P (1996) J Chem Phys 105:10788

    Article  Google Scholar 

  38. Gershgoren E, Gordon E, Ruhman S (1997) J Chem Phys 106:4806

    Article  CAS  Google Scholar 

  39. Kühne T, Küster R, Vöhringer P (1998) Chem Phys 233:161

    Article  Google Scholar 

  40. Hess S, Bürsing H, Vöhringer P (1999) J Chem Phys 111:5461

    Article  CAS  Google Scholar 

  41. Yang T-S, Chang M-S, Hayashi M, Lin SH, Vöhringer P, Dietz W, Scherer NF (1999) J Chem Phys 110:12070

    Article  CAS  Google Scholar 

  42. Nishiyama Y, Terazima M, Kimura Y (2012) J Phys Chem B 116:9023

    Article  CAS  Google Scholar 

  43. Baratz A, Ruhman S (2008) Chem Phys Lett 461:211

    Article  CAS  Google Scholar 

  44. Herrmann V, Krebs P (1995) J Phys Chem 99:6794

    Article  CAS  Google Scholar 

  45. Johnson AE, Myers AB (1995) J Chem Phys 104:3519

    Article  Google Scholar 

  46. Myers AB (1995) In: Myers AB, Rizzo TR (eds) Laser techniques in chemistry, vol 23. John Wiley & Sons, New York

  47. Heller EJ (1981) Acc Chem Res 14:368

    Article  CAS  Google Scholar 

  48. Myers AB, Mathies RA, Tannor DJ, Heller EJ (1982) J Chem Phys 77:3857

    Article  CAS  Google Scholar 

  49. Ivanecky JE III, Wright JC (1993) Chem Phys Lett 206:437

    Article  Google Scholar 

  50. Ulness DJ, Kirkwood JC, Albrecht AC (1998) J Chem Phys 108:3897

    Article  CAS  Google Scholar 

  51. Jansen TIC, Snijders JG, Duppen K (2001) J Chem Phys 114:109210

    Article  Google Scholar 

  52. Blank DA, Kaufman LJ, Fleming GR (1999) J Chem Phys 111:3105

    Article  CAS  Google Scholar 

  53. Kubarych KJ, Milne CJ, Lin S, Astinov V, Miller RJD (2002) J Chem Phys 116:2016

    Article  CAS  Google Scholar 

  54. Mehlenbacher R, Lyons B, Wilson KC, Du Y, McCamant DW (2009) J Chem Phys 131:244512

    Article  Google Scholar 

  55. Kaufman LJ, Heo J, Ziegler LD, Fleming GR (2002) Phys Rev Lett 88(207402):1

    Google Scholar 

  56. Berg M, Vanden Bout DA (1997) Acc Chem Res 30:65

    Article  CAS  Google Scholar 

  57. van Veldhoven E, Khurmi C, Zhang X, Berg MA (2007) Chem Phys Chem 8:1761

    Article  Google Scholar 

  58. Berg MA (2012) Adv Chem Phys 150:1

    CAS  Google Scholar 

  59. Lepetit L, Chériaux G, Joffre M (1995) J Opt Soc Am B 12:2467

    Article  CAS  Google Scholar 

  60. Goodno GD, Dadusc G, Miller RJD (1998) J Opt Soc Am B 15:1791

    Article  CAS  Google Scholar 

  61. Underwood DF, Blank DA (2005) J Phys Chem A 109:3295

    Article  CAS  Google Scholar 

  62. Moran AM, Nome RA, Scherer NF (2007) J Chem Phys 127(184505):1

    Google Scholar 

  63. Park S, Kim J, Scherer NF (2012) Phys Chem Chem Phys 14:8116

    Article  CAS  Google Scholar 

  64. Moran AM, Maddox JB, Hong JW, Kim J, Nome RA, Bazan GC, Mukamel S, Scherer NF (2006) J Chem Phys 124(194904):1

    Google Scholar 

  65. Busby E, Carroll EC, Chinn EM, Chang L, Moulé AJ, Larsen DS (2011) J Phys Chem Lett 2:2764

    Article  CAS  Google Scholar 

  66. Band YB, Freed KF (1977) J Chem Phys 67:1462

    Article  CAS  Google Scholar 

  67. Hennebicq E, Beljonne D, Curutchet C, Scholes GD, Silbey RJ (2009) J Chem Phys 130(214505):1

    Google Scholar 

  68. Roden J, Schulz G, Eisfeld A, Briggs J (2009) J Chem Phys 131:044909

    Article  Google Scholar 

  69. Womick JM, Moran AM (2011) J Phys Chem B 115:1347

    Article  CAS  Google Scholar 

  70. Chenu A, Chrisensson N, Kauffmann HF, Mančal T (2013) Sci Rep 3:2029

    Article  Google Scholar 

  71. O’Reilly EJ, Olaya-Castro A (2014) Nat Commun 5:3012

    Google Scholar 

  72. Singh VP, Westberg M, Wang C, Dahlberg PD, Gellen T, Gardiner AT, Cogdell RJ, Engel GS (2015) J Chem Phys 142:212446

    Article  CAS  Google Scholar 

  73. Moran AM, Dreyer J, Mukamel S (2003) J Chem Phys 118:1347

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation under CHE-0952439 and CHE-1504350.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Moran.

Additional information

This article is part of the Topical Collection “Multidimensional Time-Resolved Spectroscopy”; edited by Tiago Buckup, Jeremie Leonard.

Appendices

Appendix A: Vibrational Hamiltonians

The present model assumes that both triiodide and diiodide possess two electronic levels and one nuclear coordinate with displaced ground and excited state potential energy minima. The anharmonic vibrational wave functions for the Franck–Condon active bond stretching mode of diiodide and the symmetric stretching coordinate of triiodide are generated using a Hamiltonian with the following form [73]

$$ H_{\alpha } = \frac{{\hbar \omega_{{\alpha ,{\text{vib}}}} }}{2}\left( {2a^{\dag } a + 1} \right) + U_{3,\alpha } \left[ {a^{\dag } a^{\dag } a^{\dag } + 3a^{\dag } a^{\dag } a + 3a^{\dag } aa + aaa + 3a^{\dag } + 3a} \right], $$
(7)

where

$$ U_{3,\alpha } = \frac{1}{{3!\sqrt {2^{3} m^{3} \omega^{3} \hbar^{ - 3} } }}\left( {\frac{{d^{3} V}}{{dq^{3} }}} \right)_{0} . $$
(8)

The wavefunctions are obtained by diagonalizing this Hamiltonian in a basis set of harmonic oscillators that includes states with up to the 40 vibrational quanta. Parameters of the vibrational Hamiltonian are given in Table 1. We use a notation in which α represents the molecule (r for triiodide or p for diiodide) and an asterisk indicates an electronically excited state.

Table 1 Parameters of Model Used to Compute 2DRR Spectra

The vibrational overlap integrals used to evaluate the response functions of diiodide are obtained using

$$ \left\langle {n} \mathrel{\left | {\vphantom {n m}} \right. \kern-0pt} {m} \right\rangle = \sum\limits_{jk} {\varphi_{nk} \varphi_{mj} \left\langle {k} \mathrel{\left | {\vphantom {k j}} \right. \kern-0pt} {j} \right\rangle } , $$
(9)

where φ nk is the expansion coefficient for harmonic basis vector, k, and the anharmonic excited state vibrational wave function, n. Vibrational overlap integrals of triiodide are given by a different formula,

$$ \left\langle {n} \mathrel{\left | {\vphantom {n m}} \right. \kern-0pt} {m} \right\rangle = \sum\limits_{k} {\varphi_{nk} \left\langle {k} \mathrel{\left | {\vphantom {k m}} \right. \kern-0pt} {m} \right\rangle } , $$
(10)

because the ground and excited states are taken to be harmonic and anharmonic, respectively (see discussion in Sect. 2). In order to evaluate the overlap integrals, we assume a dimensionless displacement of 7.0 based on spontaneous Raman measurements for triiodide [45] and our earlier 2DRR study [22]. A displacement of 7.0 produces an excited state potential energy gradient of 225 eV/pm in diiodide which is identical to that associated with a previously employed exponential surface [42, 43].

Appendix B: Two-Dimensional Resonance Raman Signal Components

The Feynman diagrams presented in Fig. 3 include dummy indices for vibrational levels (m, n, j, k, l, u, v, w) associated with the ground and excited electronic states (r and r* for triiodide, p and p* for diiodide). Transition dipoles are written as product of integrals over electronic and nuclear degrees of freedom based on the Condon approximation. For example, an interaction that couples vibrational level m in the ground electronic state of the reactant and vibrational level n in the excited electronic state of the reactant contributes the product, μ r*r \( \left\langle {n} \mathrel{\left | {\vphantom {n m}} \right. \kern-0pt} {m} \right\rangle \), to the response function, where μ r*r is the electronic transition dipole and \( \left\langle {n} \mathrel{\left | {\vphantom {n m}} \right. \kern-0pt} {m} \right\rangle \) is a vibrational overlap integral. We use a notation in which the excited state vibrational energy level is always written in the bra [48].

The first polarization component is given in Eq. (3). The remaining 11 polarization components are given by

$$ \begin{aligned} P_{2}^{\left( 5 \right)} (\omega_{1} ,\omega_{2} ) & = - \frac{{N\xi_{\text{UV}}^{5} \left| {\mu_{r*r} } \right|^{6} }}{{\hbar^{5} }}\sum\limits_{mnjklu} {B_{m} } \left\langle {n} \mathrel{\left | {\vphantom {n m}} \right. \kern-0pt} {m} \right\rangle \left\langle {n} \mathrel{\left | {\vphantom {n j}} \right. \kern-0pt} {j} \right\rangle \left\langle {k} \mathrel{\left | {\vphantom {k m}} \right. \kern-0pt} {m} \right\rangle \left\langle {k} \mathrel{\left | {\vphantom {k l}} \right. \kern-0pt} {l} \right\rangle \left\langle {u} \mathrel{\left | {\vphantom {u j}} \right. \kern-0pt} {j} \right\rangle \left\langle {u} \mathrel{\left | {\vphantom {u l}} \right. \kern-0pt} {l} \right\rangle , \\ & \quad \times L_{r*n,rm} \left( {\omega_{\text{UV}} } \right)D_{rj,rm} \left( {\omega_{1} } \right)L_{rj,r*k} \left( { - \omega_{\text{UV}} } \right)D_{rj,rl} \left( {\omega_{2} } \right)L_{r*u,rl} \left( {\omega_{t} } \right) \\ \end{aligned} $$
(11)
$$ \begin{aligned} P_{3}^{\left( 5 \right)} (\omega_{1} ,\omega_{2} ) & = - \frac{{N\xi_{\text{UV}}^{5} \left| {\mu_{r*r} } \right|^{6} }}{{\hbar^{5} }}\sum\limits_{mnjklu} {B_{m} } \left\langle {n} \mathrel{\left | {\vphantom {n m}} \right. \kern-0pt} {m} \right\rangle \left\langle {n} \mathrel{\left | {\vphantom {n j}} \right. \kern-0pt} {j} \right\rangle \left\langle {k} \mathrel{\left | {\vphantom {k j}} \right. \kern-0pt} {j} \right\rangle \left\langle {k} \mathrel{\left | {\vphantom {k l}} \right. \kern-0pt} {l} \right\rangle \left\langle {u} \mathrel{\left | {\vphantom {u m}} \right. \kern-0pt} {m} \right\rangle \left\langle {u} \mathrel{\left | {\vphantom {u l}} \right. \kern-0pt} {l} \right\rangle , \\ & \quad \times L_{rm,r*n} \left( { - \omega_{\text{UV}} } \right)D_{rm,rj} \left( {\omega_{1} } \right)L_{rm,r*k} \left( { - \omega_{\text{UV}} } \right)D_{rm,rl} \left( {\omega_{2} } \right)L_{r*u,rl} \left( {\omega_{t} } \right) \\ \end{aligned} $$
(12)
$$ \begin{aligned} P_{4}^{\left( 5 \right)} (\omega_{1} ,\omega_{2} ) & = - \frac{{N\xi_{\text{UV}}^{5} \left| {\mu_{r*r} } \right|^{6} }}{{\hbar^{5} }}\sum\limits_{mnjklu} {B_{m} } \left\langle {n} \mathrel{\left | {\vphantom {n m}} \right. \kern-0pt} {m} \right\rangle \left\langle {n} \mathrel{\left | {\vphantom {n j}} \right. \kern-0pt} {j} \right\rangle \left\langle {k} \mathrel{\left | {\vphantom {k m}} \right. \kern-0pt} {m} \right\rangle \left\langle {k} \mathrel{\left | {\vphantom {k l}} \right. \kern-0pt} {l} \right\rangle \left\langle {u} \mathrel{\left | {\vphantom {u l}} \right. \kern-0pt} {l} \right\rangle \left\langle {u} \mathrel{\left | {\vphantom {u j}} \right. \kern-0pt} {j} \right\rangle , \\ & \quad \times L_{rm,r*n} \left( { - \omega_{\text{UV}} } \right)D_{rm,rj} \left( {\omega_{1} } \right)L_{r*k,rj} \left( {\omega_{\text{UV}} } \right)D_{rl,rj} \left( {\omega_{2} } \right)L_{r*u,rj} \left( {\omega_{t} } \right) \\ \end{aligned} $$
(13)
$$ \begin{aligned} P_{5}^{\left( 5 \right)} (\omega_{1} ,\omega_{2} ) & = - \frac{{N\xi_{\text{UV}}^{2} \xi_{VIS}^{3} \left| {\mu_{r*r} } \right|^{2} \left| {\mu_{p*p} } \right|^{4} }}{{\hbar^{5} }}\sum\limits_{mnjkluvw} {B_{m} } \left\langle {n} \mathrel{\left | {\vphantom {n m}} \right. \kern-0pt} {m} \right\rangle \left\langle {j} \mathrel{\left | {\vphantom {j m}} \right. \kern-0pt} {m} \right\rangle \left\langle {u} \mathrel{\left | {\vphantom {u k}} \right. \kern-0pt} {k} \right\rangle \left\langle {u} \mathrel{\left | {\vphantom {u v}} \right. \kern-0pt} {v} \right\rangle \left\langle {w} \mathrel{\left | {\vphantom {w v}} \right. \kern-0pt} {v} \right\rangle \left\langle {w} \mathrel{\left | {\vphantom {w l}} \right. \kern-0pt} {l} \right\rangle , \\ & \quad \times L_{r*n,rm} \left( {\omega_{\text{UV}} } \right)D_{pk,pl} \left( {\omega_{1} } \right)L_{p*u,pl} \left( {\omega_{\text{VIS}} } \right)D_{pv,pl} \left( {\omega_{2} } \right)L_{p*w,pl} \left( {\omega_{t} } \right) \\ \end{aligned} $$
(14)
$$ \begin{aligned} P_{6}^{\left( 5 \right)} (\omega_{1} ,\omega_{2} ) & = - \frac{{N\xi_{\text{UV}}^{2} \xi_{\text{VIS}}^{3} \left| {\mu_{r*r} } \right|^{2} \left| {\mu_{p*p} } \right|^{4} }}{{\hbar^{5} }}\sum\limits_{mnjkluvw} {B_{m} } \left\langle {n} \mathrel{\left | {\vphantom {n m}} \right. \kern-0pt} {m} \right\rangle \left\langle {j} \mathrel{\left | {\vphantom {j m}} \right. \kern-0pt} {m} \right\rangle \left\langle {u} \mathrel{\left | {\vphantom {u k}} \right. \kern-0pt} {k} \right\rangle \left\langle {u} \mathrel{\left | {\vphantom {u v}} \right. \kern-0pt} {v} \right\rangle \left\langle {w} \mathrel{\left | {\vphantom {w v}} \right. \kern-0pt} {v} \right\rangle \left\langle {w} \mathrel{\left | {\vphantom {w l}} \right. \kern-0pt} {l} \right\rangle , \\ & \quad \times L_{rm,r*n} \left( { - \omega_{\text{UV}} } \right)D_{pk,pl} \left( {\omega_{1} } \right)L_{p*u,pl} \left( {\omega_{\text{VIS}} } \right)D_{pv,pl} \left( {\omega_{2} } \right)L_{p*w,pl} \left( {\omega_{t} } \right) \\ \end{aligned} $$
(15)
$$ \begin{aligned} P_{7}^{\left( 5 \right)} (\omega_{1} ,\omega_{2} ) & = - \frac{{N\xi_{\text{UV}}^{2} \xi_{\text{VIS}}^{3} \left| {\mu_{r*r} } \right|^{2} \left| {\mu_{p*p} } \right|^{4} }}{{\hbar^{5} }}\sum\limits_{mnjkluvw} {B_{m} } \left\langle {n} \mathrel{\left | {\vphantom {n m}} \right. \kern-0pt} {m} \right\rangle \left\langle {j} \mathrel{\left | {\vphantom {j m}} \right. \kern-0pt} {m} \right\rangle \left\langle {u} \mathrel{\left | {\vphantom {u l}} \right. \kern-0pt} {l} \right\rangle \left\langle {u} \mathrel{\left | {\vphantom {u v}} \right. \kern-0pt} {v} \right\rangle \left\langle {w} \mathrel{\left | {\vphantom {w k}} \right. \kern-0pt} {k} \right\rangle \left\langle {w} \mathrel{\left | {\vphantom {w v}} \right. \kern-0pt} {v} \right\rangle , \\ & \quad \times L_{r*n,rm} \left( {\omega_{\text{UV}} } \right)D_{pk,pl} \left( {\omega_{1} } \right)L_{pk,p*u} \left( { - \omega_{\text{VIS}} } \right)D_{pk,pv} \left( {\omega_{2} } \right)L_{p*w,pv} \left( {\omega_{t} } \right) \\ \end{aligned} $$
(16)
$$ \begin{aligned} P_{8}^{\left( 5 \right)} (\omega_{1} ,\omega_{2} ) & = - \frac{{N\xi_{\text{UV}}^{2} \xi_{\text{VIS}}^{3} \left| {\mu_{r*r} } \right|^{2} \left| {\mu_{p*p} } \right|^{4} }}{{\hbar^{5} }}\sum\limits_{mnjkluvw} {B_{m} } \left\langle {n} \mathrel{\left | {\vphantom {n m}} \right. \kern-0pt} {m} \right\rangle \left\langle {j} \mathrel{\left | {\vphantom {j m}} \right. \kern-0pt} {m} \right\rangle \left\langle {u} \mathrel{\left | {\vphantom {u l}} \right. \kern-0pt} {l} \right\rangle \left\langle {u} \mathrel{\left | {\vphantom {u v}} \right. \kern-0pt} {v} \right\rangle \left\langle {w} \mathrel{\left | {\vphantom {w k}} \right. \kern-0pt} {k} \right\rangle \left\langle {w} \mathrel{\left | {\vphantom {w v}} \right. \kern-0pt} {v} \right\rangle , \\ & \quad \times L_{rm,r*n} \left( { - \omega_{\text{UV}} } \right)D_{pk,pl} \left( {\omega_{1} } \right)L_{pk,p*u} \left( { - \omega_{\text{VIS}} } \right)D_{pk,pv} \left( {\omega_{2} } \right)L_{p*w,pv} \left( {\omega_{t} } \right) \\ \end{aligned} $$
(17)
$$ \begin{aligned} P_{9}^{\left( 5 \right)} (\omega_{1} ,\omega_{2} ) & = - \frac{{N\xi_{\text{UV}}^{4} \xi_{\text{VIS}} \left| {\mu_{r*r} } \right|^{4} \left| {\mu_{p*p} } \right|^{2} }}{{\hbar^{5} }}\sum\limits_{mnjkluvw} {B_{m} } \left\langle {n} \mathrel{\left | {\vphantom {n m}} \right. \kern-0pt} {m} \right\rangle \left\langle {n} \mathrel{\left | {\vphantom {n j}} \right. \kern-0pt} {j} \right\rangle \left\langle {k} \mathrel{\left | {\vphantom {k j}} \right. \kern-0pt} {j} \right\rangle \left\langle {l} \mathrel{\left | {\vphantom {l m}} \right. \kern-0pt} {m} \right\rangle \left\langle {w} \mathrel{\left | {\vphantom {w u}} \right. \kern-0pt} {u} \right\rangle \left\langle {w} \mathrel{\left | {\vphantom {w v}} \right. \kern-0pt} {v} \right\rangle , \\ & \quad \times L_{r*n,rm} \left( {\omega_{UV} } \right)D_{rj,rm} \left( {\omega_{1} } \right)L_{r*k,rm} \left( {\omega_{UV} } \right)D_{pu,pv} \left( {\omega_{2} } \right)L_{p*w,pv} \left( {\omega_{t} } \right) \\ \end{aligned} $$
(18)
$$ \begin{aligned} P_{10}^{\left( 5 \right)} (\omega_{1} ,\omega_{2} ) & = - \frac{{N\xi_{\text{UV}}^{4} \xi_{\text{VIS}}^{{}} \left| {\mu_{r*r} } \right|^{4} \left| {\mu_{p*p} } \right|^{2} }}{{\hbar^{5} }}\sum\limits_{mnjkluvw} {B_{m} } \left\langle {n} \mathrel{\left | {\vphantom {n m}} \right. \kern-0pt} {m} \right\rangle \left\langle {n} \mathrel{\left | {\vphantom {n j}} \right. \kern-0pt} {j} \right\rangle \left\langle {k} \mathrel{\left | {\vphantom {k m}} \right. \kern-0pt} {m} \right\rangle \left\langle {l} \mathrel{\left | {\vphantom {l j}} \right. \kern-0pt} {j} \right\rangle \left\langle {w} \mathrel{\left | {\vphantom {w u}} \right. \kern-0pt} {u} \right\rangle \left\langle {w} \mathrel{\left | {\vphantom {w v}} \right. \kern-0pt} {v} \right\rangle , \\ & \quad \times L_{rm,r*n} \left( { - \omega_{\text{UV}} } \right)D_{rm,rj} \left( {\omega_{1} } \right)L_{r*k,rj} \left( {\omega_{\text{UV}} } \right)D_{pu,pv} \left( {\omega_{2} } \right)L_{p*w,pv} \left( {\omega_{t} } \right) \\ \end{aligned} $$
(19)
$$ \begin{aligned} P_{11}^{\left( 5 \right)} (\omega_{1} ,\omega_{2} ) & = - \frac{{N\xi_{\text{UV}}^{4} \xi_{\text{VIS}}^{{}} \left| {\mu_{r*r} } \right|^{4} \left| {\mu_{p*p} } \right|^{2} }}{{\hbar^{5} }}\sum\limits_{mnjkluvw} {B_{m} } \left\langle {n} \mathrel{\left | {\vphantom {n m}} \right. \kern-0pt} {m} \right\rangle \left\langle {n} \mathrel{\left | {\vphantom {n j}} \right. \kern-0pt} {j} \right\rangle \left\langle {k} \mathrel{\left | {\vphantom {k m}} \right. \kern-0pt} {m} \right\rangle \left\langle {l} \mathrel{\left | {\vphantom {l j}} \right. \kern-0pt} {j} \right\rangle \left\langle {w} \mathrel{\left | {\vphantom {w u}} \right. \kern-0pt} {u} \right\rangle \left\langle {w} \mathrel{\left | {\vphantom {w v}} \right. \kern-0pt} {v} \right\rangle , \\ & \quad \times L_{r*n,rm} \left( {\omega_{\text{UV}} } \right)D_{rj,rm} \left( {\omega_{1} } \right)L_{rj,r*k} \left( { - \omega_{UV} } \right)D_{pu,pv} \left( {\omega_{2} } \right)L_{p*w,pv} \left( {\omega_{t} } \right) \\ \end{aligned} $$
(20)
$$ \begin{aligned} P_{12}^{\left( 5 \right)} (\omega_{1} ,\omega_{2} ) & = - \frac{{N\xi_{\text{UV}}^{4} \xi_{\text{VIS}}^{{}} \left| {\mu_{r*r} } \right|^{4} \left| {\mu_{p*p} } \right|^{2} }}{{\hbar^{5} }}\sum\limits_{mnjkluvw} {B_{m} } \left\langle {n} \mathrel{\left | {\vphantom {n m}} \right. \kern-0pt} {m} \right\rangle \left\langle {n} \mathrel{\left | {\vphantom {n j}} \right. \kern-0pt} {j} \right\rangle \left\langle {k} \mathrel{\left | {\vphantom {k j}} \right. \kern-0pt} {j} \right\rangle \left\langle {l} \mathrel{\left | {\vphantom {l m}} \right. \kern-0pt} {m} \right\rangle \left\langle {w} \mathrel{\left | {\vphantom {w u}} \right. \kern-0pt} {u} \right\rangle \left\langle {w} \mathrel{\left | {\vphantom {w v}} \right. \kern-0pt} {v} \right\rangle . \\ & \quad \times L_{rm,r*n} \left( { - \omega_{\text{UV}} } \right)D_{rm,rj} \left( {\omega_{1} } \right)L_{rm,r*k} \left( { - \omega_{\text{UV}} } \right)D_{pu,pv} \left( {\omega_{2} } \right)L_{p*w,pv} \left( {\omega_{t} } \right) \\ \end{aligned} $$
(21)

In the above polarization components, laser pulses with the subscripts UV and VIS are taken to interact with triiodide and diiodide, respectively.

For convenience, we further group the terms into three classes of signal fields under the assumption of perfect phase-matching conditions

$$ E_{r,r}^{\left( 5 \right)} (\omega_{1} ,\omega_{2} ) = \left( {\frac{{i\omega_{t} l}}{{2\varepsilon_{0} n\left( {\omega_{t} } \right)c}}} \right)\sum\limits_{m = 1}^{4} {P_{m}^{\left( 5 \right)} (\omega_{1} ,\omega_{2} )} , $$
(22)
$$ E_{p,p}^{\left( 5 \right)} (\omega_{1} ,\omega_{2} ) = \left( {\frac{{i\omega_{t} l}}{{2\varepsilon_{0} n\left( {\omega_{t} } \right)c}}} \right)\sum\limits_{m = 5}^{8} {P_{m}^{\left( 5 \right)} (\omega_{1} ,\omega_{2} )\,} , $$
(23)

and

$$ E_{r,p}^{\left( 5 \right)} (\omega_{1} ,\omega_{2} )\, = \left( {\frac{{i\omega_{t} l}}{{2\varepsilon_{0} n\left( {\omega_{t} } \right)c}}} \right)\sum\limits_{m = 9}^{12} {P_{m}^{\left( 5 \right)} (\omega_{1} ,\omega_{2} )\,\,} . $$
(24)

Here, the two subscripts of the signal fields represent sensitivity to the triiodide reactant (subscript r) and diiodide product (subscript p) in the two frequency dimensions, ω 1 and ω 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Molesky, B.P., Cheshire, T.P. et al. Two-Dimensional Resonance Raman Signatures of Vibronic Coherence Transfer in Chemical Reactions. Top Curr Chem (Z) 375, 87 (2017). https://doi.org/10.1007/s41061-017-0173-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-017-0173-0

Keywords

Navigation