Skip to main content

Advertisement

Log in

Characterization of NMR, IR, and Raman spectra for siloxanes and silsesquioxanes: a mini review

  • Review Paper: Sol–gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nuclear magnetic resonance (NMR), infrared (IR), and Raman spectroscopy are used to determine the structures and substituent groups of siloxanes and silsesquioxanes. Electronic characteristics cause NMR signals and IR bands to shift and overlap. Therefore, they are often assigned incorrectly. Unfortunately, for siloxanes and silsesquioxanes, the sheer volume of data makes it difficult to obtain the desired information. In this paper, we summarize NMR, IR, and Raman data for siloxanes and silsesquioxanes.

Graphical abstract

Highlights

  • NMR, IR, and Raman data for siloxanes and silsesquioxanes are summarized.

  • NMR signals and IR bands shift by linear, cyclic, ladder, and cage structures.

  • NMR signals shift with substituent groups such as alkoxy, hydroxy, and organic groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ATR:

Attenuated total reflection

BTMSE:

Bis(trimethoxysilyl)ethane

CDCl3 :

Chloroform-d

Cy:

Cyclohexyl

D3 Me :

Hexamethylcyclotrisiloxane

D4 Me :

Octamethylcyclotetrasiloxane

D5 Me :

Decamethylcyclopentasiloxane

DMSO:

Dimethyl sulfoxide

Et:

Ethyl

Gly:

Glycidyl

iBu:

Isobutyl

iPr:

Isopropyl

IR:

Infrared

Me:

Methyl

MTES:

Triethoxy(methyl)silane

MTMS:

Trimethoxy(methyl)silane

nBu:

Normalbutyl

NMR:

Nuclear magnetic resonance

nPr:

Normalpropyl

PDMS:

Poly(dimethylsiloxane)

Ph:

Phenyl

sBu:

Secondary butyl

tBu:

Tertiary butyl

TEOS:

Tetraethoxysilane

TES:

Triethoxysilane

TMOS:

Tetramethoxysilane

Vi:

Vinyl

References

  1. Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Silsesquioxanes. Chem Rev 95:1409–1430. https://doi.org/10.1021/cr00037a012

    Article  CAS  Google Scholar 

  2. Kuo SW (2022) Hydrogen bonding interactions in polymer/polyhedral oligomeric silsesquioxane nanomaterials. J Polym Res 29:69. https://doi.org/10.1007/s10965-021-02885-4

    Article  CAS  Google Scholar 

  3. Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed 45:3216–3251. https://doi.org/10.1002/anie.200503075

    Article  CAS  Google Scholar 

  4. Shimizu T, Kanamori K, Nakanishi K (2017) Silicone-based organic–inorganic hybrid aerogels and xerogels. Chem Eur J 23:5176–5187. https://doi.org/10.1002/chem.201603680

    Article  CAS  Google Scholar 

  5. Kodama S, Miyamoto Y, Itoh S, Miyata T, Wada H, Kuroda K, Shimojima A (2021) Self-healing lamellar silsesquioxane thin films. ACS Appl Polym Mater 3:4118–4126. https://doi.org/10.1021/acsapm.1c00592

    Article  CAS  Google Scholar 

  6. Takamura N, Gunji T, Hatano H, Abe Y (1999) Preparation and properties of polysilsesquioxanes: polysilsesquioxanes and flexible thin films by acid-catalyzed controlled hydrolytic polycondensation of methyl- and vinyltrimethoxysilane. J Polym Sci A: Polym Chem 37:1017–1026. https://doi.org/10.1002/(SICI)1099-0518(19990401)37:7%3C1017::AID-POLA16%3E3.0.CO;2-F

    Article  CAS  Google Scholar 

  7. Lee LH, Chen WC, Liu WC (2002) Structural control of oligomeric methyl silsesquioxane precursors and their thin-film properties. J Polym Sci A: Polym Chem 40:1560–1571. https://doi.org/10.1002/pola.10246

    Article  CAS  Google Scholar 

  8. Issa AA, Luyt AS (2019) Kinetics of alkoxysilanes and organoalkoxysilanes polymerization: a review. Polymers 11:537. https://doi.org/10.3390/polym11030537

    Article  CAS  Google Scholar 

  9. Turner CW, Franklin KJ (1987) Studies of the hydrolysis and condensation of tetraethylorthosilicate by multinuclear (1H, 17O, 29Si) NMR spectroscopy. J Non-Cryst Solids 91:402–415. https://doi.org/10.1016/S0022-3093(87)80349-6

    Article  CAS  Google Scholar 

  10. Liu J, Kim SD (1996) Polycondensation behavior of methyltrimethoxysilane studied by NMR spectroscopy. J Polym Sci B: Polym Phys 34:131–140. https://doi.org/10.1002/(SICI)1099-0488(19960115)34:1%3C131::AID-POLB11%3E3.0.CO;2-F

    Article  CAS  Google Scholar 

  11. Muramoto N, Matsuno T, Wada H, Kuroda K, Shimojima A (2021) Preparation of an ordered nanoporous silicone-based material using silica colloidal crystals as a hard template. Chem Lett 50:1038–1040. https://doi.org/10.1246/cl.210046

    Article  CAS  Google Scholar 

  12. Nakamoto W, Hayami R, Aizawa S, Miyase Y, Fujii S, Yamamoto K, Gunji T (2020) Characterization of a flexible self-cleaning film with photoinduced hydrophilicity comprising phosphonic-acid-modified polysilsesquioxane-anchored titanium dioxide. Thin Solid Films 714:138395. https://doi.org/10.1016/j.tsf.2020.138395

    Article  CAS  Google Scholar 

  13. Acar SB, Ozcelik M, Uyar T, Tasdelen MA (2017) Polyhedral oligomeric silsesquioxane-based hybrid networks obtained via thiol-epoxy click chemistry. Iran Polym J 26:405–411. https://doi.org/10.1007/s13726-017-0529-x

    Article  CAS  Google Scholar 

  14. Sato Y, Hayami R, Yamamoto K, Gunji T (2022) Syntheses and properties of Cu(II), Al(III), and Ti(IV) coordination polymers using an acetylacetonato-terminated polyhedral oligomeric silsesquioxane. Polym J 54:985–993. https://doi.org/10.1038/s41428-022-00651-x

    Article  CAS  Google Scholar 

  15. Babonneau F (1994) 29Si, 17O liquid NMR and 29Si CP-MAS NMR characterization of siloxane-oxide materials, [(CH3)2SiO/TiO2, (CH3)2SiO/ZrO2]. Mater Res Soc Symp Proc 346:949–960. https://doi.org/10.1557/PROC-346-949

    Article  CAS  Google Scholar 

  16. Lebeau B, Maquet J, Sanchez C, Beaume F, Lauprêtre F (1997) Structural and dynamical studies of hybrid siloxane–silica materials. J Mater Chem 7:989–995. https://doi.org/10.1039/A607874E

    Article  CAS  Google Scholar 

  17. Babonneau F, Maquet J (2000) Nuclear magnetic resonance techniques for the structural characterization of siloxane–oxide hybrid materials. Polyhedron 19:315–322. https://doi.org/10.1016/S0277-5387(99)00361-7

    Article  CAS  Google Scholar 

  18. Babonneau F, Maquet J, Livage J (1995) First direct observation by 17O liquid NMR of co-condensation reactions between methyl-substituted silicon alkoxides. Chem Mater 7:1050–1052. https://doi.org/10.1021/cm00054a002

    Article  CAS  Google Scholar 

  19. Julián B, Gervais C, Rager MN, Maquet J, Cordoncillo E, Escribano P, Babonneau F, Sanchez C (2004) Solid-state 17O NMR characterization of PDMS–MxOy (M = Ge(IV), Ti(IV), Zr(IV), Nb(V), and Ta(V)) organic–inorganic nanocomposites. Chem Mater 16:521–529. https://doi.org/10.1021/cm034958f

    Article  CAS  Google Scholar 

  20. Hoebbel D, Nacken M, Schmidt H, Huch V, Veith M (1998) X-ray and NMR spectroscopic characterisation of cyclic titanodiphenylsiloxanes and examination of the hydrolytic stability of their Si–O–Ti bonds. J Mater Chem 8:171–178. https://doi.org/10.1039/A702644G

    Article  CAS  Google Scholar 

  21. Bernards TNM, Van Bommel MJ, Boonstra AH (1991) Hydrolysis–condensation processes of the tetra-alkoxysilanes TPOS, TEOS and TMOS in some alcoholic solvents. J Non-Cryst Solids 134:1–13. https://doi.org/10.1016/0022-3093(91)90005-Q

    Article  CAS  Google Scholar 

  22. Depla A, Lesthaeghe D, Van Erp TS, Aerts A, Houthoofd K, Fan F, Li C, Van Speybroeck V, Waroquier M, Kirschhock CEA, Martens JA (2011) 29Si NMR and UV−Raman investigation of initial oligomerization reaction pathways in acid-catalyzed silica sol−gel chemistry. J Phys Chem C 115:3562–3571. https://doi.org/10.1021/jp109901v

    Article  CAS  Google Scholar 

  23. Hook RJ (1996) A 29Si NMR study of the sol-gel polymerisation rates of substituted ethoxysilanes. J Non-Cryst Solids 195:1–15. https://doi.org/10.1016/0022-3093(95)00508-0

    Article  CAS  Google Scholar 

  24. Pouxviel JC, Boilot JP, Beloeil JY, Lallemand JY (1987) NMR study of the sol/gel polymerization. J Non-Cryst Solids 89:345–360. https://doi.org/10.1016/S0022-3093(87)80277-6

    Article  CAS  Google Scholar 

  25. Ueda N, Gunji T, Abe Y (2008) Synthesis of alkoxy octasilsesquioxanes by a convenient one-pot reaction. Mater Technol 26:162–169

    CAS  Google Scholar 

  26. Mazúr M, Mlynárik V, Valko M, Pelikán P (2000) The time evolution of the sol-gel process:29Si NMR study of the hydrolysis and condensation reactions of tetraethoxysilane. Appl Magn Reson 18:187–197. https://doi.org/10.1007/BF03162110

    Article  Google Scholar 

  27. Hunter BK, Reeves LW (1968) Chemical shifts for compounds of the group IV elements silicon and tin. Can J Chem 46:1399–1414. https://doi.org/10.1139/v68-229

    Article  CAS  Google Scholar 

  28. Sugahara Y, Okada S, Kuroda K, Kato C (1992) 29Si-NMR study of hydrolysis and initial polycondensation processes of organoalkoxysilanes. I. Dimethyldiethoxysilane. J Non-Cryst Solids 139:25–34. https://doi.org/10.1016/S0022-3093(05)80802-6

    Article  CAS  Google Scholar 

  29. Williams EA, Cargioli JD, Larochelle RW (1976) Silicon-29 NMR. Solvent effects on chemical shifts of silanols and silylamines. J Organomet Chem 108:153–158. https://doi.org/10.1016/S0022-328X(00)82135-X

    Article  CAS  Google Scholar 

  30. Beckmann J, Jurkschat K, Müller D, Rabe S, Schürmann M (1999) 1,1,3,3,5,5,7,7-Octaphenyl-1,3,5,7-tetrasiloxane-1,7-diol and its organotin derivatives. Model compounds for diphenylsiloxane polymer. Organometallics 18:2326–2330. https://doi.org/10.1021/om990107z

    Article  CAS  Google Scholar 

  31. Masai H, Takahashi M, Tokuda Y, Yoko T (2005) Enhancement of polycondensation reaction by diethyl ether-aqueous NaOH immiscible two phase liquid treatment of phenyl-modified polysiloxane glass. J Ceram Soc Jpn 113:259–262. https://doi.org/10.2109/jcersj.113.259

    Article  CAS  Google Scholar 

  32. Qing G, Cui C (2017) Controlled synthesis of cyclosiloxanes by NHC-catalyzed hydrolytic oxidation of dihydrosilanes. Dalton Trans 46:8746–8750. https://doi.org/10.1039/C6DT04882J

    Article  CAS  Google Scholar 

  33. Gädda TM, Weber WP (2006) Polydiphenylsiloxane–polydimethysiloxane–polydiphenylsiloxane triblock copolymers. J Polym Sci A: Polym Chem 44:3629–3639. https://doi.org/10.1002/pola.21468

    Article  CAS  Google Scholar 

  34. Mazúr M, Mlynárik V, Valko M, Pelikán P (1999) The time evolution of the sol-gel process:29Si NMR study of hydrolysis and condensation reactions of tetramethoxysilane. Appl Magn Reson 16:547–557. https://doi.org/10.1007/BF03161950

    Article  Google Scholar 

  35. Criado M, Sobrados I, Sanz J (2020) Polysiloxane hybrids via sol-gel process: effect of temperature on network formation. Coatings 10:677. https://doi.org/10.3390/coatings10070677

    Article  CAS  Google Scholar 

  36. Abe Y, Gunji T (2004) Oligo- and polysiloxanes. Prog Polym Sci 29:149–182. https://doi.org/10.1016/j.progpolymsci.2003.08.003

    Article  CAS  Google Scholar 

  37. Gunji T, Hayashi Y, Komatsubara A, Arimitsu K, Abe Y (2012) Preparation and properties of flexible free-standing films via polyalkoxysiloxanes by acid-catalyzed controlled hydrolytic polycondensation of tetraethoxysilane and tetramethoxysilane. Appl Organomet Chem 26:32–36. https://doi.org/10.1002/aoc.1861

    Article  CAS  Google Scholar 

  38. Bourget L, Corriu RJP, Leclercq D, Mutin PH, Vioux A (1998) Non-hydrolytic sol–gel routes to silica. J Non-Cryst Solids 242:81–91. https://doi.org/10.1016/S0022-3093(98)00789-3

    Article  CAS  Google Scholar 

  39. Wakabayashi R, Kawahara K, Kuroda K (2010) Nonhydrolytic synthesis of branched alkoxysiloxane oligomers Si[OSiH(OR)2]4 (R=Me, Et). Angew Chem Int Ed 49:5273–5277. https://doi.org/10.1002/anie.201001640

    Article  CAS  Google Scholar 

  40. Beckmann J, Dakternieks D, Duthie A, Larchin ML, Tiekink ERT (2003) tert-Butoxysilanols as model compounds for labile key intermediates of the sol-gel process: crystal and molecular structures of (t-BuO)3SiOH and HO[(t-BuO)2SiO]2H. Appl Organomet Chem 17:52–62. https://doi.org/10.1002/aoc.380

  41. Wojnowski W, BocheńSka W, Peters K, Peters E, Von Schnering HG (1986) Beiträge zur Chemie der Silicium-Schwefelverbindungen. XXXVIII. Hexa-(tri-t-butoxy)disiloxan und Hexa-(tri-t-butoxy)disilthian. Z Anorg Allg Chem 533:165–174. https://doi.org/10.1002/zaac.19865330220

    Article  CAS  Google Scholar 

  42. Rulkens R, Coles MP, Tilley TD (2000) Synthesis and structure of the (tetrahydroxy)oligosiloxane [(tBuO)3SiOSi(OH)2]2O. J Chem Soc Dalton Trans 2000:627–628. https://doi.org/10.1039/B000322K

  43. Loy DA, Baugher BM, Baugher CR, Schneider DA, Rahimian K (2000) Substituent effects on the sol−gel chemistry of organotrialkoxysilanes. Chem Mater 12:3624–3632. https://doi.org/10.1021/cm000451i

    Article  CAS  Google Scholar 

  44. Sato Y, Hayami R, Miyase Y, Ideno Y, Yamamoto K, Gunji T (2020) Preparation and properties of methyl- and cyclohexylsilsesquioxane oligomers as organic–inorganic fillers. J Sol-Gel Sci Technol 95:474–481. https://doi.org/10.1007/s10971-020-05291-2

    Article  CAS  Google Scholar 

  45. Alam TM, Henry M (2000) Empirical calculations of 29Si NMR chemical shielding tensors: a partial charge model investigation of hydrolysis in organically modified alkoxy silanes. Phys Chem Chem Phys 2:23–28. https://doi.org/10.1039/A906445A

    Article  CAS  Google Scholar 

  46. Hayami R, Wada K, Nishikawa I, Sagawa T, Yamamoto K, Tsukada S, Gunji T (2017) Preparation and properties of organic–inorganic hybrid materials using titanium phosphonate cluster. Polym J 49:665–669. https://doi.org/10.1038/pj.2017.34

    Article  CAS  Google Scholar 

  47. Alam TM, Assink RA, Loy DA (1996) Investigation of hydrolysis and condensation in organically modified sol-gel systems: 29Si NMR and the INEPT sequence. Mater Res Soc Symp Proc 435:421–426. https://doi.org/10.1557/PROC-435-421

    Article  CAS  Google Scholar 

  48. Jitianu A, Britchi A, Deleanu C, Badescu V, Zaharescu M (2003) Comparative study of the sol–gel processes starting with different substituted Si-alkoxides. J Non-Cryst Solids 319:263–279. https://doi.org/10.1016/S0022-3093(03)00007-3

    Article  CAS  Google Scholar 

  49. Shchegolikhina OI, Pozdnyakova YA, Chetverikov AA, Peregudov AS, Buzin MI, Matukhina EV (2007) cis-Tetra[(organo)(trimethylsiloxy)]cyclotetrasiloxanes: Synthesis and mesomorphic properties. Russ Chem Bull 56:83–90. https://doi.org/10.1007/s11172-007-0014-3

    Article  CAS  Google Scholar 

  50. Pozdnyakova YA, Chetverikov AA, Lyssenko KA, Peregudov AS, Buzin MI, Matukhina EV, Shchegolikhina OI (2007) Synthesis, structure, and properties of sodium cis-tetraethylcyclotetrasiloxanolate and new mesomorphic cis-tetra[ethyl(trimethylsiloxy)]cyclotetrasiloxane. Russ Chem Bull 56:77–82. https://doi.org/10.1007/s11172-007-0013-4

    Article  CAS  Google Scholar 

  51. Sparks BJ, Kuchera TJ, Jungman MJ, Richardson AD, Savin DA, Hait S, Lichtenhan J, Striegel MF, Patton DL (2012) Cyclic tetravinylsiloxanetetraols as hybrid inorganic–organic thiol-ene networks. J Mater Chem 22:3817–3824. https://doi.org/10.1039/C2JM15484F

    Article  CAS  Google Scholar 

  52. Unno M, Endo H, Takeda N (2014) Synthesis and structures of extended cyclic siloxanes. Heteroat Chem 25:525–532. https://doi.org/10.1002/hc.21198

    Article  CAS  Google Scholar 

  53. Chaiprasert T, Liu Y, Takeda N, Unno M (2021) Vinyl-functionalized Janus ring siloxane: potential precursors to hybrid functional materials. Materials 14:2014. https://doi.org/10.3390/ma14082014

    Article  CAS  Google Scholar 

  54. Kuniyoshi M, Takahashi M, Tokuda Y, Yoko T (2006) Hydrolysis and polycondensation of acid-catalyzed phenyltriethoxysilane (PhTES). J Sol-Gel Sci Technol 39:175–183. https://doi.org/10.1007/s10971-006-7465-0

    Article  CAS  Google Scholar 

  55. Endo H, Takeda N, Unno M (2019) Single-step synthesis of disiloxanetetraols. J Sol-Gel Sci Technol 89:37–44. https://doi.org/10.1007/s10971-018-4635-9

    Article  CAS  Google Scholar 

  56. Ito R, Kakihana Y, Kawakami Y (2009) Cyclic tetrasiloxanetetraols: formation, isolation, and characterization. Chem Lett 38:364–365. https://doi.org/10.1246/cl.2009.364

    Article  CAS  Google Scholar 

  57. Shchegolikhina OI, Pozdnyakova YA, Molodtsova YA, Korkin SD, Bukalov SS, Leites LA, Lyssenko KA, Peregudov AS, Auner N, Katsoulis DE (2002) Synthesis and properties of stereoregular cyclic polysilanols: cis-[PhSi(O)OH]4, cis-[PhSi(O)OH]6, and tris-cis-tris-trans-[PhSi(O)OH]12. Inorg Chem 41:6892–6904. https://doi.org/10.1021/ic020546h

    Article  CAS  Google Scholar 

  58. Chaiprasert T, Liu Y, Takeda N, Unno M (2020) Janus ring siloxane: a versatile precursor of the extended Janus ring and tricyclic laddersiloxanes. Dalton Trans 49:13533–13537. https://doi.org/10.1039/D0DT03045G

    Article  CAS  Google Scholar 

  59. Sugiyama T, Shiba H, Yoshikawa M, Wada H, Shimojima A, Kuroda K (2019) Synthesis of polycyclic and cage siloxanes by hydrolysis and intramolecular condensation of alkoxysilylated cyclosiloxanes. Chem Eur J 25:2764–2772. https://doi.org/10.1002/chem.201805942

    Article  CAS  Google Scholar 

  60. Rousseau F, Poinsignon C, Garcia J, Popall M (1995) Polycondensation of aminosilanes in methanol. Chem Mater 7:828–839. https://doi.org/10.1021/cm00053a004

    Article  CAS  Google Scholar 

  61. Shah KW, Zheng L (2019) Microwave-assisted synthesis of hexagonal gold nanoparticles reduced by organosilane (3-mercaptopropyl)trimethoxysilane. Materials 12:1680. https://doi.org/10.3390/ma12101680

    Article  CAS  Google Scholar 

  62. Hoebbel D, Nacken M, Schmidt H (1998) On the existence and hydrolytic stability of titanosiloxane bonds in the system: glycidoxypropyltrimethoxysilane-water-titaniumtetraethoxide. J Sol-Gel Sci Technol 13:37–43. https://doi.org/10.1023/A:1008638918967

    Article  CAS  Google Scholar 

  63. de Buyl F, Kretschmer A (2008) Understanding hydrolysis and condensation kinetics of γ-glycidoxypropyltrimethoxysilane. J Adhes 84:125–142. https://doi.org/10.1080/00218460801952809

    Article  CAS  Google Scholar 

  64. Innocenzi P, Figus C, Kidchob T, Valentini M, Alonso B, Takahashi M (2009) Sol-gel reactions of 3-glycidoxypropyltrimethoxysilane in a highly basic aqueous solution. Dalton Trans 2009:9146. https://doi.org/10.1039/B905830C

  65. Brochier-Salon MC, Bayle PA, Abdelmouleh M, Boufi S, Belgacem MN (2008) Kinetics of hydrolysis and self condensation reactions of silanes by NMR spectroscopy. Colloids Surf, A 312:83–91. https://doi.org/10.1016/j.colsurfa.2007.06.028

    Article  CAS  Google Scholar 

  66. Gunji T, Makabe Y, Takamura N, Abe Y (2001) Preparation and characterization of organic-inorganic hybrids and coating films from 3-methacryloxypropylpolysilsesquioxane. Appl Organomet Chem 15:683–692. https://doi.org/10.1002/aoc.213

    Article  CAS  Google Scholar 

  67. Oviatt HW, Shea KJ, Small JH (1993) Alkylene-bridged silsesquioxane sol-gel synthesis and xerogel characterization. Molecular requirements for porosity. Chem Mater 5:943–950. https://doi.org/10.1021/cm00031a012

    Article  CAS  Google Scholar 

  68. Hayami R, Ideno Y, Sato Y, Tsukagoshi H, Yamamoto K, Gunji T (2020) Soluble ethane-bridged silsesquioxane polymer by hydrolysis–condensation of bis(trimethoxysilyl)ethane: characterization and mixing in organic polymers. J Polym Res 27:316. https://doi.org/10.1007/s10965-020-02294-z

    Article  CAS  Google Scholar 

  69. Guo W, Kim I, Ha CS (2003) Highly ordered three-dimensional large-pore periodic mesoporous organosilica with Im3m symmetry. Chem Commun 2003:2692–2693. https://doi.org/10.1039/B308126E

  70. Ambati J, Rankin SE (2011) Reaction-induced phase separation of bis(triethoxysilyl)ethane upon sol–gel polymerization in acidic conditions. J Colloid Interface Sci 362:345–353. https://doi.org/10.1016/j.jcis.2011.06.064

    Article  CAS  Google Scholar 

  71. Guan S, Inagaki S, Ohsuna T, Terasaki O (2001) Hybrid ethane–siloxane mesoporous materials with cubic symmetry. Microporous Mesoporous Mater 44–45:165–172. https://doi.org/10.1016/S1387-1811(01)00181-0

    Article  Google Scholar 

  72. Shea KJ, Loy DA (2001) A mechanistic investigation of gelation. The sol−gel polymerization of precursors to bridged polysilsesquioxanes. Acc Chem Res 34:707–716. https://doi.org/10.1021/ar000109b

    Article  CAS  Google Scholar 

  73. Loy DA, Carpenter JP, Alam TM, Shaltout R, Dorhout PK, Greaves J, Small JH, Shea KJ (1999) Cyclization phenomena in the sol−gel polymerization of α,ω-bis(triethoxysilyl)alkanes and incorporation of the cyclic structures into network silsesquioxane polymers. J Am Chem Soc 121:5413–5425. https://doi.org/10.1021/ja982751v

    Article  CAS  Google Scholar 

  74. Loy DA, Carpenter JP, Yamanaka SA, Mcclain MD, Greaves J, Hobson S, Shea KJ (1998) Polymerization of bis(triethoxysilyl)ethenes. Impact of substitution geometry on the formation of ethenylene- and vinylidene-bridged polysilsesquioxanes. Chem Mater 10:4129–4140. https://doi.org/10.1021/cm9805424

    Article  CAS  Google Scholar 

  75. Shea KJ, Loy DA, Webster O (1992) Arylsilsesquioxane gels and related materials. New hybrids of organic and inorganic networks. J Am Chem Soc 114:6700–6710. https://doi.org/10.1021/ja00043a014

    Article  CAS  Google Scholar 

  76. Saito H, Nishio Y, Kobayashi M, Sugahara Y (2011) Hydrolysis behavior of a precursor for bridged polysilsesquioxane 1,4-bis(triethoxysilyl)benzene: a 29Si NMR study. J Sol-Gel Sci Technol 57:51–56. https://doi.org/10.1007/s10971-010-2323-5

    Article  CAS  Google Scholar 

  77. Small JH, Shea KJ, Loy DA (1993) Arylene- and alkylene-bridged polysilsesquioxanes. J Non-Cryst Solids 160:234–246. https://doi.org/10.1016/0022-3093(93)91267-7

    Article  CAS  Google Scholar 

  78. Corriu RJP, Moreau JJE, Thepot P, Man MWC (1992) New mixed organic-inorganic polymers: hydrolysis and polycondensation of bis(trimethoxysilyl)organometallic precursors. Chem Mater 4:1217–1224. https://doi.org/10.1021/cm00024a020

    Article  CAS  Google Scholar 

  79. Oberhammer H, Boggs JE (1980) Importance of (p–d)π bonding in the siloxane bond. J Am Chem Soc 102:7241–7244. https://doi.org/10.1021/ja00544a011

    Article  Google Scholar 

  80. Dankert F, von Hänisch C (2021) Siloxane coordination revisited: Si−O bond character, reactivity and magnificent molecular shapes. Eur J Inorg Chem 2021:2907–2927. https://doi.org/10.1002/ejic.202100275

    Article  CAS  Google Scholar 

  81. Sato N, Tochigi K, Kuroda Y, Wada H, Shimojima A, Kuroda K (2019) Synthesis and crystal structure of double-three ring (D3R)-type cage siloxanes modified with dimethylsilanol groups. Dalton Trans 48:1969–1975. https://doi.org/10.1039/C8DT04244F

    Article  CAS  Google Scholar 

  82. Soh MS, Yap AUJ, Sellinger A (2007) Methacrylate and epoxy functionalized nanocomposites based on silsesquioxane cores for use in dental applications. Eur Polym J 43:315–327. https://doi.org/10.1016/j.eurpolymj.2006.11.020

    Article  CAS  Google Scholar 

  83. Unno M, Suto A, Takada K, Matsumoto H (2000) Synthesis of ladder and cage silsesquioxanes from 1,2,3,4-tetrahydroxycyclotetrasiloxane. Bull Chem Soc Jpn 73:215–220. https://doi.org/10.1246/bcsj.73.215

    Article  CAS  Google Scholar 

  84. Brus J, Dybal J (1999) Copolymerization of tetraethoxysilane and dimethyl(diethoxy)silane studied by 29Si NMR and ab initio calculations of 29Si NMR chemical shifts. Polymer 40:6933–6945. https://doi.org/10.1016/S0032-3861(99)00095-6

    Article  CAS  Google Scholar 

  85. Wu C, Yu J, Li Q, Liu Y (2017) High molecular weight cyclic polysiloxanes from organocatalytic zwitterionic polymerization of constrained spirocyclosiloxanes. Polym Chem 8:7301–7306. https://doi.org/10.1039/C7PY01499F

    Article  CAS  Google Scholar 

  86. Hayami R, Nishikawa I, Hisa T, Nakashima H, Sato Y, Ideno Y, Sagawa T, Tsukada S, Yamamoto K, Gunji T (2018) Preparation and characterization of stable DQ silicone polymer sols. J Sol-Gel Sci Technol 88:660–670. https://doi.org/10.1007/s10971-018-4839-z

    Article  CAS  Google Scholar 

  87. Méndez-Vivar J, Mendoza-Bandala A (2000) Spectroscopic study on the early stages of the polymerization of hybrid TEOS–RSi(OR′)3 sols. J Non-Cryst Solids 261:127–136. https://doi.org/10.1016/S0022-3093(99)00605-5

    Article  Google Scholar 

  88. Yoshikawa M, Tamura Y, Wakabayashi R, Tamai M, Shimojima A, Kuroda K (2017) Protecting and leaving functions of trimethylsilyl groups in trimethylsilylated silicates for the synthesis of alkoxysiloxane oligomers. Angew Chem Int Ed 56:13990–13994. https://doi.org/10.1002/anie.201705942

    Article  CAS  Google Scholar 

  89. Kurfürst M, Blechta V, Schraml J (2011) Geminal 2J(29Si-O-29Si) couplings in oligosiloxanes and their relation to direct 1J(29Si-13C) couplings. Magn Res Chem 49:492–501. https://doi.org/10.1002/mrc.2779

    Article  CAS  Google Scholar 

  90. Yoshikawa M, Shiba H, Wada H, Shimojima A, Kuroda K (2018) Polymerization of cyclododecasiloxanes with Si−H and Si−OEt side groups by the Piers-Rubinsztajn reaction. Bull Chem Soc Jpn 91:747–753. https://doi.org/10.1246/bcsj.20170410

    Article  CAS  Google Scholar 

  91. Yoshikawa M, Shiba H, Kanezashi M, Wada H, Shimojima A, Tsuru T, Kuroda K (2017) Synthesis of a 12-membered cyclic siloxane possessing alkoxysilyl groups as a nanobuilding block and its use for preparation of gas permeable membranes. RSC Adv 7:48683–48691. https://doi.org/10.1039/C7RA09380B

    Article  CAS  Google Scholar 

  92. Hagiwara Y, Shimojima A, Kuroda K (2008) Alkoxysilylated-derivatives of double-four-ring silicate as novel building blocks of silica-based materials. Chem Mater 20:1147–1153. https://doi.org/10.1021/cm0716194

    Article  CAS  Google Scholar 

  93. Flagg DH, McCarthy TJ (2016) Rediscovering silicones: MQ copolymers. Macromolecules 49:8581–8592. https://doi.org/10.1021/acs.macromol.6b01852

    Article  CAS  Google Scholar 

  94. Itoh M, Oka F, Suto M, Cook SD, Auner N (2012) Characterization and some insights into the reaction chemistry of polymethylsilsesquioxane or methyl silicone resins. Int J Polym Sci 2012:526795. https://doi.org/10.1155/2012/526795

    Article  CAS  Google Scholar 

  95. Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110:2081–2173. https://doi.org/10.1021/cr900201r

    Article  CAS  Google Scholar 

  96. Törnroos KW, Bürgi HB, Calzaferri G, Bürgy H (1995) The crystal and molecular structure of dodecahydridosilasesquioxane, H12Si12O18. Acta Crystallogr B: Struct Sci Cryst Eng Mater 51:155–161. https://doi.org/10.1107/S0108768194013558

    Article  Google Scholar 

  97. Laird M, Van der Lee A, Dumitrescu DG, Carcel C, Ouali A, Bartlett JR, Unno M, Wong Chi Man M (2020) Styryl-functionalized cage silsesquioxanes as nanoblocks for 3-D assembly. Organometallics 39:1896–1906. https://doi.org/10.1021/acs.organomet.0c00119

    Article  CAS  Google Scholar 

  98. Laird M, Herrmann N, Ramsahye N, Totée C, Carcel C, Unno M, Bartlett JR, Wong Chi Man M (2021) Large polyhedral oligomeric silsesquioxane cages: the isolation of functionalized POSS with an unprecedented Si18O27 core. Angew Chem Int Ed 60:3022–3027. https://doi.org/10.1002/anie.202010458

    Article  CAS  Google Scholar 

  99. Bertling E, Marsmann HC (1989) Trimethylsilylsilicate – Modellverbindungen für Silicate. Z Anorg Allg Chem 578:166–176. https://doi.org/10.1002/zaac.19895780119

    Article  CAS  Google Scholar 

  100. Agaskar PA, Klemperer WG (1995) The higher hydridospherosiloxanes: synthesis and structures of HnSinO1.5n (n = 12, 14, 16, 18). Inorg Chim Acta 229:355–364. https://doi.org/10.1016/0020-1693(94)04266-X

    Article  CAS  Google Scholar 

  101. Rikowski E, Marsmann HC (1997) Cage-rearrangement of silsesquioxanes. Polyhedron 16:3357–3361. https://doi.org/10.1016/S0277-5387(97)00092-2

    Article  CAS  Google Scholar 

  102. Koželj M, Orel B (2008) Synthesis of polyhedral phenylsilsesquioxanes with KF as the source of the fluoride ion. Dalton Trans 2008:5072. https://doi.org/10.1039/B804224A

  103. Fasce DP, Williams RJJ, Méchin F, Pascault JP, Llauro MF, Pétiaud R (1999) Synthesis and characterization of polyhedral silsesquioxanes bearing bulky functionalized substituents. Macromolecules 32:4757–4763. https://doi.org/10.1021/ma981875p

    Article  CAS  Google Scholar 

  104. Imai K, Kaneko Y (2017) Preparation of ammonium-functionalized polyhedral oligomeric silsesquioxanes with high proportions of cagelike decamer and their facile separation. Inorg Chem 56:4133–4140. https://doi.org/10.1021/acs.inorgchem.7b00131

    Article  CAS  Google Scholar 

  105. Matsumoto T, Kaneko Y (2018) Selective and high-yielding preparation of ammonium-functionalized cage-like octasilsesquioxanes using superacid catalyst in dimethyl sulfoxide. Chem Lett 47:864–867. https://doi.org/10.1246/cl.180258

    Article  CAS  Google Scholar 

  106. Xia Y, Yao H, Cui M, Ma Y, Kong Z, Wu B, Qi Z, Sun Y (2015) Theoretical and experimental investigations on mono-substituted and multi-substituted functional polyhedral oligomeric silsesquioxanes. RSC Adv 5:80339–80345. https://doi.org/10.1039/C5RA14298A

    Article  CAS  Google Scholar 

  107. Kawakami Y, Yamaguchi K, Yokozawa T, Serizawa T, Hasegawa M, Kabe Y (2007) Higher polyhedral silsesquioxane (POSS) cage by amine-catalyzed condensation of silanols and related siloxanes. Chem Lett 36:792–793. https://doi.org/10.1246/cl.2007.792

    Article  CAS  Google Scholar 

  108. Provatas A, Luft M, Mu JC, White AH, Matisons JG, Skelton BW (1998) Silsesquioxanes: part I: a key intermediate in the building of molecular composite materials. J Organomet Chem 565:159–164. https://doi.org/10.1016/S0022-328X(98)00450-1

    Article  CAS  Google Scholar 

  109. Haouas M, Falaise C, Martineau-Corcos C, Cadot E (2018) Cyclodextrin-driven formation of double six-ring (D6R) silicate cage: NMR spectroscopic characterization from solution to crystals. Crystals 8:457. https://doi.org/10.3390/cryst8120457

    Article  CAS  Google Scholar 

  110. Hoebbel D, Wieker W, Franke P, Otto A (1975) Zur Konstitution des neuen Silicatanions [Si10O25]10−. Z Anorg Allg Chem 418:35–44. https://doi.org/10.1002/zaac.19754180105

    Article  CAS  Google Scholar 

  111. Unno M, Suto A, Matsumoto T (2013) Laddersiloxanes—silsesquioxanes with defined ladder structure. Russ Chem Rev 82:289–302. https://doi.org/10.1070/RC2013v082n04ABEH004360

    Article  CAS  Google Scholar 

  112. Seki H, Kajiwara T, Abe Y, Gunji T (2010) Synthesis and structure of ladder polymethylsilsesquioxanes from sila-functionalized cyclotetrasiloxanes. J Organomet Chem 695:1363–1369. https://doi.org/10.1016/j.jorganchem.2010.02.008

    Article  CAS  Google Scholar 

  113. Zhang ZX, Hao J, Xie P, Zhang X, Han CC, Zhang R (2008) A well-defined ladder polyphenylsilsesquioxane (Ph-LPSQ) synthesized via a new three-step approach: monomer self-organization–lyophilization—surface-confined polycondensation. Chem Mater 20:1322–1330. https://doi.org/10.1021/cm071602l

    Article  CAS  Google Scholar 

  114. Suyama K, Gunji T, Arimitsu K, Abe Y (2006) Synthesis and structure of ladder oligosilsesquioxanes: tricyclic ladder oligomethylsilsesquioxanes. Organometallics 25:5587–5593. https://doi.org/10.1021/om060705v

    Article  CAS  Google Scholar 

  115. Seki H, Abe N, Abe Y, Gunji T (2011) Synthesis and structure of syn,anti,syn-pentacyclic ladder oligomethylsilsesquioxane. Chem Lett 40:722–723. https://doi.org/10.1246/cl.2011.722

    Article  CAS  Google Scholar 

  116. Kowalewska A, Rózga-Wijas K, Handke M (2008) Alkoxymethylcyclosiloxanes-new efficient precursors of crystalline (CH3SiO3/2)8 silsesquioxane and polymethyl silsesquioxanes. e-Polym 8:150. https://doi.org/10.1515/epoly.2008.8.1.1726

    Article  Google Scholar 

  117. Grill A, Neumayer DA (2003) Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization. J Appl Phys 94:6697–6707. https://doi.org/10.1063/1.1618358

    Article  CAS  Google Scholar 

  118. Abe Y, Kijima I (1969) Alkoxysilanes. II. Preparation of tributoxysiloxychlorosilanes, silanols, and their polymeric substances. Bull Chem Soc Jpn 42:1118–1123. https://doi.org/10.1246/bcsj.42.1118

    Article  CAS  Google Scholar 

  119. Ueda N, Gunji T, Abe Y (2008) Syntheses of linear ethoxysiloxanes by the oxidative condensation of triethoxysilane. J Sol-Gel Sci Technol 48:163–167. https://doi.org/10.1007/s10971-008-1808-y

    Article  CAS  Google Scholar 

  120. Nyczyk A, Paluszkiewicz C, Hasik M, Cypryk M, Pospiech P (2012) Cross-linking of linear vinylpolysiloxanes by hydrosilylation – FTIR spectroscopic studies. Vib Spectrosc 59:1–8. https://doi.org/10.1016/j.vibspec.2012.01.002

    Article  CAS  Google Scholar 

  121. Okawara R, Minami G, Oku Z (1958) Alkylalkoxypolysiloxanes. IV. Lower members of cyclic methyl-, and ethyl-ethoxypolysiloxanes. Bull Chem Soc Jpn 31:22–25. https://doi.org/10.1246/bcsj.31.22

    Article  CAS  Google Scholar 

  122. Okawara R, Katayama M (1960) Alkylalkoxypolysiloxanes. VIII. Lower members of cyclic methyl- and ethyl-isopropoxypolysiloxanes. Bull Chem Soc Jpn 33:659–660. https://doi.org/10.1246/bcsj.33.659

    Article  CAS  Google Scholar 

  123. Unno M, Alias SB, Saito H, Matsumoto H (1996) Synthesis of hexasilsesquioxanes bearing bulky substituents: hexakis((1,1,2-trimethylpropyl)silsesquioxane) and hexakis(tert-butylsilsesquioxane). Organometallics 15:2413–2414. https://doi.org/10.1021/om950737a

    Article  CAS  Google Scholar 

  124. Park ES, Ro HW, Nguyen CV, Jaffe RL, Yoon DY (2008) Infrared spectroscopy study of microstructures of poly(silsesquioxane)s. Chem Mater 20:1548–1554. https://doi.org/10.1021/cm071575z

    Article  CAS  Google Scholar 

  125. Frye CL, Collins WT (1970) The oligomeric silsesquioxanes, (HSiO3/2)n. J Am Chem Soc 92:5586–5588. https://doi.org/10.1021/ja00722a009

    Article  CAS  Google Scholar 

  126. Shioda T, Gunji T, Abe N, Abe Y (2011) Preparation and properties of polyhedral oligomeric silsesquioxane polymers. Appl Organomet Chem 25:661–664. https://doi.org/10.1002/aoc.1820

    Article  CAS  Google Scholar 

  127. Yoshino H, Kamiya K, Nasu H (1990) IR study on the structural evolution of sol-gel derived SiO2 gels in the early stage of conversion to glasses. J Non-Cryst Solids 126:68–78. https://doi.org/10.1016/0022-3093(90)91024-L

    Article  CAS  Google Scholar 

  128. Capozzi CA, Pye LD, Condrate RA (1992) Vibrational spectral/structural changes from the hydrolysis/polycondensation of methyl-modified silicates. I. Comparisons for single monomer condensates. Mater Lett 15:130–136. https://doi.org/10.1016/0167-577X(92)90028-I

    Article  CAS  Google Scholar 

  129. Kamiya K, Yoko T, Tanaka K, Takeuchi M (1990) Thermal evolution of gels derived from CH3Si(OC2H5)3 by the sol-gel method. J Non-Cryst Solids 121:182–187. https://doi.org/10.1016/0022-3093(90)90128-9

    Article  CAS  Google Scholar 

  130. Weinhold F, West R (2011) The nature of the silicon–oxygen bond. Organometallics 30:5815–5824. https://doi.org/10.1021/om200675d

    Article  CAS  Google Scholar 

  131. Weinhold F, West R (2013) Hyperconjugative interactions in permethylated siloxanes and ethers: the nature of the SiO bond. J Am Chem Soc 135:5762–5767. https://doi.org/10.1021/ja312222k

    Article  CAS  Google Scholar 

  132. Newton WE, Rochow EG (1970) Vibrational spectra of some trialkoxysilanes. J Chem Soc A 1970:2664–2668. https://doi.org/10.1039/J19700002664

    Article  Google Scholar 

  133. Richards RE, Thompson HW (1949) Infra-red spectra of compounds of high molecular weight. Part IV. Silicones and related compounds. J Chem Soc 1949:124–132. https://doi.org/10.1039/JR9490000124

  134. Oka R (1958) The infrared spectra of ethoxy- and methylethoxy-polysiloxanes. Bull Chem Soc Jpn 31:154–157. https://doi.org/10.1246/bcsj.31.154

    Article  Google Scholar 

  135. Katritzky AR (1959) The infrared spectra of heteroaromatic compounds. Q Rev Chem Soc 13:353–373. https://doi.org/10.1039/QR9591300353

    Article  CAS  Google Scholar 

  136. Ou DL, Seddon AB (1997) Near- and mid-infrared spectroscopy of sol–gel derived ormosils: vinyl and phenyl silicates. J Non-Cryst Solids 210:187–203. https://doi.org/10.1016/S0022-3093(96)00585-6

    Article  CAS  Google Scholar 

  137. Hayami R, Izumiya T, Kokaji T, Nakagawa H, Tsukada S, Yamamoto K, Gunji T (2019) 2-Triethoxysilylazulene derivatives: syntheses and optical properties, and hydrolysis–condensation of 2-triethoxysilylazulene. J Sol-Gel Sci Technol 91:399–406. https://doi.org/10.1007/s10971-019-04991-8

    Article  CAS  Google Scholar 

  138. Pohl S, Janka O, Füglein E, Kickelbick G (2021) Thermoplastic silsesquioxane hybrid polymers with a local ladder-type structure. Macromolecules 54:3873–3885. https://doi.org/10.1021/acs.macromol.1c00310

    Article  CAS  Google Scholar 

  139. Tejedor-Tejedor MI, Paredes L, Anderson MA (1998) Evaluation of ATR−FTIR spectroscopy as an “in situ” tool for following the hydrolysis and condensation of alkoxysilanes under rich H2O conditions. Chem Mater 10:3410–3421. https://doi.org/10.1021/cm980146l

    Article  CAS  Google Scholar 

  140. Plyler EK (1952) Infrared spectra of methanol, ethanol, and n-propanol. J Res Natl Bur Stand 48:281–286. https://doi.org/10.6028/jres.048.036

    Article  CAS  Google Scholar 

  141. Zaki MI, Hasan MA, Pasupulety L (2001) In situ FTIR spectroscopic study of 2-propanol adsorptive and catalytic interactions on metal-modified aluminas. Langmuir 17:4025–4034. https://doi.org/10.1021/la001810r

    Article  CAS  Google Scholar 

  142. Korppi-Tommola J (1977) Association of tert-butyl alcohol: a matrix infrared study. J Mol Struct 40:13–23. https://doi.org/10.1016/0022-2860(77)80002-1

    Article  CAS  Google Scholar 

  143. Dobos S, Fogarasi G, Castellucci E (1972) Infrared dichroism of oriented crystalline films of hexamethylcyclotrisiloxane. Spectrochim Acta A 28:877–887. https://doi.org/10.1016/0584-8539(72)80059-X

    Article  CAS  Google Scholar 

  144. Sigot L, Ducom G, Germain P (2015) Adsorption of octamethylcyclotetrasiloxane (D4) on silica gel (SG): retention mechanism. Microporous Mesoporous Mater 213:118–124. https://doi.org/10.1016/j.micromeso.2015.04.016

    Article  CAS  Google Scholar 

  145. Handke M, Jastrzȩbski W (2004) Vibrational spectroscopy of the ring structures in silicates and siloxanes. J Mol Struct 704:63–69. https://doi.org/10.1016/j.molstruc.2004.02.041

    Article  CAS  Google Scholar 

  146. Fogarasi G, Hacker H, Hoffmann V, Dobos S (1974) Vibrational spectra and conformation of cyclic methylsiloxanes. Spectrochim Acta A 30:629–639. https://doi.org/10.1016/0584-8539(74)80186-8

    Article  Google Scholar 

  147. Handke M, Handke B, Kowalewska A, Jastrzębski W (2009) New polysilsesquioxane materials of ladder-like structure. J Mol Struct 924–926:254–263. https://doi.org/10.1016/j.molstruc.2008.11.039

    Article  CAS  Google Scholar 

  148. Li YS, Ba A (2008) Spectroscopic studies of triethoxysilane sol–gel and coating process. Spectrochim Acta A 70:1013–1019. https://doi.org/10.1016/j.saa.2007.09.050

    Article  CAS  Google Scholar 

  149. Tan B, Rankin SE (2006) Study of the effects of progressive changes in alkoxysilane structure on sol−gel reactivity. J Phys Chem B 110:22353–22364. https://doi.org/10.1021/jp060376k

    Article  CAS  Google Scholar 

  150. Capozzi CA, Condrate RA, Pye LD (1993) Vibrational spectral/structural changes from the hydrolysis/polycondensation of methyl-modified silicates. III. IR spectral comparisons for condensates from the binary methyltrimethoxysilane/tetramethoxysilane system. Mater Lett 16:300–303. https://doi.org/10.1016/0167-577X(93)90196-5

    Article  CAS  Google Scholar 

  151. Abe Y, Hatano H, Gunji T (1995) Preparation and properties of flexible thin films by acid-catalyzed hydrolytic polycondensation of methyltrimethoxysilane. J Polym Sci A: Polym Chem 33:751–754. https://doi.org/10.1002/pola.1995.080330416

    Article  CAS  Google Scholar 

  152. Handke M, Kowalewska A (2011) Siloxane and silsesquioxane molecules—precursors for silicate materials. Spectrochim Acta A 79:749–757. https://doi.org/10.1016/j.saa.2010.08.049

    Article  CAS  Google Scholar 

  153. Gunji T, Iizuka Y, Arimitsu K, Abe Y (2004) Preparation and properties of alkoxy(methyl)silsesquioxanes as coating agents. J Polym Sci A: Polym Chem 42:3676–3684. https://doi.org/10.1002/pola.20233

    Article  CAS  Google Scholar 

  154. Li YS, Wang Y, Ceesay S (2009) Vibrational spectra of phenyltriethoxysilane, phenyltrimethoxysilane and their sol–gels. Spectrochim Acta A 71:1819–1824. https://doi.org/10.1016/j.saa.2008.04.027

    Article  CAS  Google Scholar 

  155. Seifzadeh D, Golmoghani-Ebrahimi E (2012) Formation of novel and crack free nanocomposites based on sol gel process for corrosion protection of copper. Surf Coat Technol 210:103–112. https://doi.org/10.1016/j.surfcoat.2012.08.073

    Article  CAS  Google Scholar 

  156. Brown JF, Vogt LH, Prescott PI (1964) Preparation and characterization of the lower equilibrated phenylsilsesquioxanes. J Am Chem Soc 86:1120–1125. https://doi.org/10.1021/ja01060a033

    Article  CAS  Google Scholar 

  157. Li YS, Wright PB, Puritt R, Tran T (2004) Vibrational spectroscopic studies of vinyltriethoxysilane sol–gel and its coating. Spectrochim Acta A 60:2759–2766. https://doi.org/10.1016/j.saa.2003.12.047

    Article  CAS  Google Scholar 

  158. Dare EO, Liu LK, Peng J (2006) Modified procedure for improved synthesis of some octameric silsesquioxanes via hydrolytic polycondenzation in the presence of Amberlite ion-exchange resins. Dalton Trans 2006:3668–3671. https://doi.org/10.1039/B603325C

  159. Li YS, Wang Y, Tran T, Perkins A (2005) Vibrational spectroscopic studies of (3-mercaptopropyl)trimethoxylsilane sol–gel and its coating. Spectrochim Acta A 61:3032–3037. https://doi.org/10.1016/j.saa.2004.11.031

    Article  CAS  Google Scholar 

  160. Kowalewska A, Nowacka M, Maniukiewicz W (2016) Octa(3-mercaptopropyl)octasilsesquioxane – a reactive nanocube of unique self-assembled packing morphology. J Organomet Chem 810:15–24. https://doi.org/10.1016/j.jorganchem.2016.02.040

    Article  CAS  Google Scholar 

  161. Dumitriu AMC, Cazacu M, Bargan A, Balan M, Vornicu N, Varganici CD, Shova S (2015) Full functionalized silica nanostructure with well-defined size and functionality: Octakis(3-mercaptopropyl)octasilsesquioxane. J Organomet Chem 799–800:195–200. https://doi.org/10.1016/j.jorganchem.2015.09.025

    Article  CAS  Google Scholar 

  162. Jerman I, Šurca Vuk A, Koželj M, Švegl F, Orel B (2011) Influence of amino functionalised POSS additive on the corrosion properties of (3-glycidoxypropyl)trimethoxysilane coatings on AA 2024 alloy. Prog Org Coat 72:334–342. https://doi.org/10.1016/j.porgcoat.2011.05.005

    Article  CAS  Google Scholar 

  163. Liu Y, Zheng S (2006) Inorganic–organic nanocomposites of polybenzoxazine with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane. J Polym Sci A: Polym Chem 44:1168–1181. https://doi.org/10.1002/pola.21231

    Article  CAS  Google Scholar 

  164. Li YS, Lu W, Wang Y, Tran T (2009) Studies of (3-mercaptopropyl)trimethoxylsilane and bis(trimethoxysilyl)ethane sol–gel coating on copper and aluminum. Spectrochim Acta A 73:922–928. https://doi.org/10.1016/j.saa.2009.04.016

    Article  CAS  Google Scholar 

  165. Al-Oweini R, El-Rassy H (2009) Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors. J Mol Struct 919:140–145. https://doi.org/10.1016/j.molstruc.2008.08.025

    Article  CAS  Google Scholar 

  166. Abe Y, Shimano R, Arimitsu K, Gunji T (2003) Preparation and properties of high molecular weight polyethoxysiloxanes stable to self-condensation by acid-catalyzed hydrolytic polycondensation of tetraethoxysilane. J Polym Sci A: Polym Chem 41:2250–2255. https://doi.org/10.1002/pola.10739

    Article  CAS  Google Scholar 

  167. Trasferetti BC, Davanzo CU, Bica de Moraes MA (2004) Infrared and Raman studies on films of organosiloxane networks produced by PECVD. Macromolecules 37:459–466. https://doi.org/10.1021/ma035297a

    Article  CAS  Google Scholar 

  168. Babonneau F, Thorne K, Machkenzie JD (1989) Dimethyldiethoxysilane/tetraethoxysilane copolymers: precursors for the Si–C–O system. Chem Mater 1:554–558. https://doi.org/10.1021/cm00005a017

    Article  CAS  Google Scholar 

  169. Barthel H, Nikitina E (2002) INS and IR study of intermolecular interactions at the fumed silica-polydimethylsiloxane interphase, Part I. Polydimethylsiloxane models. Silicon Chem 1:239–247. https://doi.org/10.1023/B:SILC.0000018351.78847.f7

    Article  CAS  Google Scholar 

  170. Barthel H, Nikitina E (2002) INS and IR study of intermolecular interactions at the fumed silica-polydimethylsiloxane interphase, Part 3. Sicica-siloxane adsorption complexes. Silicon Chem 1:261–279. https://doi.org/10.1023/B:SILC.0000018353.32350.c9

    Article  CAS  Google Scholar 

  171. Sheka EF (2003) Intermolecular interaction and vibrational spectra at fumed silica particles/silicone polymer interface. J Nanopart Res 5:419–437. https://doi.org/10.1023/B:NANO.0000006089.93943.9e

    Article  CAS  Google Scholar 

  172. Prigyai N, Chanmungkalakul S, Ervithayasuporn V, Yodsin N, Jungsuttiwong S, Takeda N, Unno M, Boonmak J, Kiatkamjornwong S (2019) Lithium-templated formation of polyhedral oligomeric silsesquioxanes (POSS). Inorg Chem 58:15110–15117. https://doi.org/10.1021/acs.inorgchem.9b01836

    Article  CAS  Google Scholar 

  173. Maegawa T, Irie Y, Imoto H, Fueno H, Tanaka K, Naka K (2015) para-Bisvinylhexaisobutyl-substituted T8 caged monomer: synthesis and hydrosilylation polymerization. Polym Chem 6:7500–7504. https://doi.org/10.1039/C5PY01262G

    Article  CAS  Google Scholar 

  174. Innocenzi P (2003) Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview. J Non-Cryst Solids 316:309–319. https://doi.org/10.1016/S0022-3093(02)01637-X

    Article  CAS  Google Scholar 

  175. Innocenzi P, Falcaro P, Grosso D, Babonneau F (2003) Order−disorder transitions and evolution of silica structure in self-assembled mesostructured silica films studied through FTIR spectroscopy. J Phys Chem B 107:4711–4717. https://doi.org/10.1021/jp026609z

    Article  CAS  Google Scholar 

  176. Luo J, Zhou Y, Milner ST, Pantano CG, Kim SH (2017) Molecular dynamics study of correlations between IR peak position and bond parameters of silica and silicate glasses: Effects of temperature and stress. J Am Ceram Soc 101:178–188. https://doi.org/10.1111/jace.15187

    Article  CAS  Google Scholar 

  177. Liu H, Hahn SH, Ren M, Thiruvillamalai M, Gross TM, Du J, van Duin ACT, Kim SH (2020) Searching for correlations between vibrational spectral features and structural parameters of silicate glass network. J Am Ceram Soc 103:3575–3589. https://doi.org/10.1111/jace.17036

    Article  CAS  Google Scholar 

  178. Warring SL, Beattie DA, McQuillan AJ (2016) Surficial siloxane-to-silanol interconversion during room-temperature hydration/dehydration of amorphous silica films observed by ATR-IR and TIR-Raman spectroscopy. Langmuir 32:1568–1576. https://doi.org/10.1021/acs.langmuir.5b04506

    Article  CAS  Google Scholar 

  179. Davis KM, Tomozawa M (1996) An infrared spectroscopic study of water-related species in silica glasses. J Non-Cryst Solids 201:177–198. https://doi.org/10.1016/0022-3093(95)00631-1

    Article  CAS  Google Scholar 

  180. Mori T, Kuroda Y, Yoshikawa Y, Nagao M, Kittaka S (2002) Preparation of a water-resistant siliceous MCM-41 sample, through improvement of crystallinity, and its prominent adsorption features. Langmuir 18:1595–1603. https://doi.org/10.1021/la011019y

    Article  CAS  Google Scholar 

  181. Dib E, Costa IM, Vayssilov GN, Aleksandrov HA, Mintova S (2021) Complex H-bonded silanol network in zeolites revealed by IR and NMR spectroscopy combined with DFT calculations. J Mater Chem A 9:27347–27352. https://doi.org/10.1039/D1TA06908J

    Article  CAS  Google Scholar 

  182. Ngo D, Liu H, Chen Z, Kaya H, Zimudzi TJ, Gin S, Mahadevan T, Du J, Kim SH (2020) Hydrogen bonding interactions of H2O and SiOH on a boroaluminosilicate glass corroded in aqueous solution. NPJ Mater Degrad 4:1. https://doi.org/10.1038/s41529-019-0105-2

    Article  Google Scholar 

  183. Duchateau R (2002) Incompletely condensed silsesquioxanes: versatile tools in developing silica-supported olefin polymerization catalysts. Chem Rev 102:3525–3542. https://doi.org/10.1021/cr010386b

    Article  CAS  Google Scholar 

  184. Dijkstra TW, Duchateau R, van Santen RA, Meetsma A, Yap GPA (2002) Silsesquioxane models for geminal silica surface silanol sites. A spectroscopic investigation of different types of silanols. J Am Chem Soc 124:9856–9864. https://doi.org/10.1021/ja0122243

    Article  CAS  Google Scholar 

  185. Bennett MD, Wolters CJ, Brandstadt KF, Tecklenburg MM (2012) Raman spectroscopy and DFT calculations of intermediates in the hydrolysis of methylmethoxysilanes. J Mol Struct 1023:204–211. https://doi.org/10.1016/j.molstruc.2012.06.008

    Article  CAS  Google Scholar 

  186. Barrie JD, Aitchison KA (1992) A Raman spectroscopic study of the initial stages of hydrolysis of tetraethoxysilane. Mater Res Soc Symp Proc 271:225–230. https://doi.org/10.1557/PROC-271-225

    Article  CAS  Google Scholar 

  187. Schmitt M (2013) Analysis of silanes and of siloxanes formation by Raman spectroscopy. RSC Adv 4:1907–1917. https://doi.org/10.1039/C3RA45306E

    Article  Google Scholar 

  188. Kalampounias AG (2011) IR and Raman spectroscopic studies of sol–gel derived alkaline-earth silicate glasses. Bull Mater Sci 34:299–303. https://doi.org/10.1007/s12034-011-0064-x

    Article  CAS  Google Scholar 

  189. White WB, Minser DG (1984) Raman spectra and structure of natural glasses. J Non-Cryst Solids 67:45–59. https://doi.org/10.1016/0022-3093(84)90140-6

    Article  CAS  Google Scholar 

  190. Barrio RA, Galeener FL, Martínez E, Elliott RJ (1993) Regular ring dynamics in AX2 tetrahedral glasses. Phys Rev B 48:15672–15689. https://doi.org/10.1103/PhysRevB.48.15672

    Article  CAS  Google Scholar 

  191. Jayes L, Hard AP, Séné C, Parker SF, Jayasooriya UA (2003) Vibrational spectroscopic analysis of silicones: a Fourier transform-Raman and inelastic neutron scattering investigation. Anal Chem 75:742–746. https://doi.org/10.1021/ac026012f

    Article  CAS  Google Scholar 

  192. Sawvel AM, Crowhurst JC, Mason HE, Oakdale JS, Ruelas S, Eshelman HV, Maxwell RS (2021) Spectroscopic signatures of MQ-resins in silicone elastomers. Macromolecules 54:4300–4312. https://doi.org/10.1021/acs.macromol.1c00086

    Article  CAS  Google Scholar 

  193. Tamayo A, Rubio J (2010) Structure modification by solvent addition into TEOS/PDMS hybrid materials. J Non-Cryst Solids 356:1742–1748. https://doi.org/10.1016/j.jnoncrysol.2010.04.025

    Article  CAS  Google Scholar 

  194. Yadav AK, Singh P (2015) A review of the structures of oxide glasses by Raman spectroscopy. RSC Adv 5:67583–67609. https://doi.org/10.1039/C5RA13043C

    Article  CAS  Google Scholar 

  195. Ohashi H, Sekita M (1982) Raman spectroscopic study of the Si–O–Si stretching vibration in clinopyroxenes. J Jpn Assoc Min Petr Econ Geol 77:455–459. https://doi.org/10.2465/ganko1941.77.455

    Article  CAS  Google Scholar 

  196. Wang A, Jolliff BL, Haskin LA, Kuebler KE, Viskupic KM (2001) Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy. Am Miner 86:790–806. https://doi.org/10.2138/am-2001-0703

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YS: writing—original draft and visualization; RH: writing—original draft, visualization, and conceptualization; and TG: writing—review and editing.

Corresponding authors

Correspondence to Ryohei Hayami or Takahiro Gunji.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, Y., Hayami, R. & Gunji, T. Characterization of NMR, IR, and Raman spectra for siloxanes and silsesquioxanes: a mini review. J Sol-Gel Sci Technol 104, 36–52 (2022). https://doi.org/10.1007/s10971-022-05920-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05920-y

Keywords

Navigation