Skip to main content

Advertisement

Log in

Spiro-oxindoles as a Promising Class of Small Molecule Inhibitors of p53–MDM2 Interaction Useful in Targeted Cancer Therapy

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

As a result of the toxicity of currently available anticancer drugs and the inefficiency of chemotherapeutic treatments, the design and discovery of effective and selective antitumor agents continues to be a hot topic in organic medicinal chemistry. Targeted therapy is a newer type of cancer treatment that uses drugs designed to interfere with specific molecules necessary for tumor growth and progression. This review explains the mechanism of regulation of p53 (tumor suppressor protein) by MDM2 and illustrates the role of targeting p53–MDM2 protein–protein interaction using small molecules as a new cancer therapeutic strategy. Spirocyclic oxindoles or spiro-oxindoles, with a rigid heterocyclic ring fused at the 3-position of the oxindole core with varied substitution around it, are the most efficacious class of small molecules which inhibit cell proliferation and induce apoptosis in cancer cells, leading to complete tumor growth regression without affecting activities of normal cells. In this review, we present a comprehensive account of the systematic development of and recent progress in diverse spiro-oxindole derivatives active as potent selective inhibitors of p53–MDM2 interaction with special emphasis on spiro-pyrrolidinyl oxindoles (the MI series), their mechanism of action, and structure–activity relationship. This review will help in understanding the molecular mechanism of p53 reactivation by spiro-oxindoles in tumor tissues and also facilitates the design and exploration of more potent analogues with high efficacy and low side effects for the treatment of cancer.

Graphical Abstract

Recent progress in spiro-oxindole derivatives as potent small molecule inhibitors of p53–MDM2 interaction, useful as anticancer agents, is described with reference to their mechanism of action and structure–activity relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) CA Cancer J Clin 65:87–108

    Article  Google Scholar 

  2. WHO (2014) World cancer report, Chap 1.1. WHO, Geneva

  3. Chabner BA, Roberts TG Jr (2005) Nat Rev Cancer 5:65–72

    Article  CAS  Google Scholar 

  4. Lind MJ (2011) Principles of cytotoxic chemotherapy. Medicine 39(12):711–716

    Article  Google Scholar 

  5. Rheingold SR, Neugut AI, Meadows AT (2003) Secondary cancers: incidence, risk factors, and management. Chapter 159. In: Kufe DW, Pollock RE, Weichselbaum RR et al (eds) Holland-Frei cancer medicine, 6th edn. BC Decker, Hamilton

    Google Scholar 

  6. Schreiber SL (2003) Chem Eng News 81:51–61

    Article  Google Scholar 

  7. Bae YH, Mrsny RJ, Park K (2013) Cancer targeted drug delivery: an elusive dream. Springer, Berlin

    Book  Google Scholar 

  8. Aggarwal S (2010) Nat Rev Drug Discov 9:427–428

    Article  CAS  Google Scholar 

  9. Chessum N, Jones K, Pasqua E, Tucker M (2015) Prog Med Chem 54:1–63

    Article  Google Scholar 

  10. Stratton MR (2011) Science 331:1553–1558

    Article  CAS  Google Scholar 

  11. Collins I, Workman P (2006) Nat Chem Biol 2:689–700

    Article  CAS  Google Scholar 

  12. Kummar S, Murgo AJ, Tomasze JE, Doroshow JH (2014) Therapeutic targeting of cancer cells: era of molecularly targeted agents. Elsevier Churchill Livingstone, Philadelphia

    Google Scholar 

  13. Gerber DE (2008) Am Fam Physician 77:311–319

    Google Scholar 

  14. Lacroix M (2014) Targeted therapies in cancer. Nova Sciences, Hauppauge. ISBN 978-1-63321-687-7

    Google Scholar 

  15. Tanner JE (2005) Cancer Metastasis Rev 24:585–598

    Article  CAS  Google Scholar 

  16. Avendano C, Menendez JC (2015) Medicinal chemistry of anticancer drugs, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  17. Zhao Y, Bernard D, Wang S (2013) BioDiscovery 8(4):1–15

    Google Scholar 

  18. Dickens MP, Fitzgerald R, Fischer PM (2010) Semin Cancer Biol 20:10–18

    Article  CAS  Google Scholar 

  19. Zhao Y, Aguilar A, Bernard D, Wang S (2015) J Med Chem 58:1038–1052

    Article  CAS  Google Scholar 

  20. Vanneman M, Dranoff G (2012) Nat Rev Cancer 12:237–251

    Article  CAS  Google Scholar 

  21. Masters GA, Krilov L, Bailey HH, Brose MS, Burstein H, Diller LR, Dizon DS, Fine HA, Kalemkerian GP, Moasser M, Neuss MN, O’Day SJ, Odenike O, Ryan CJ, Schilsky RL, Schwartz GK, Venook AP, Wong SL, Patel JD (2015) J Clin Oncol 33:786–809

    Article  Google Scholar 

  22. Abramson R (2015) Overview of targeted therapies for cancer. My Cancer Genome. https://www.mycancergenome.org/content/molecular-medicine/overview-of-targeted-therapies-for-cancer/. Accessed 1 Jan 2016

  23. Mullard A (2015) Nat Rev Drug Discov 14:77–81

    Article  CAS  Google Scholar 

  24. Wang S, Zhao Y, Bernard D, Aguilar A, Kumar S (2012) Top Med Chem 8:57–80

    Article  Google Scholar 

  25. Lane DP, Cheok CF, Lain S (2010) Cold Spring Harb Perspect Biol 2:a001222

    Google Scholar 

  26. Vogelstein B, Lane D, Levine AJ (2000) Nature 408:307–310

    Article  CAS  Google Scholar 

  27. Moll UM, Petrenko O (2003) Mol Cancer Res 1:1001–1008

    CAS  Google Scholar 

  28. Fu T, Min H, Xu Y, Chen J, Li G (2012) Int J Mol Sci 13:9709–9740

    Article  CAS  Google Scholar 

  29. Vu BT, Vassilev L (2011) Curr Top Microbiol Immunol 348:151–172

    CAS  Google Scholar 

  30. Picksley SM, Lane DP (1993) BioEssays 15:689–690

    Article  CAS  Google Scholar 

  31. Wade M, Wang YV, Wahl GM (2010) Trends Cell Biol 20:299–309

    Article  CAS  Google Scholar 

  32. Momand J, Wu HH, Dasgupta G (2000) Gene 242:15–29

    Article  CAS  Google Scholar 

  33. Hainaut P, Hollstein M (2000) Adv Cancer Res 77:81–137

    Article  CAS  Google Scholar 

  34. Vousden KH, Lu X (2002) Nat Rev Cancer 2:594–604

    Article  CAS  Google Scholar 

  35. Riedinger C, McDonnell JM (2009) Future Med Chem 1:1075–1094

    Article  CAS  Google Scholar 

  36. Shangary S, Wang S (2009) Annu Rev Pharmacol Toxicol 49:223–241

    Article  CAS  Google Scholar 

  37. Chene P (2003) Nat Rev Cancer 3:102–109

    Article  CAS  Google Scholar 

  38. Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S, Nikolovska-Coleska Z, Ding K, Wang G, Chen J, Bernard D, Zhang J, Lu Y, Gu Q, Shah RB, Pienta KJ, Ling X, Kang S, Guo M, Sun Y, Yang D, Wang S (2008) Proc Natl Acad Sci USA 105:3933–3938

    Article  CAS  Google Scholar 

  39. Zhang R, Wang H, Agrawal S (2005) Curr Cancer Drug Targets 5:43–49

    Article  Google Scholar 

  40. Herman AG, Hayano M, Poyurovsky MV, Shimada K, Skouta R, Prives C, Stockwell BR (2011) Cancer Discov 1:312–325

    Article  CAS  Google Scholar 

  41. Terzian T, Suh YA, Iwakuma T, Post SM, Neumann M, Lang GA, Van Pelt CS, Lozano G (2008) Genes Dev 22:1337–1344

    Article  CAS  Google Scholar 

  42. Hoelder S, Clarke PA, Workman P (2012) Mol Oncol 6:155–176

    Article  CAS  Google Scholar 

  43. Azmi AS, Beck FW, Sarkar FH, Mohammad RM (2011) Curr Pharm Des 17:640–652

    Article  CAS  Google Scholar 

  44. Zheng T, Wang J, Song X, Meng X, Pan S, Jiang H, Liu L (2010) J Cancer Res Clin Oncol 136:1597–1604

    Article  CAS  Google Scholar 

  45. Wade M, Li YC, Wahl GM (2013) Nat Rev Cancer 13:83–96

    Article  CAS  Google Scholar 

  46. Millard M, Pathania D, Grande F, Xu S, Neamati N (2011) Curr Pharm Des 17:536–559

    Article  CAS  Google Scholar 

  47. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP (1996) Science 274:948–953

    Article  CAS  Google Scholar 

  48. Vazquez A, Bond EE, Levine AJ, Bond GL (2008) Nat Rev Drug Discov 7:979–987

    Article  CAS  Google Scholar 

  49. Pujals A, Favre L, Gaulard P, Wiels J (2015) Activation of wild-type p53 by MDM2 inhibitors: a new strategy for lymphoma treatment. Blood Lymphat Cancer 5:93–100

  50. Khoo KH, Verma CS, Lane DP (2014) Nat Rev Drug Discov 13:217–236

    Article  CAS  Google Scholar 

  51. Wade M, Wahl GM (2009) Mol Cancer Res 7:1–11

    Article  CAS  Google Scholar 

  52. Qin JJ, Wang W, Voruganti S, Wang H, Zhang WD, Zhang R (2015) Oncotarget 6:2623–2640

    Google Scholar 

  53. Qin JJ, Nag S, Voruganti S, Wang W, Zhang R (2012) Curr Med Chem 19:5705–5725

    Article  CAS  Google Scholar 

  54. Bottger V, Bottger A, Howard SF, Picksley SM, Chene P, Garcia-Echeverria C, Hochkeppel HK, Lane DP (1996) Oncogene 13:2141–2147

    CAS  Google Scholar 

  55. Kritzer JA, Lear JD, Hodsdon ME, Schepartz A (2004) J Am Chem Soc 126:9468–9469

    Article  CAS  Google Scholar 

  56. Zhang Q, Zeng SX, Lu H (2014) Subcell Biochem 85:281–319

    Article  Google Scholar 

  57. Aeluri M, Chamakuri S, Dasari B, Guduru SK, Jimmidi R, Jogula S, Arya P (2014) Chem Rev 114:4640–4649

    Article  CAS  Google Scholar 

  58. Carry JC, Garcia-Echeverria C (2013) Bioorg Med Chem Lett 23:2480–2485

    Article  CAS  Google Scholar 

  59. Vassilev Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) Science 303:844–848

    Article  Google Scholar 

  60. Tovar C, Graves B, Packman K, Filipovic Z, Higgins B, Xia M, Tardell C, Garrido R, Lee E, Kolinsky K, To KH, Linn M, Podlaski F, Wovkulich P, Vu B, Vassilev LT (2013) Cancer Res 73:2587–2597

    Article  CAS  Google Scholar 

  61. Ray-Coquard I, Blay JY, Italiano A, Le CA, Penel N, Zhi J, Heil F, Rueger R, Graves B, Ding M, Geho D, Middleton SA, Vassilev LT, Nichols GL, Bui BN (2012) Lancet Oncol 13:1133–1140

    Article  CAS  Google Scholar 

  62. Rew Y, Sun D, De Gonzalez-Lopez TF, Bartberger MD, Beck HP, Canon J, Chen A, Chow D, Deignan J, Fox BM, Gustin D, Huang X, Jiang M, Jiao X, Jin L, Kayser F, Kopecky DJ, Li Y, Lo MC, Long AM, Michelsen K, Oliner JD, Osgood T, Ragains M, Saiki AY, Schneider S, Toteva M, Yakowec P, Yan X, Ye Q, Yu D, Zhao X, Zhou J, Medina JC, Olson SH (2012) J Med Chem 55:4936

    Article  CAS  Google Scholar 

  63. Sun D, Li Z, Rew Y, Gribble M, Bartberger MD, Beck HP, Canon J, Chen A, Chen X, Chow D, Deignan J, Duquette J, Eksterowicz J, Fisher B, Fox BM, Fu J, Gonzalez AZ, De Gonzalez-Lopez TF, Houze JB, Huang X, Jiang M, Jin L, Kayser F, Liu JJ, Lo MC, Long AM, Lucas B, McGee LR, McIntosh J, Mihalic J, Oliner JD, Osgood T, Peterson ML, Roveto P, Saiki AY, Shaffer P, Toteva M, Wang Y, Wang YC, Wortman S, Yakowec P, Yan X, Ye Q, Yu D, Yu M, Zhao X, Zhou J, Zhu J, Olson SH, Medina JC (2014) J Med Chem 57:1454–1472

    Article  CAS  Google Scholar 

  64. Gonzalez AZ, Li Z, Beck HP, Canon J, Chen A, Chow D, Duquette J, Eksterowicz J, Fox BM, Fu J, Huang X, Houze J, Jin L, Li Y, Ling Y, Lo MC, Long AM, McGee LR, McIntosh J, Oliner JD, Osgood T, Rew Y, Saiki AY, Shaffer P, Wortman S, Yakowec P, Yan X, Ye Q, Yu D, Zhao X, Zhou J, Olson SH, Sun D, Medina JC (2014) J Med Chem 57:2963–2988

    Article  CAS  Google Scholar 

  65. Canon J, Osgood T, Olson SH, Saiki AY, Robertson R, Yu D, Eksterowicz J, Ye Q, Jin L, Chen A, Zhou J, Cordover D, Kaufman S, Kendall R, Oliner JD, Coxon A, Radinsky R (2015) Mol Cancer Ther 14:649–658

    Article  CAS  Google Scholar 

  66. Raboisson P, Marugan JJ, Schubert C, Koblish HK, Lu T, Zhao S, Player MR, Maroney AC, Reed RL, Huebert ND, Lattanze J, Parks DJ, Cummings MD (2005) Bioorg Med Chem Lett 15:1857–1861

    Article  CAS  Google Scholar 

  67. Marugan JJ, Leonard K, Raboisson P, Gushue JM, Calvo R, Koblish HK, Lattanze J, Zhao S, Cummings MD, Player MR, Schubert C, Maroney AC, Lu T (2006) Bioorg Med Chem Lett 16:3115–3120

    Article  CAS  Google Scholar 

  68. Allen JG, Bourbeau MP, Wohlhieter GE, Bartberger MD, Michelsen K, Hungate R, Gadwood RC, Gaston RD, Evans B, Mann LW, Matison ME, Schneider S, Huang X, Yu D, Andrews PS, Reichelt A, Long AM, Yakowec P, Yang EY, Lee TA, Oliner JD (2009) J Med Chem 52:7044–7053

    Article  CAS  Google Scholar 

  69. Beck HP, DeGraffenreid M, Fox B, Allen JG, Rew Y, Schneider S, Saiki AY, Yu D, Oliner JD, Salyers K, Ye Q, Olson S (2011) Bioorg Med Chem Lett 21:2752–2755

    Article  CAS  Google Scholar 

  70. Yin H, Lee GI, Park HS, Payne GA, Rodriguez JM, Sebti SM, Hamilton AD (2005) Angew Chem Int Ed Engl 44:2704–2707

    Article  CAS  Google Scholar 

  71. Hardcastle IR, Ahmed SU, Atkins H, Farnie G, Golding BT, Griffin RJ, Guyenne S, Hutton C, Kallblad P, Kemp SJ, Kitching MS, Newell DR, Norbedo S, Northen JS, Reid RJ, Saravanan K, Willems HM, Lunec J (2006) J Med Chem 49:6209–6221

    Article  CAS  Google Scholar 

  72. Ding Q, Zhang Z, Liu JJ, Jiang N, Zhang J, Ross TM, Chu XJ, Bartkovitz D, Podlaski F, Janson C, Tovar C, Filipovic ZM, Higgins B, Glenn K, Packman K, Vassilev LT, Graves B (2013) J Med Chem 56:5979–5983

    Article  CAS  Google Scholar 

  73. Ma Y, Lahue BR, Shipps GW Jr, Brookes J, Wang Y (2014) Bioorg Med Chem Lett 24:1026–1030

    Article  CAS  Google Scholar 

  74. Zak K, Pecak A, Rys B, Wladyka B, Domling A, Weber L, Holak TA, Dubin G (2013) Expert Opin Ther Pat 23:425–448

    Article  CAS  Google Scholar 

  75. Ding K, Lu Y, Nikolovska-Coleska Z, Qiu S, Ding Y, Gao W, Stuckey J, Krajewski K, Roller PP, Tomita Y, Parrish DA, Deschamps JR, Wang S (2005) J Am Chem Soc 127:10130–10131

    Article  CAS  Google Scholar 

  76. Chen L, Han X, Yang S, Zhang Z (2012) 3,3′-Spiroindolinone derivatives and their use for cancer. Patent No. EP2421866A1

  77. Wang S, Sun W, Zhao Y, McEachern D, Meaux I, Barriere C, Stuckey JA, Meagher JL, Bai L, Liu L, Hoffman-Luca CG, Lu J, Shangary S, Yu S, Bernard D, Aguilar A, Dos-Santos O, Besret L, Guerif S, Pannier P, Gorge-Bernat D, Debussche L (2014) Cancer Res 74:5855–5865

    Article  CAS  Google Scholar 

  78. Ding K, Lu Y, Nikolovska-Coleska Z, Wang G, Qiu S, Shangary S, Gao W, Qin D, Stuckey J, Krajewski K, Roller PP, Wang S (2006) J Med Chem 49:3432–3435

    Article  CAS  Google Scholar 

  79. Yu B, Yu DQ, Liu HM (2015) Eur J Med Chem 97:673–698

    Article  CAS  Google Scholar 

  80. Weber L (2010) Expert Opin Ther Pat 20:179–191

    Article  CAS  Google Scholar 

  81. Kamal A, Mohammed AA, Shaik TB (2012) Expert Opin Ther Pat 22:95–105

    Article  CAS  Google Scholar 

  82. Czarna A, Popowicz GM, Pecak A, Wolf S, Dubin G, Holak TA (2009) Cell Cycle 8:1176–1184

    Article  CAS  Google Scholar 

  83. Hu B, Gilkes DM, Farooqi B, Sebti SM, Chen J (2006) J Biol Chem 281:33030–33035

    Article  CAS  Google Scholar 

  84. Ding K, Wang G, Deschamps JR, Parrish DA, Wang S (2005) Tetrahedron Lett 46:5949–5951

    Article  CAS  Google Scholar 

  85. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Proteins 52:609–623

    Article  CAS  Google Scholar 

  86. Wang S, Zhao Y, Sun W, Kumar S, Leopold L, Debussche L, Barriere C, Carry J-C, Amaning K (2014) Spiro-oxindole MDM2 antagonists. US 14/170,101 (US20140148494A1)

  87. Shangary S, Ding K, Qiu S, Nikolovska-Coleska Z, Bauer JA, Liu M, Wang G, Lu Y, McEachern D, Bernard D, Bradford CR, Carey TE, Wang S (2008) Mol Cancer Ther 7:1533–1542

    Article  CAS  Google Scholar 

  88. Yu S, Qin D, Shangary S, Chen J, Wang G, Ding K, McEachern D, Qiu S, Nikolovska-Coleska Z, Miller R, Kang S, Yang D, Wang S (2009) J Med Chem 52:7970–7973

    Article  CAS  Google Scholar 

  89. Huang W, Cai L, Chen C, Xie X, Zhao Q, Zhao X, Zhou HY, Han B, Peng C (2016) J Biomol Struct Dyn 34:341–351

    Article  CAS  Google Scholar 

  90. Aguilar A, Sun W, Liu L, Lu J, McEachern D, Bernard D, Deschamps JR, Wang S (2014) J Med Chem 57:10486–10498

    Article  CAS  Google Scholar 

  91. Ball-Jones NR, Badillo JJ, Franz AK (2012) Org Biomol Chem 10:5165–5181

    Article  CAS  Google Scholar 

  92. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727–748

    Article  CAS  Google Scholar 

  93. Popowicz GM, Czarna A, Wolf S, Wang K, Wang W, Domling A, Holak TA (2010) Cell Cycle 9:1104–1111

    Article  CAS  Google Scholar 

  94. Khan A, Lu H (2008) Cancer Biol Ther 7:853–855

    Article  CAS  Google Scholar 

  95. Sun SH, Zheng M, Ding K, Wang S, Sun Y (2008) Cancer Biol Ther 7:845–852

    Article  CAS  Google Scholar 

  96. Azmi AS, Aboukameel A, Banerjee S, Wang Z, Mohammad M, Wu J, Wang S, Yang D, Philip PA, Sarkar FH, Mohammad RM (2010) Eur J Cancer 46:1122–1131

    Article  CAS  Google Scholar 

  97. Azmi AS, Philip PA, Aboukameel A, Wang Z, Banerjee S, Zafar SF, Goustin AS, Almhanna K, Yang D, Sarkar FH, Mohammad RM (2010) Curr Cancer Drug Targets 10:319–331

    Article  CAS  Google Scholar 

  98. Mohammad RM, Wu J, Azmi AS, Aboukameel A, Sosin A, Wu S, Yang D, Wang S, Al-Katib AM (2009) Mol Cancer 8:115

    Article  Google Scholar 

  99. Zhao Y, Yu S, Sun W, Liu L, Lu J, McEachern D, Shargary S, Bernard D, Li X, Zhao T, Zou P, Sun D, Wang S (2013) J Med Chem 56:5553–5561

    Article  CAS  Google Scholar 

  100. Wang S, Sun W, Yu S et al (2011) Highly potent and optimized small-molecule inhibitors of MDM2 achieve complete tumor regression in animal models of solid tumors and leukemia. Abstract LB-204. AACR 102nd annual meeting, Orlando, FL

  101. Bill KL, Garnett J, Meaux I, Ma X, Creighton CJ, Bolshakov S, Barriere C, Debussche L, Lazar AJ, Prudner BC, Casadei L, Braggio D, Lopez G, Zewdu A, Bid H, Lev D, Pollock RE (2016) Clin Cancer Res 22:1150–1160

    Article  CAS  Google Scholar 

  102. Chen L, Ding Q, Liu J, Yang S, Zhang Z, Hoffmann-La RIU (2009) Spiroindolinone derivatives. US7495007 B2

  103. Chen L, Han X, Yang S, Zhang Z (2010) Preparation of 3,3′-spiroindolinones for treatment of cancer. WO 2010121995 A1

  104. Chen L, Han X, He Y, Yang S, Zhang Z. Hoffman-La Roche Inc, USA (2009) Spiroindolinone derivatives as interaction inhibitors between p53 and MDM2 proteins and their preparation, pharmaceutical compositions and use in the treatment of cancer. US 20090163512 A1

  105. Ding Q, Liu JJ, Zhang Z. Zhang Z, Hoffmann La Roche, Switzerland (2007) Spiroindolinone derivatives. WO 2007104714 A1

  106. Chen L, Ding Q, Liu JJ, Yang S, Zhang Z (2007) Preparation of spiroindolinone derivatives as antitumor agents. US 20070213341 A1

  107. Ding Q, Jiang N, Yang S, Zhang J, Zhang Z (2009) Spiroindolinone derivatives. US 20090156610 A1

  108. Liu JJ, Zhang Z. (2009) Spiroindolinone derivatives. US 7638548 B2

  109. Chen L, Han X, Yang S, Zhang Z (2010) Spiroindolinone pyridine derivatives as inhibitors of MDM2–p53 protein interaction useful as potent and selective anticancer agents and preparation thereof. US 20100204257

  110. Zhang J, Zhang Z Spiroindolinone pyridine derivatives as inhibitors of MDM2–p53 protein interaction useful as potent and selective anticancer agents and preparation thereof. US 20100210674

  111. Liu J-J, Zhang Z, Hoffmann-La Roche (2008) Preparation of spiroindole pyridotriazinediones as anticancer drugs. WO 2008141975

  112. Bertamino A, Soprano M, Musella S, Rusciano MR, Sala M, Vernieri E, Di Sarno V, Limatola A, Carotenuto A, Cosconati S, Grieco P, Novellino E, Illario M, Campiglia P, Gomez-Monterrey I (2013) J Med Chem 56:5407–5421

    Article  CAS  Google Scholar 

  113. Gomez-Monterrey I, Bertamino A, Porta A, Carotenuto A, Musella S, Aquino C, Granata I, Sala M, Brancaccio D, Picone D, Ercole C, Stiuso P, Campiglia P, Grieco P, Ianelli P, Maresca B, Novellino E (2010) J Med Chem 53:8319–8329

    Article  CAS  Google Scholar 

  114. Ribeiro CJ, Amaral JD, Rodrigues CM, Moreira R, Santos MM (2014) Bioorg Med Chem 22:577–584

    Article  CAS  Google Scholar 

  115. Liu J-J, Tilley JW, Zhang Z (2008) 3,3-Spiroindolinone derivatives. US 12/101182 US20080287421 A1

Download references

Acknowledgements

AKG acknowledges the Department of Science and Technology (DST, New Delhi) for financial support under the Women Scientist Project Scheme (WOS-A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mausumi Bharadwaj or Ravi Mehrotra.

Ethics declarations

Conflict of interest

Alpana K. Gupta, Mausumi Bharadwaj, Anoop Kumar, and Ravi Mehrotra declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A.K., Bharadwaj, M., Kumar, A. et al. Spiro-oxindoles as a Promising Class of Small Molecule Inhibitors of p53–MDM2 Interaction Useful in Targeted Cancer Therapy. Top Curr Chem (Z) 375, 3 (2017). https://doi.org/10.1007/s41061-016-0089-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-016-0089-0

Keywords

Navigation