Skip to main content

The Development of New Spirooxindoles Targeting the p53–MDM2 Protein-Protein Interactions for Cancer Therapy

  • Chapter
  • First Online:
Targeting Protein-Protein Interactions by Small Molecules

Abstract

Spiro compounds have drawn ever-increasing attention in drug discovery because of its prevalence in natural products/drugs and unique 3D structural features. A large number of spiro compounds have been proved to possess diverse bioactivities, and some of them have advanced into clinical trials for the treatment of diseases. The interruption of MDM2–p53 protein-protein interactions has been highly pursued as an attractive therapeutic strategy for cancer therapy. A large number of small-molecule inhibitors have been identified based on the well-defined MDM2–p53 interactions. Currently, several small-molecule inhibitors such as SAR405838, APG-115, MK-8242, DS-3032b, NVP-CGM097, RG7112, RG7388, and AMG 232 are undergoing clinical assessment for cancer therapy. In this chapter, we focus on the identification of spirooxindole containing small-molecule inhibitors (SAR405838, APG-115, RG7388, RO8994, RO2468, and RO5353), strategies employed for optimizations, structure–activity relationship studies (SARs) as well as their biochemical profiles. The identification of these lead compounds makes spirooxindoles promising scaffolds in designing potent inhibitors targeting MDM2–p53 interactions. Based on the SARs and the co-crystal structures of p53–MDM2 complexes, we first tentatively propose the prolinamide-based ‘3+1’ model for designing potential MDM2 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bieging KT, Mello SS, Attardi LD (2014) Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 14:359–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wu X, Bayle JH, Olson D et al (1993) The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7:1126–1132

    Article  CAS  PubMed  Google Scholar 

  3. Harris SL, Levine AJ (2005) The p53 pathway: positive and negative feedback loops. Oncogene 24:2899–2908

    Article  CAS  PubMed  Google Scholar 

  4. Chen F, Wang W, El-Deiry WS (2010) Current strategies to target p53 in cancer. Biochem Pharmacol 80:724–730

    Article  CAS  PubMed  Google Scholar 

  5. Moll UM, Petrenko O (2003) The MDM2-p53 Interaction. Mol Cancer Res 1:1001–1008

    PubMed  CAS  Google Scholar 

  6. Feki A, Irminger-Finger I (2004) Mutational spectrum of p53 mutations in primary breast and ovarian tumors. Crit Rev Oncol Hematol 52:103–116

    Article  PubMed  Google Scholar 

  7. Momand J, Jung D, Wilczynski S et al (1998) The MDM2 gene amplification database. Nucleic Acids Res 26:3453–3459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Forslund A, Zeng Z, Qin L-X et al (2008) MDM2 gene amplification is correlated to tumor progression but not to the presence of SNP309 or TP53 mutational status in primary colorectal cancers. Mol Cancer Res 6:205–211

    Article  CAS  PubMed  Google Scholar 

  9. Dickens MP, Fitzgerald R, Fischer PM (2010) Small-molecule inhibitors of MDM2 as new anticancer therapeutics. Semin Cancer Biol 20:10–18

    Article  CAS  PubMed  Google Scholar 

  10. Barakat K, Mane J, Friesen D et al (2010) Ensemble-based virtual screening reveals dual-inhibitors for the p53–MDM2/MDMX interactions. J Mol Graph Model 28:555–568

    Article  CAS  PubMed  Google Scholar 

  11. Shangary S, Wang S (2009) Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 49:223–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tanimura S, Ohtsuka S, Mitsui K et al (1999) MDM2 interacts with MDMX through their RING finger domains. FEBS Lett 447:5–9

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Y, Aguilar A, Bernard D et al (2015) Small-molecule inhibitors of the MDM2–p53 protein-protein interaction (MDM2 inhibitors) in clinical trials for cancer treatment. J Med Chem 58:1038–1052

    Article  CAS  PubMed  Google Scholar 

  14. Brown CJ, Cheok CF, Verma CS et al (2011) Reactivation of p53: from peptides to small molecules. Trends Pharmacol Sci 32:53–62

    Article  CAS  PubMed  Google Scholar 

  15. Saha T, Kar RK, Sa G (2015) Structural and sequential context of p53: a review of experimental and theoretical evidence. Prog Biophys Mol Biol 117:250–263

    Article  CAS  PubMed  Google Scholar 

  16. Nero TL, Morton CJ, Holien JK et al (2014) Oncogenic protein interfaces: small molecules, big challenges. Nat Rev Cancer 14:248–262

    Article  CAS  PubMed  Google Scholar 

  17. Guo W, Wisniewski JA, Ji H (2014) Hot spot-based design of small-molecule inhibitors for protein–protein interactions. Bioorg Med Chem Lett 24:2546–2554

    Article  CAS  PubMed  Google Scholar 

  18. Kussie PH, Gorina S, Marechal V et al (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953

    Article  CAS  PubMed  Google Scholar 

  19. Vassilev LT, Vu BT, Graves B et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848

    Article  CAS  PubMed  Google Scholar 

  20. Vassilev LT (2007) MDM2 inhibitors for cancer therapy. Trends Mol Med 13:23–31

    Article  CAS  PubMed  Google Scholar 

  21. Lv P-C, Sun J, Zhu H-L (2015) Recent advances of p53-MDM2 small molecule inhibitors (2011-Present). Curr Med Chem 22:618–626

    Article  CAS  PubMed  Google Scholar 

  22. Zak K, Pecak A, Rys B et al (2013) Mdm2 and MdmX inhibitors for the treatment of cancer: a patent review (2011–present). Expert Opin Ther Pat 23:425–448

    Article  CAS  PubMed  Google Scholar 

  23. Wang W, Hu Y (2012) Small molecule agents targeting the p53-MDM2 pathway for cancer therapy. Med Res Rev 32:1159–1196

    Article  CAS  PubMed  Google Scholar 

  24. Liu L, Bernard D, Wang S (2015) Case study: discovery of inhibitors of the MDM2–p53 protein-protein interaction. In: Meyerkord CL, Fu H (eds) Protein-protein interactions, vol 1278. Methods in molecular biology. Springer, New York, pp 567–585

    Google Scholar 

  25. Zhang B, Golding BT, Hardcastle IR (2015) Small-molecule MDM2-p53 inhibitors: recent advances. Future Med Chem 7:631–645

    Article  CAS  PubMed  Google Scholar 

  26. Hardcastle IR (2014) Targeting the MDM2–p53 protein-protein interaction: design, discovery, and development of novel anticancer agents. In: Neidle S (ed) Cancer drug design and discovery, 2nd edn. Academic Press, San Diego, pp 391–426

    Chapter  Google Scholar 

  27. Popowicz GM, Dömling A, Holak TA (2011) The structure-based design of Mdm2/Mdmx–p53 inhibitors gets serious. Angew Chem Int Ed 50:2680–2688

    Article  CAS  Google Scholar 

  28. Khoury K, Popowicz GM, Holak TA et al (2011) The p53-MDM2/MDMX axis—a chemotype perspective. MedChemComm 2:246–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lemos A, Leão M, Soares J et al (2016) Medicinal chemistry strategies to disrupt the p53–MDM2/MDMX interaction. Med Res Rev 36:789–844

    Article  CAS  PubMed  Google Scholar 

  30. Secchiero P, Bosco R, Celeghini C et al (2011) Recent advances in the therapeutic perspectives of Nutlin-3. Curr Pharm Design 17:569–577

    Article  CAS  Google Scholar 

  31. Koblish HK, Zhao S, Franks CF et al (2006) Benzodiazepinedione inhibitors of the Hdm2:p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo. Mol Cancer Ther 5:160–169

    Article  CAS  PubMed  Google Scholar 

  32. Rew Y, Sun D, Yan X et al (2014) Discovery of AM-7209, a potent and selective 4-amidobenzoic acid inhibitor of the MDM2–p53 interaction. J Med Chem 57:10499–10511

    Article  CAS  PubMed  Google Scholar 

  33. Wang S, Sun W, Zhao Y et al (2014) SAR405838: an optimized inhibitor of MDM2–p53 interaction that induces complete and durable tumor regression. Cancer Res 74:5855–5865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun D, Li Z, Rew Y et al (2014) Discovery of AMG 232, a potent, selective, and orally bioavailable MDM2–p53 inhibitor in clinical development. J Med Chem 57:1454–1472

    Article  CAS  PubMed  Google Scholar 

  35. Canon J, Osgood T, Olson SH et al (2015) The MDM2 inhibitor AMG 232 demonstrates robust anti-tumor efficacy and potentiates the activity of p53-inducing cytotoxic agents. Mol Cancer Ther 14:649–658

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Zhu J, Liu J et al (2014) Optimization beyond AMG 232: Discovery and SAR of sulfonamides on a piperidinone scaffold as potent inhibitors of the MDM2-p53 protein–protein interaction. Bioorg Med Chem Lett 24:3782–3785

    Article  CAS  PubMed  Google Scholar 

  37. Valat T, Masuya K, Baysang F et al (2014) Mechanistic study of NVP-CGM097: a potent, selective and species specific inhibitor of p53-Mdm2. Cancer Res 74:1798

    Article  Google Scholar 

  38. Gessier F, Kallen J, Jacoby E et al (2015) Discovery of dihydroisoquinolinone derivatives as novel inhibitors of the p53–MDM2 interaction with a distinct binding mode. Bioorg Med Chem Lett 25:3621–3625

    Article  CAS  PubMed  Google Scholar 

  39. Holzer P, Masuya K, Furet P et al (2015) Discovery of a dihydroisoquinolinone derivative (NVP-CGM097): a highly potent and selective MDM2 inhibitor undergoing phase 1 clinical trials in p53wt tumors. J Med Chem 58:6348–6358

    Article  CAS  PubMed  Google Scholar 

  40. Tovar C, Graves B, Packman K et al (2013) MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res 73:2587–2597

    Article  CAS  PubMed  Google Scholar 

  41. Vu B, Wovkulich P, Pizzolato G et al (2013) Discovery of RG7112: a small-molecule MDM2 inhibitor in clinical development. ACS Med Chem Lett 4:466–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ding Q, Zhang Z, Liu J-J et al (2013) Discovery of RG7388, a potent and selective p53–MDM2 inhibitor in clinical development. J Med Chem 56:5979–5983

    Article  CAS  PubMed  Google Scholar 

  43. Aguilar A, Lu J, Liu L et al (2017) Discovery of 4-((3′R,4′S,5′R)-6″-Chloro-4′-(3-chloro-2-fluorophenyl)-1′-ethyl-2″-oxodispiro[cyclohexane-1,2′-pyrrolidine-3′,3″-indoline]-5′-carboxamido)bicyclo[2.2.2]octane-1-carboxylic Acid (AA-115/APG-115): a potent and orally active Murine Double Minute 2 (MDM2) inhibitor in clinical development. J Med Chem 60:2819–2839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Over B, Wetzel S, Grütter C et al (2013) Natural-product-derived fragments for fragment-based ligand discovery. Nat Chem 5:21–28

    Article  CAS  PubMed  Google Scholar 

  45. Galliford CV, Scheidt KA (2007) Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew Chem Int Ed 46:8748–8758

    Article  CAS  Google Scholar 

  46. Yu B, Yu Z, Qi P-P et al (2015) Discovery of orally active anticancer candidate CFI-400945 derived from biologically promising spirooxindoles: Success and challenges. Eur J Med Chem 95:35–40

    Article  CAS  PubMed  Google Scholar 

  47. Yeung BKS, Zou B, Rottmann M et al (2010) Spirotetrahydro β-Carbolines (Spiroindolones): a new class of potent and orally efficacious compounds for the treatment of malaria. J Med Chem 53:5155–5164

    Article  CAS  PubMed  Google Scholar 

  48. Rottmann M, McNamara C, Yeung BKS et al (2010) Spiroindolones, a potent compound class for the treatment of malaria. Science 329:1175–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. White NJ, Pukrittayakamee S, Phyo AP et al (2014) Spiroindolone KAE609 for falciparum and vivax malaria. N Engl J Med 371:403–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. van Pelt-Koops JC, Pett HE, Graumans W et al (2012) The spiroindolone drug candidate NITD609 potently inhibits gametocytogenesis and blocks Plasmodium falciparum transmission to anopheles mosquito vector. Antimicrob Agents Chemother 56:3544–3548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu B, Qi P-P, Shi X-J et al (2014) Discovery of novel steroidal pyran–oxindole hybrids as cytotoxic agents. Steroids 88:44–52

    Article  CAS  PubMed  Google Scholar 

  52. Yu B, Shi X-J, Qi P-P et al (2014) Design, synthesis and biological evaluation of novel steroidal spiro-oxindoles as potent antiproliferative agents. J Steroid Biochem Mol Biol 141:121–134

    Article  CAS  PubMed  Google Scholar 

  53. Yu B, Yu D-Q, Liu H-M (2015) Spirooxindoles: promising scaffolds for anticancer agents. Eur J Med Chem 97:673–698

    Article  CAS  PubMed  Google Scholar 

  54. Yu B, Sun X-N, Shi X-J et al (2015) Efficient synthesis of novel antiproliferative steroidal spirooxindoles via the [3+2] cycloaddition reactions of azomethine ylides. Steroids 102:92–100

    Article  CAS  Google Scholar 

  55. Bin Y, Yi-Chao Z, Xiao-Jing S et al (2016) Natural product-derived spirooxindole fragments serve as privileged substructures for discovery of new anticancer agents. Anticancer Agents Med Chem 16:1315–1324

    Article  CAS  Google Scholar 

  56. Zhang Y-L, Li Y-F, Wang J-W et al Multicomponent assembly of novel antiproliferative steroidal dihydropyridinyl spirooxindoles. Steroids 109:22–28

    Article  CAS  PubMed  Google Scholar 

  57. Shi X-J, Yu B, Wang J-W et al (2016) Structurally novel steroidal spirooxindole by241 potently inhibits tumor growth mainly through ROS-mediated mechanisms. Sci Rep 6:31607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu B, Xing H, Yu D-Q et al (2016) Catalytic asymmetric synthesis of biologically important 3-hydroxyoxindoles: an update. Beilstein J Org Chem 12:1000–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Aguilar A, Sun W, Liu L et al (2014) Design of chemically stable, potent, and efficacious MDM2 inhibitors that exploit the retro-mannich ring-opening-cyclization reaction mechanism in spiro-oxindoles. J Med Chem 57:10486–10498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ding K, Lu Y, Nikolovska-Coleska Z et al (2005) Structure-based design of potent non-peptide MDM2 inhibitors. J Am Chem Soc 127:10130–10131

    Article  CAS  PubMed  Google Scholar 

  61. Smart BE (2001) Fluorine substituent effects (on bioactivity). J Fluor Chem 109:3–11

    Article  CAS  Google Scholar 

  62. Ding K, Lu Y, Nikolovska-Coleska Z et al (2006) Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2–p53 interaction. J Med Chem 49:3432–3435

    Article  CAS  PubMed  Google Scholar 

  63. Lin J, Chen J, Elenbaas B et al (1994) Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to MDM-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev 8:1235–1246

    Article  CAS  PubMed  Google Scholar 

  64. Picksley SM, Vojtesek B, Sparks A et al (1994) Immunochemical analysis of the interaction of p53 with MDM2;–fine mapping of the MDM2 binding site on p53 using synthetic peptides. Oncogene 9:2523–2529

    PubMed  CAS  Google Scholar 

  65. Shangary S, Qin D, McEachern D et al (2008) Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA 105:3933–3938

    Article  PubMed  Google Scholar 

  66. Zhao Y, Liu L, Sun W et al (2013) Diastereomeric spirooxindoles as highly potent and efficacious MDM2 inhibitors. J Am Chem Soc 135:7223–7234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhao Y, Yu S, Sun W et al (2013) A Potent small-molecule inhibitor of the MDM2–p53 interaction (MI-888) achieved complete and durable tumor regression in mice. J Med Chem 56:5553–5561

    Article  CAS  PubMed  Google Scholar 

  68. Shu L, Li Z, Gu C et al (2013) Synthesis of a spiroindolinone pyrrolidinecarboxamide MDM2 antagonist. Org Proc Res Dev 17:247–256

    Article  CAS  Google Scholar 

  69. Hoffman-Luca CG, Yang C-Y, Lu J et al (2015) Significant differences in the development of acquired resistance to the MDM2 inhibitor SAR405838 between in vitro and in vivo drug treatment. PLoS ONE 10:e0128807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hoffman-Luca CG, Ziazadeh D, McEachern D et al (2015) Elucidation of acquired resistance to Bcl-2 and MDM2 inhibitors in acute leukemia in vitro and in vivo. Clin Cancer Res 21:2558–2568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Carry J-C, Garcia-Echeverria C (2013) Inhibitors of the p53/hdm2 protein–protein interaction—path to the clinic. Bioorg Med Chem Lett 23:2480–2485

    Article  CAS  PubMed  Google Scholar 

  72. Miyazaki M, Setoguchi M, Sugimoto Y et al (2012) Dispiropyrrolidine derivative. EP20120755073

    Google Scholar 

  73. Wang S, Sun W, Aguilar A et al (2014) Spiro-oxindole MDM2 antagonists. US 14/485,054

    Google Scholar 

  74. Phelps D, Bondra K, Seum S et al (2015) Inhibition of MDM2 by RG7388 confers hypersensitivity to X-radiation in xenograft models of childhood sarcoma. Pediatr Blood Cancer 62:1345–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang Z, Ding Q, Liu J-J et al (2014) Discovery of potent and selective spiroindolinone MDM2 inhibitor, RO8994, for cancer therapy. Bioorg Med Chem 22:4001–4009

    Article  CAS  PubMed  Google Scholar 

  76. Zhang Z, Chu X-J, Liu J-J et al (2013) Discovery of potent and orally active p53-MDM2 inhibitors RO5353 and RO2468 for potential clinical development. ACS Med Chem Lett 5:124–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Luk KC, So SS, Zhang J et al (2006) Oxindole derivatives. PCT/EP2006/063475

    Google Scholar 

  78. Ding Q, Jiang N, Yang S et al (2009) Spiroindolinone derivatives. US 12/272,870

    Google Scholar 

  79. Ding Q, Liu JJ, Zhang Z (2007) Spiroindolinone derivatives. PCT/EP2007/052038

    Google Scholar 

  80. Liu JJ, Tilley JW, Zhang Z (2009) 3,3-spiroindolinone derivatives. CN 200880016425

    Google Scholar 

  81. Liu JJ, Tilley JW, Zhang Z (2010) 3,3-spiroindolinone derivatives as anticancer agents. PCT/EP2010/051757

    Google Scholar 

  82. Liu JJ, Zhang Z (2008) Spiroindolinone derivatives. PCT/EP2008/055831

    Google Scholar 

  83. Chu XJ, Ding Q, Jiang N et al (2012) Substituted Spiro[3H-Indole-3,6′(5′H)-[1H]Pyrrolo[1,2c]Imidazole-1′,2(1H,2′H)-diones. US 20120071499

    Google Scholar 

  84. Pfafferott G, Oberhammer H, Boggs JE et al (1985) Geometric structure and pseudorotational potential of pyrrolidine. An ab initio and electron diffraction study. J Am Chem Soc 107:2305–2309

    Article  CAS  Google Scholar 

  85. Cremer D, Pople JA (1975) General definition of ring puckering coordinates. J Am Chem Soc 97:1354–1358

    Article  CAS  Google Scholar 

  86. Madison V (1977) Flexibility of the pyrrolidine ring in proline peptides. Biopolymers 16:2671–2692

    Article  CAS  Google Scholar 

  87. Ramachandran GN, Lakshminarayanan AV, Balasubramanian R et al (1970) Studies on the conformation of amino acids XII. Energy calculations on prolyl residue. Biochim Biophys Acta (BBA)—Protein Struct 221:165–181

    Article  CAS  Google Scholar 

  88. DeTar DF, Luthra NP (1977) Conformations of proline. J Am Chem Soc 99:1232–1244

    Article  CAS  Google Scholar 

  89. Bertamino A, Soprano M, Musella S et al (2013) Synthesis, in vitro, and in cell studies of a new series of [Indoline-3,2′-thiazolidine]-based p53 modulators. J Med Chem 56:5407–5421

    Article  CAS  PubMed  Google Scholar 

  90. Ivanenkov YA, Vasilevski SV, Beloglazkina EK et al (2015) Design, synthesis and biological evaluation of novel potent MDM2/p53 small-molecule inhibitors. Bioorg Med Chem Lett 25:404–409

    Article  CAS  PubMed  Google Scholar 

  91. Kumar A, Gupta G, Bishnoi AK et al (2015) Design and synthesis of new bioisosteres of spirooxindoles (MI-63/219) as anti-breast cancer agents. Bioorg Med Chem 23:839–848

    Article  CAS  PubMed  Google Scholar 

  92. Li Bo ZR, He Gu, Li Guo, Wei Huang (2013) Molecular docking, QSAR and molecular dynamics simulation on spiro-oxindoles as MDM2 inhibitors. Acta Chim Sinica 71:1396–1403

    Article  CAS  Google Scholar 

  93. Ribeiro CJA, Amaral JD, Rodrigues CMP et al (2014) Synthesis and evaluation of spiroisoxazoline oxindoles as anticancer agents. Bioorg Med Chem 22:577–584

    Article  CAS  PubMed  Google Scholar 

  94. Huang W, Cai L, Chen C et al (2015) Computational analysis of spiro-oxindole inhibitors of the MDM2-p53 interaction: insights and selection of novel inhibitors. J Biomol Struct Dyn 34:1–11

    Google Scholar 

  95. Zhou R, Wu Q, Guo M et al (2015) Organocatalytic cascade reaction for the asymmetric synthesis of novel chroman-fused spirooxindoles that potently inhibit cancer cell proliferation. Chem Commun 51:13113–13116

    Article  CAS  Google Scholar 

  96. Wang S, Jiang Y, Wu S et al (2016) Meeting organocatalysis with drug discovery: asymmetric synthesis of 3,3′-Spirooxindoles fused with tetrahydrothiopyrans as novel p53-MDM2 inhibitors. Org Lett 18:1028–1031

    Article  CAS  PubMed  Google Scholar 

  97. Patil SP (2013) FOLICation: engineering approved drugs as potential p53–MDM2 interaction inhibitors for cancer therapy. Med Hypotheses 81:1104–1107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81430085, 21372206, and 81703326, National Key Research Program of Proteins (No. 2016YFA0501800), Key Research Program of Henan Province (No. 1611003110100), Scientific Program of Henan Province (No. 182102310123), China Postdoctoral Science Foundation (No. 2018M630840), Key Research Program of Higher Education of Henan Province(No.18B350009), and the Starting Grant of Zhengzhou University (No. 32210533).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Min Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, B., Liu, HM. (2018). The Development of New Spirooxindoles Targeting the p53–MDM2 Protein-Protein Interactions for Cancer Therapy. In: Sheng, C., Georg, G. (eds) Targeting Protein-Protein Interactions by Small Molecules. Springer, Singapore. https://doi.org/10.1007/978-981-13-0773-7_8

Download citation

Publish with us

Policies and ethics