Skip to main content

Advertisement

Log in

FeMnNiAl Iron-Based Shape Memory Alloy: Promises and Challenges

  • Technical Article
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

Among all shape memory alloys, the iron-based FeMnNiAl has emerged as one of the most promising compositions with a huge superelasticity temperature window (> 400 °C). In this article, we first point to the high local transformation strains (> 10%) and high transformation stress levels (500–700 MPa) that result in a large work output. When subjected to either tensile or compressive loading, the transformation stress exhibits very small temperature dependence (Clausius–Clapeyron slope less than 0.2 MPa/°C in compression and 0.5 MPa/°C in tension) and an extremely small adiabatic temperature rise (less than 1 °C) during transformation. The complexity in transformation behavior associated with the presence of grain boundaries (GBs) is discussed. In particular, the work provides insight in the localization occurring at GBs due to transformation front–GB interactions and the potential cracking that can degrade fatigue performance. Overall, this work provides a deeper insight into the deformation response, advantages, and drawbacks of FeMnNiAl SMA. The comprehensive handling of various aspects of this alloy system paves the way for the development of future iron-based shape memory alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hornbogen E, Jost N (1991) Alloys of iron and reversibility of martensitic transformations. Le J Phys IV 1:C4-199–C4-210. https://doi.org/10.1051/jp4:1991430

    Google Scholar 

  2. Koval YN, Kokorin VV, Khandros LG (1979) Shape memory effect in Fe-Ni-Co-Ti alloys. Phys Met Met 48:162–164

    Google Scholar 

  3. Maki T, Kobayashi K, Minato M, Tamura I (1984) Thermoelastic martensite in an ausaged Fe-Ni-Ti-Co alloy. Scr Metall 18:1105–1109. https://doi.org/10.1016/0036-9748(84)90187-X

    Article  Google Scholar 

  4. Sehitoglu H, Karaman I, Zhang X et al (2001) Deformation of FeNiCoTi shape memory single crystals. Scr Mater 44:779–784. https://doi.org/10.1016/S1359-6462(00)00657-6

    Article  Google Scholar 

  5. Sehitoglu H, Zhang XY, Kotil T et al (2002) Shape memory behavior of FeNiCoTi single and polycrystals. Metall Mater Trans A 33:3661–3672. https://doi.org/10.1007/s11661-002-0240-0

    Article  Google Scholar 

  6. Sehitoglu H, Efstathiou C, Maier HJ, Chumlyakov Y (2005) Magnetization, shape memory and hysteresis behavior of single and polycrystalline FeNiCoTi. J Magn Magn Mater 292:89–99. https://doi.org/10.1016/J.JMMM.2004.10.101

    Article  Google Scholar 

  7. Abuzaid W, Sehitoglu H (2018) Superelasticity and functional fatigue of single crystalline FeNiCoAlTi iron-based shape memory alloy. Mater Des 160:642–651. https://doi.org/10.1016/J.MATDES.2018.10.003

    Article  Google Scholar 

  8. Chen Q, Andrawes B, Sehitoglu H (2014) Thermomechanical testing of FeNiCoTi shape memory alloy for active confinement of concrete. Smart Mater Struct 23:055015. https://doi.org/10.1088/0964-1726/23/5/055015

    Article  Google Scholar 

  9. Kuts OA, Panchenko MY, Kireeva IV, Chumlyakov YI (2015) Shape Memory Effect and Superelasticity in [001] Single Crystals of FeNiCoAlNb(B) Alloys. IOP Conf Ser Mater Sci Eng 93:012034. https://doi.org/10.1088/1757-899X/93/1/012034

    Article  Google Scholar 

  10. Chumlyakov YI, Kireeva IV, Kutz OA et al (2016) Unusual reversible twinning modes and giant superelastic strains in FeNiCoAlNb single crystals. Scr Mater 119:43–46. https://doi.org/10.1016/J.SCRIPTAMAT.2016.03.027

    Article  Google Scholar 

  11. Omori T, Ando K, Okano M et al (2011) Superelastic effect in polycrystalline ferrous alloys. Science 80(333):68–71. https://doi.org/10.1126/science.1202232

    Article  Google Scholar 

  12. Tanaka Y, Himuro Y, Kainuma R et al (2010) Ferrous polycrystalline shape-memory. Science 327(5972):1488–1491

    Article  Google Scholar 

  13. Wang J, Sehitoglu H (2014) Dislocation slip and twinning in Ni-based L12 type alloys. Intermetallics 52:20–31. https://doi.org/10.1016/J.INTERMET.2014.03.009

    Article  Google Scholar 

  14. Tseng LW, Ma J, Wang SJ et al (2015) Superelastic response of a single crystalline FeMnAlNi shape memory alloy under tension and compression. Acta Mater 89:374–383. https://doi.org/10.1016/J.ACTAMAT.2015.01.009

    Article  Google Scholar 

  15. Vollmer M, Krooß P, Kriegel MJ et al (2016) Cyclic degradation in bamboo-like Fe–Mn–Al–Ni shape memory alloys—The role of grain orientation. Scr Mater 114:156–160. https://doi.org/10.1016/J.SCRIPTAMAT.2015.12.007

    Article  Google Scholar 

  16. Vollmer M, Segel C, Krooß P et al (2015) On the effect of gamma phase formation on the pseudoelastic performance of polycrystalline Fe–Mn–Al–Ni shape memory alloys. Scr Mater 108:23–26. https://doi.org/10.1016/J.SCRIPTAMAT.2015.06.013

    Article  Google Scholar 

  17. Sato A, Chishima E, Soma K, Mori T (1982) Shape memory effect in γ⇄ϵ transformation in Fe-30Mn-1Si alloy single crystals. Acta Metall 30:1177–1183. https://doi.org/10.1016/0001-6160(82)90011-6

    Article  Google Scholar 

  18. Watanabe Y, Mori Y, Sato A (1993) Training effect in Fe-Mn-Si shape-memory alloys. J Mater Sci 28:1509–1514. https://doi.org/10.1007/BF00363341

    Article  Google Scholar 

  19. Karaca HE, Turabi AS, Chumlyakov YI et al (2016) Superelasticity of [001]-oriented Fe42·6Ni27.9Co17·2Al9.9Nb2.4 ferrous shape memory alloys. Scr Mater 120:54–57. https://doi.org/10.1016/J.SCRIPTAMAT.2016.04.008

    Article  Google Scholar 

  20. Ma J, Hornbuckle BC, Karaman I et al (2013) The effect of nanoprecipitates on the superelastic properties of FeNiCoAlTa shape memory alloy single crystals. Acta Mater 61:3445–3455. https://doi.org/10.1016/J.ACTAMAT.2013.02.036

    Article  Google Scholar 

  21. Krooß P, Vollmer M, Somsen C, et al (2017) Functional properties of Fe-based shape memory alloys containing finely dispersed precipitates. In: SMAR 2017 - Fourth conference on smart monitoring, assessment and rehabilitation of civil structures. pp 2–9

  22. Ojha A, Sehitoglu H (2016) Transformation stress modeling in new Fe-Mn-Al-Ni shape memory alloy. Int J Plast 86:93–111. https://doi.org/10.1016/j.ijplas.2016.08.003

    Article  Google Scholar 

  23. Krooß P, Kadletz PM, Somsen C et al (2016) Cyclic degradation of Co49Ni21Ga30 high-temperature shape memory alloy: on the roles of dislocation activity and chemical order. Shap Mem Superelasticity 2:37–49. https://doi.org/10.1007/s40830-015-0049-5

    Article  Google Scholar 

  24. Chumlyakov YI, Kireeva IV, Panchenko EY et al (2008) High-temperature superelasticity in CoNiGa, CoNiAl, NiFeGa, and TiNi monocrystals. Russ Phys J 51:1016–1036. https://doi.org/10.1007/s11182-009-9143-5

    Article  Google Scholar 

  25. Zhang Y, You Y, Moumni Z et al (2017) Experimental and theoretical investigation of the frequency effect on low cycle fatigue of shape memory alloys. Int J Plast 90:1–30. https://doi.org/10.1016/J.IJPLAS.2016.11.012

    Article  Google Scholar 

  26. Nemat-Nasser S, Choi J-Y, Guo W-G, Isaacs JB (2005) Very high strain-rate response of a NiTi shape-memory alloy. Mech Mater 37:287–298. https://doi.org/10.1016/J.MECHMAT.2004.03.007

    Article  Google Scholar 

  27. Omori T, Kainuma R (2017) Martensitic transformation and superelasticity in Fe–Mn–Al-based shape memory alloys. Shape Mem Superelasticity 3:322–334. https://doi.org/10.1007/s40830-017-0129-9

    Article  Google Scholar 

  28. Vollmer M, Kriegel MJ, Walnsch A et al (2019) On the microstructural and functional stability of Fe-Mn-Al-Ni at ambient and elevated temperatures. Scr Mater 162:442–446. https://doi.org/10.1016/J.SCRIPTAMAT.2018.12.008

    Article  Google Scholar 

  29. Vollmer M, Kriegel MJ, Krooß P et al (2017) Cyclic degradation behavior of 〈001〉-oriented Fe–Mn–Al–Ni single crystals in tension. Shape Mem Superelasticity 3:335–346. https://doi.org/10.1007/s40830-017-0117-0

    Article  Google Scholar 

  30. Ozcan H, Ma J, Wang SJ et al (2017) Effects of cyclic heat treatment and aging on superelasticity in oligocrystalline Fe-Mn-Al-Ni shape memory alloy wires. Scr Mater 134:66–70. https://doi.org/10.1016/j.scriptamat.2017.02.023

    Article  Google Scholar 

  31. Ozcan H, Ma J, Karaman I et al (2018) Microstructural design considerations in Fe-Mn-Al-Ni shape memory alloy wires: effects of natural aging. Scr Mater 142:153–157. https://doi.org/10.1016/J.SCRIPTAMAT.2017.07.033

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by Nyquist Chair Funds of University of Illinois. Specimen preparation by FIB and TEM analyses were carried out in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois. Financial support by the German Research Foundation (Project No. 250216343 (NI1327/7-3)) and by University of Kassel provided in the framework of the project SmartCon is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Abuzaid or H. Sehitoglu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1331 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abuzaid, W., Wu, Y., Sidharth, R. et al. FeMnNiAl Iron-Based Shape Memory Alloy: Promises and Challenges. Shap. Mem. Superelasticity 5, 263–277 (2019). https://doi.org/10.1007/s40830-019-00230-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-019-00230-9

Keywords

Navigation