Skip to main content
Log in

Cyclic Degradation Behavior of \( \langle 001 \rangle \)-Oriented Fe–Mn–Al–Ni Single Crystals in Tension

  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

In the present study, functional fatigue behavior of a near 〈001〉-oriented Fe–Mn–Al–Ni single crystal was investigated under tensile load. An incremental strain test up to 3.5% strain and cyclic tests up to 25 cycles revealed rapid pseudoelastic degradation. Progressive microstructural degradation was studied by in situ scanning electron microscopy. The results show a partially inhibited reactivation of previously formed martensite and proceeding activation of untransformed areas in subsequent cycles. The preferentially formed martensite variants were identified by means of Schmid factor calculation and the Kurdjumov–Sachs relationship. Post mortem transmission electron microscopy investigations shed light on the prevailing degradation mechanisms. Different types of dislocations were found promoting the progressive degradation during cyclic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sato A, Chishima E, Soma K et al (1982) Shape memory effect in γ ⇄ ϵ transformation in Fe–30Mn–1Si alloy single crystals. Acta Metall 30(6):1177–1183. doi:10.1016/0001-6160(82)90011-6

    Article  Google Scholar 

  2. Sato A, Chishima E, Yamaji Y et al (1984) Orientation and composition dependencies of shape memory effect in Fe–Mn–Si alloys. Acta Metall 32(4):539–547. doi:10.1016/0001-6160(84)90065-8

    Article  Google Scholar 

  3. Wayman CM, Ōtsuka K (1999) Shape memory materials (with corrections), 1 pbk edn. Cambridge University Press, Cambridge

    Google Scholar 

  4. Kajiwara S (1999) Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys. Mater Sci Eng A 273–275:67–88. doi:10.1016/S0921-5093(99)00290-7

    Article  Google Scholar 

  5. Sato A, Kubo H, Maruyama T (2006) Mechanical properties of Fe–Mn–Si based SMA and the application. Mater Trans 47(3):571–579. doi:10.2320/matertrans.47.571

    Article  Google Scholar 

  6. Hayashi R, Murray SJ, Marioni M et al (2000) Magnetic and mechanical properties of FeNiCoTi magnetic shape memory alloy. Sens Actuators A 81(1–3):219–223. doi:10.1016/S0924-4247(99)00127-2

    Article  Google Scholar 

  7. Tanaka Y, Himuro Y, Omori T et al (2006) Martensitic transformation and shape memory effect in ausaged Fe–Ni–Si–Co alloys. Mater Sci Eng A 438–440:1030–1035. doi:10.1016/j.msea.2006.02.103

    Article  Google Scholar 

  8. Sehitoglu H, Karaman I, Zhang X et al (2001) Deformation of FeNiCoTi shape memory single crystals. Scr Mater 44(5):779–784. doi:10.1016/S1359-6462(00)00657-6

    Article  Google Scholar 

  9. Maki T, Kobayashi K, Minato M et al (1984) Thermoelastic martensite in an ausaged Fe–Ni–Ti–Co alloy. Scr Metall 18(10):1105–1109. doi:10.1016/0036-9748(84)90187-X

    Article  Google Scholar 

  10. Tanaka Y, Himuro Y, Kainuma R et al (2010) Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 327(5972):1488–1490. doi:10.1126/science.1183169

    Article  Google Scholar 

  11. Chumlyakov YI, Kireeva IV, Poklonov VV et al (2014) The shape-memory effect and superelasticity in single-crystal ferromagnetic alloy FeNiCoAlTi. Tech Phys Lett 40(9):747–750. doi:10.1134/S1063785014090053

    Article  Google Scholar 

  12. Tseng LW, Ma J, Karaman I et al (2015) Superelastic response of the FeNiCoAlTi single crystals under tension and compression. Scr Mater 101:1–4. doi:10.1016/j.scriptamat.2014.12.021

    Article  Google Scholar 

  13. Omori T, Abe S, Tanaka Y et al (2013) Thermoelastic martensitic transformation and superelasticity in Fe–Ni–Co–Al–Nb–B polycrystalline alloy. Scr Mater 69(11–12):812–815. doi:10.1016/j.scriptamat.2013.09.006

    Article  Google Scholar 

  14. Lee D, Omori T, Kainuma R (2014) Ductility enhancement and superelasticity in Fe–Ni–Co–Al–Ti–B polycrystalline alloy. J Alloy Compd 617:120–123. doi:10.1016/j.jallcom.2014.07.136

    Article  Google Scholar 

  15. Krooß P, Niendorf T, Karaman I et al (2012) Cyclic deformation behavior of aged FeNiCoAlTa single crystals. Funct Mater Lett 05(04):1250045. doi:10.1142/S1793604712500452

    Article  Google Scholar 

  16. Omori T, Ando K, Okano M et al (2011) Superelastic effect in polycrystalline ferrous alloys. Science 333(6038):68–71. doi:10.1126/science.1202232

    Article  Google Scholar 

  17. Vollmer M, Krooß P, Karaman I et al (2017) On the effect of titanium on quenching sensitivity and pseudoelastic response in Fe–Mn–Al–Ni-base shape memory alloy. Scr Mater 126:20–23. doi:10.1016/j.scriptamat.2016.08.002

    Article  Google Scholar 

  18. Kwon P, Fujieda S, Shinoda K et al (2011) Martensitic transformation and texture in novel bcc Fe–Mn–Al–Ni–Cr alloys. Proc Eng 10:2214–2219. doi:10.1016/j.proeng.2011.04.366

    Article  Google Scholar 

  19. Sehitoglu H, Zhang XY, Kotil T et al (2002) Shape memory behavior of FeNiCoTi single and polycrystals. Metall Mater Trans A 33(12):3661–3672. doi:10.1007/s11661-002-0240-0

    Article  Google Scholar 

  20. Sehitoglu H, Efstathiou C, Maier HJ et al (2006) Hysteresis and deformation mechanisms of transforming FeNiCoTi. Mech Mater 38(5–6):538–550. doi:10.1016/j.mechmat.2005.05.024

    Article  Google Scholar 

  21. Kokorin VV, Samsonov YI, Chernenko VA et al (1989) Superelasticity in Fe–Ni–Co–Ti alloys. Phys Met Metall 67:202–204

    Google Scholar 

  22. Omori T, Nagasako M, Okano M et al (2012) Microstructure and martensitic transformation in the Fe–Mn–Al–Ni shape memory alloy with B2-type coherent fine particles. Appl Phys Lett 101(23):231907. doi:10.1063/1.4769375

    Article  Google Scholar 

  23. Tseng LW, Ma J, Hornbuckle BC et al (2015) The effect of precipitates on the superelastic response of [100] oriented FeMnAlNi single crystals under compression. Acta Mater 97:234–244. doi:10.1016/j.actamat.2015.06.061

    Article  Google Scholar 

  24. Omori T, Okano M, Kainuma R (2013) Effect of grain size on superelasticity in Fe–Mn–Al–Ni shape memory alloy wire. APL Materials 1(3):32103. doi:10.1063/1.4820429

    Article  Google Scholar 

  25. Omori T, Kusama T, Kawata S et al (2013) Abnormal grain growth induced by cyclic heat treatment. Science 341(6153):1500–1502. doi:10.1126/science.1238017

    Article  Google Scholar 

  26. Sugimoto S, Satoh H, Okada M et al (1991) Evolution process of 〈100〉 texture in Fe–Cr–Co–Mo permanent magnets. Mater Trans JIM 32(6):557–561

    Article  Google Scholar 

  27. Sugimoto S, Satoh H, Okada M et al (1991) The development of 〈100〉 texture in Fe–Cr–Co–Mo permanent magnet alloys. IEEE Trans Magn 27(3):3412–3419

    Article  Google Scholar 

  28. Vollmer M, Segel C, Krooß P et al (2015) On the effect of gamma phase formation on the pseudoelastic performance of polycrystalline Fe–Mn–Al–Ni shape memory alloys. Scr Mater 108:23–26. doi:10.1016/j.scriptamat.2015.06.013

    Article  Google Scholar 

  29. Vollmer M, Krooß P, Kriegel MJ et al (2016) Cyclic degradation in bamboo-like Fe–Mn–Al–Ni shape memory alloys—The role of grain orientation. Scr Mater 114:156–160. doi:10.1016/j.scriptamat.2015.12.007

    Article  Google Scholar 

  30. Omori T, Iwaizako H, Kainuma R (2016) Abnormal grain growth induced by cyclic heat treatment in Fe–Mn–Al–Ni superelastic alloy. Mater Des 101:263–269. doi:10.1016/j.matdes.2016.04.011

    Article  Google Scholar 

  31. Ueland SM, Chen Y, Schuh CA (2012) Oligocrystalline shape memory alloys. Adv Funct Mater 22(10):2094–2099. doi:10.1002/adfm.201103019

    Article  Google Scholar 

  32. Ueland SM, Schuh CA (2012) Superelasticity and fatigue in oligocrystalline shape memory alloy microwires. Acta Mater 60(1):282–292. doi:10.1016/j.actamat.2011.09.054

    Article  Google Scholar 

  33. Ueland SM, Schuh CA (2013) Grain boundary and triple junction constraints during martensitic transformation in shape memory alloys. J Appl Phys 114(5):53503. doi:10.1063/1.4817170

    Article  Google Scholar 

  34. Tseng LW, Ma J, Wang SJ et al (2016) Effects of crystallographic orientation on the superelastic response of FeMnAlNi single crystals. Scr Mater 116:147–151. doi:10.1016/j.scriptamat.2016.01.032

    Article  Google Scholar 

  35. Tseng LW, Ma J, Wang SJ et al (2015) Superelastic response of a single crystalline FeMnAlNi shape memory alloy under tension and compression. Acta Mater 89:374–383. doi:10.1016/j.actamat.2015.01.009

    Article  Google Scholar 

  36. Simon T, Kröger A, Somsen C et al (2010) On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys. Acta Mater 58(5):1850–1860. doi:10.1016/j.actamat.2009.11.028

    Article  Google Scholar 

  37. Gall K, Maier H (2002) Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta Mater 50(18):4643–4657. doi:10.1016/S1359-6454(02)00315-4

    Article  Google Scholar 

  38. Gall K, Sehitoglu H, Anderson R et al (2001) On the mechanical behavior of single crystal NiTi shape memory alloys and related polycrystalline phenomenon. Mater Sci Eng A 317(1–2):85–92. doi:10.1016/S0921-5093(01)01183-2

    Article  Google Scholar 

  39. Krooß P, Somsen C, Niendorf T et al (2014) Cyclic degradation mechanisms in aged FeNiCoAlTa shape memory single crystals. Acta Mater 79:126–137. doi:10.1016/j.actamat.2014.06.019

    Article  Google Scholar 

  40. Ma J, Kockar B, Evirgen A et al (2012) Shape memory behavior and tension–compression asymmetry of a FeNiCoAlTa single-crystalline shape memory alloy. Acta Mater 60(5):2186–2195. doi:10.1016/j.actamat.2011.12.047

    Article  Google Scholar 

  41. Stroz D, Chrobak D (2011) Effect of internal strain on martensitic transformations in NiTi shape memory alloys. Mater Trans 52(3):358–363. doi:10.2320/matertrans.MB201012

    Article  Google Scholar 

  42. Dadda J, Maier HJ, Karaman I et al (2006) Pseudoelasticity at elevated temperatures in [001] oriented Co49Ni21Ga30 single crystals under compression. Scr Mater 55(8):663–666. doi:10.1016/j.scriptamat.2006.07.005

    Article  Google Scholar 

  43. Dadda J, Canadinc D, Maier HJ et al (2007) Stress–strain–temperature behaviour of [001] single crystals of Co 49 Ni 21 Ga 30 ferromagnetic shape memory alloy under compression. Philos Mag 87(16):2313–2322. doi:10.1080/14786430601175524

    Article  Google Scholar 

  44. Dadda J, Maier HJ, Karaman I et al (2009) Cyclic deformation and austenite stabilization in Co35Ni35Al30 single crystalline high-temperature shape memory alloys. Acta Mater 57(20):6123–6134. doi:10.1016/j.actamat.2009.08.038

    Article  Google Scholar 

  45. Dadda J, Maier HJ, Niklasch D et al (2008) Pseudoelasticity and cyclic stability in Co49Ni21Ga30 shape-memory alloy single crystals at ambient temperature. Metall Mater Trans A 39(9):2026–2039. doi:10.1007/s11661-008-9543-0

    Article  Google Scholar 

  46. Dadda J, J-rgen Maier H, Karaman I et al (2010) High-temperature in situ microscopy during stress-induced phase transformations in Co 49 Ni 21 Ga 30 shape memory alloy single crystals. Int J Mater Res 101(12):1–11. doi:10.3139/146.110427

    Article  Google Scholar 

  47. Zhang J, Somsen C, Simon T et al (2012) Leaf-like dislocation substructures and the decrease of martensitic start temperatures: a new explanation for functional fatigue during thermally induced martensitic transformations in coarse-grained Ni-rich Ti–Ni shape memory alloys. Acta Mater 60(5):1999–2006. doi:10.1016/j.actamat.2011.12.014

    Article  Google Scholar 

  48. Kajiware S, Owen WS (1973) Substructure of austenite formed by a partial reverse martensitic transformation in an Fe–Pt alloy. Metall Trans A 4(8):1988–1990. doi:10.1007/BF02665428

    Article  Google Scholar 

  49. Kajiwara S, Owen WS (1974) The reversible martensite transformation in iron-platinum alloys near Fe3Pt. Metall Trans A 5(9):2047–2061. doi:10.1007/BF02644498

    Article  Google Scholar 

  50. Kajiwara S, Owen WS (1977) The martensite-austenite interface and the thickness of twins in martensite in Fe3Pt. Scr Metall 11(2):137–142. doi:10.1016/0036-9748(77)90293-9

    Article  Google Scholar 

  51. Kikuchi T, Kajiwara S (1993) Shape memory effect and related transformation behavior in an unausaged Fe–Ni–Co–Ti alloy. Mater Trans JIM 34(10):907–918. doi:10.2320/matertrans1989.34.907

    Article  Google Scholar 

  52. Kajiwara S, Kikuchi T (2006) Reversible movement of the austenite-martensite interface and dislocation structures in reverse-transformed austenite in Fe–Ni–C alloys. Philos Mag A 48(4):509–526. doi:10.1080/01418618308234910

    Article  Google Scholar 

  53. Maki T, Furutani S, Tamura I (1989) Shape memory effect related to thin plate martensite with large thermal hysteresis in ausaged Fe–Ni–Co–Ti alloy. ISIJ Int 29(5):438–445. doi:10.2355/isijinternational.29.438

    Article  Google Scholar 

  54. Djaka KS, Villani A, Taupin V et al (2017) Field dislocation mechanics for heterogeneous elastic materials: a numerical spectral approach. Comput Methods Appl Mech Eng 315:921–942. doi:10.1016/j.cma.2016.11.036

    Article  Google Scholar 

  55. Egerton RF (2011) Electron energy-loss spectroscopy in the electron microscope. Springer, Boston

    Book  Google Scholar 

  56. La Roca P, Medina J, Sobrero CE et al (2015) Effects of B2 nanoprecipitates on the phase stability and pseudoelastic behavior of Fe–Mn–Al–Ni shape memory alloys. MATEC Web Conf 33:4005. doi:10.1051/matecconf/20153304005

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by Deutsche Forschungsgemeinschaft (Contract No. NI 1327/7-1 and Contract No. KR 4855/1-1) is gratefully acknowledged. The work of Y.C. was carried out with financial support from the Ministry of Science and Education of Russian Federation (State Task # 16.6554.2017/6.7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vollmer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vollmer, M., Kriegel, M.J., Krooß, P. et al. Cyclic Degradation Behavior of \( \langle 001 \rangle \)-Oriented Fe–Mn–Al–Ni Single Crystals in Tension. Shap. Mem. Superelasticity 3, 335–346 (2017). https://doi.org/10.1007/s40830-017-0117-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-017-0117-0

Keywords

Navigation