Skip to main content

Advertisement

Log in

Mapping of land degradation using spectral angle mapper approach (SAM): the case of Inaouene watershed (Northeast Morocco)

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Soil erosion is one of the most critical hazards adversely affecting both environment and economy for all countries in the world. Several regions of Morocco suffer from the problem of soil erosion, notably the Rif and the Pre-Rif where the study area of this paper is located. The spectacular expansion of soil erosion processes in the Lahdar watershed is a worrying indicator of soil degradation. Geographic information systems and remote sensing are an excellent tool for analyzing and evaluating the risks of the expansion of soil degradation. The main objective of this paper is to assess spectral angle mapper (SAM) method and analyze their properties using geographic information system and image processing techniques in order to map the hazards of soil erosion. Land use and land cover dynamics demonstrate the relationship between human-induced development and the evolution of soil degradation and biodiversity conservation in a watershed. Therefore, an understanding of LULC factors is required for the implementation of environmental policies intended to foster a synergy between humans and the sustainability of their environment. The process of categorizing LULC was completed using the SAM technique, and the role of LULC in the dynamics of soil degradation was investigated using measurements of landscape fragmentation. For this purpose, Landsat 8 Operational Land Imager data (11 bands) with 30-m spatial resolution, 22 August –2017 were used, and classifiers for SAM were applied and evaluated. The findings of the study are seven main land cover categories: arboriculture (0.08%), cereal (35.05%), water (1.03%), forests (3.76%), residentials (4.61%), matorral-course (4.58%), and bare soils (50.89%). It should be noted that the bare soil class occupies half of the watershed area, making it vulnerable to the risks of soil degradation. Moreover, the results from this study will aid decision makers in better conservation planning of soil and water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdolmaleki M, Consens M, Esmaeili K (2022) Ore-waste discrimination using supervised and unsupervised classification of hyperspectral images. Remote Sens 14:6386. https://doi.org/10.3390/rs14246386

    Article  Google Scholar 

  • Alewell C, Borrelli P, Meusburger K, Panagos P (2019) Using the USLE: chances, challenges and limitations of soil erosion modelling. Int Soil Water Conserv Res 7(3):203e225. https://doi.org/10.1016/j.iswcr.2019.05.004

    Article  Google Scholar 

  • Ayele KF, Suryabhagavan KV, Sathishkumar B (2014) Assessment of habitat changes in Holeta watershed, central Oromiya, Ethiopia. Int J Earth Sci Eng 7(2014):1370–1375

    Google Scholar 

  • Bekele B, Gemi Y (2020) Soil erosion risk and sediment yield assessment with universal soil loss equation and GIS: in Dijo watershed, Rift valley Basin of Ethiopia. Model Earth Syst Environ 2021(7):273–291. https://doi.org/10.1007/s40808-020-01017-z

    Article  Google Scholar 

  • Benzougagh B, Meshram SG, Dridri A et al (2022) Identification of critical watershed at risk of soil erosion using morphometric and geographic information system analysis. Appl Water Sci 12:8. https://doi.org/10.1007/s13201-021-01532-z

    Article  Google Scholar 

  • Boardman JB (1995) Damage to property by runoff from agricultural land, South Downs, southern England 1976–1993. Geogr J 1995(161):177–191

    Article  Google Scholar 

  • Bou-imajjane L, Belfoul MA, Niacsu L, Stokes M, Costel CI, Anastasiei AM, Dipakama CM (2022) Key factor (s) triggering erosion in a semi-arid environment (Western High Atlas of Morocco). Model Earth Syst Environ. https://doi.org/10.1007/s40808-022-01475-7

    Article  Google Scholar 

  • Brahim B, Meshram SG, Abdallah D, Larbi B, Driss S, Khalid M, Khedher KM (2020) Mapping of soil sensitivity to water erosion by RUSLE model: case of the Inaouene watershed (Northeast Morocco). Arab J Geosci 13(21):1–15. https://doi.org/10.1007/s12517-020-06079-y

    Article  Google Scholar 

  • Chikhaoui M, Bonn F, Merzouk A, Lacaze B, Mejjati A M (2007) Cartographie de la dégradation des sols à l’aide des approches du spectral angle mapper et des indices spectraux en utilisant des données Aster. Revue Télédétection, 7:2, 3–4

    Google Scholar 

  • Crosta AP, Sabine C, Taranik JV (1998) Hydrothermal alteration mapping at Bodie, California, using AVIRIS hyperspectral data. Remote Sens Environ 65:309–319

    Article  Google Scholar 

  • Das S, Chatterjee S, Rajbanshi J (2022) Responses of soil organic carbon to conservation practices including climate-smart agriculture in tropical and subtropical regions: a meta-analysis Sci Total Environ 805 (2022), https://doi.org/10.1016/j.scitotenv.2021.150428

    Article  Google Scholar 

  • De Carvalho OA, Meneses PR (2000) Spectral correlation mapper (SCM); an improvement on the spectral angle mapper (SAM). Summaries of the 9thJPL airborne earth science workshop, JPL Publication 00-18

  • Ding Y, Tang J, Guo F (2016) Predicting protein-protein interactions via multivariate mutual information of protein sequences. BMC Bioinform 17:398. https://doi.org/10.1186/s12859-016-1253-9

    Article  Google Scholar 

  • Ebodé VB (2023) Land surface temperature variation in response to land use modes changes: The case of mefou river sub-basin (Southern Cameroon). Sustainability, 15(1):864. https://doi.org/10.3390/su15010864

    Article  Google Scholar 

  • Eskandari S, Sarab SAM (2022) Mapping land cover and forest density in Zagros forests of Khuzestan province in Iran: a study based on Sentinel-2, Google Earth and field data. Ecol Inform 70:101727. https://doi.org/10.1016/j.ecoinf.2022.101727

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Helkowski JH (2005) Global consequences of land use. Science 309(5734):570–574

    Article  Google Scholar 

  • Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80:185–201. https://doi.org/10.1016/S0034-4257(01)00295-4

    Article  Google Scholar 

  • Ganasri BP, Ramesh H (2016) of soil erosion by RUSLE model using remote sensing and GIS—a case study of Nethravathi Basin. Geosci Front 7:953–996. https://doi.org/10.1016/j.gsf.2015.10.007

    Article  Google Scholar 

  • El Garouani A, Chen H, Lewis L, Tribak A, Abharour M (2008) Cartographie de l'utilisation du sol et de l'érosion nette à partir d'images satellitaires et du SIG Idrisi au nord-est du Maroc. Télédétection 8(3):193–201

  • Girouard G, Bannari A, El Harti A, Desrochers A (2004) Validated spectral angle mapper algorithm for geological mapping: comparative study between QuickBird and Landsat-TM. In: XXth ISPRS congress, geo-imagery bridging continents, Istanbul, Turkey, pp 12–23

  • Gonçalves SI, De Munck JC, Pouwels PJW, Schoonhoven R, Kuijer JPA, Maurits NM, Da Silva FL (2006) Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: inter-subject variability. Neuroimage 30(1):203–213

    Article  Google Scholar 

  • Haregeweyn N, Tsunekawa A, Nyssen J, Poesen J, Tsubo M, FTsegaye D, Schütt MB, Adgo E, Tegegne F (2015) Soil erosion and conservation in Ethiopia: a review. Prog Phys Geogr 39:750–774

  • Hunter EL, Power CH (2002) An assessment of two classification methods for mapping thames estuary intertidal habitats using CASI data. Int J Remote Sens 23(15):2989–3008

    Article  Google Scholar 

  • Kathwas AK, Saur R (2022) Assessment of land degradation dynamics using spectral angle mapper method and demographic analytics. In: Chakravarthy VVSSS, Flores-Fuentes W, Bhateja V, Biswal B (eds) Advances in micro-electronics, embedded systems and IoT. Lecture notes in electrical engineering, vol 838. Springer, Singapore. https://doi.org/10.1007/978-981-16-8550-7_21

  • Khadse GK, Vijay R, Labhasetwar PK (2015) Prioritization of catchments based on soil erosion using remote sensing and GIS. Environ Monit Assess 187:333. https://doi.org/10.1007/s10661-015-4545-z

    Article  Google Scholar 

  • Konukçu F, Albut S, Altürk B (2017) Land use/land cover change modelling of Ergene River Basin in western Turkey using CORINE land use/land cover data. Agron Res 15:435–443

    Google Scholar 

  • Kruse FA, Boardman JW, Lefkoff AB, Heidebrecht KB, Shapiro AT, Barloon PJ, Goetz AFH (1993) The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sens Environ 44:145–163

    Article  Google Scholar 

  • Ks R, Mishra AK, Bhattacharyya R (2016) Soil erosion risk assessment and spatial mapping using LANDSAT-7 ETM+ RUSLE, and GIS—a case study. Arab J Geosci 9(2016):288. https://doi.org/10.1007/s12517-015-2157-0

    Article  Google Scholar 

  • Li J, Carlson, BE, Lacis AA (2014) Application of spectral analysis techniques in the inter-comparaison of aerosol data, part 4: synthesized analysis of multisensor satellite and ground-based AOD measurments using combined maximum covariance analysis. Atmos Meas Tech 7:2531–2549. https://doi.org/10.5194/amt-7-2531-2014

  • Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28(5):823–870

    Article  Google Scholar 

  • Martinez-Casasnovas JA, Anto’n-Ferna’ndezRamos CMC (2003) Sediment production in large gullies of the Mediterranean area (NE Spain) from high-resolution digital elevation models and geographical information systems analysis. Earth Surf Process Landf 28:443–456

    Article  Google Scholar 

  • Mathur A, Foody GM (2008) Crop classification by a support vector machine with intelligently selected training data for an operational application. Int J Remote Sens 29:2227–1140

    Article  Google Scholar 

  • Mudaliar A (2022) Potential use of sentinel-2 data for discrimination of Tectona grandis L. healthy and non-healthy tree species using spectral angle mapper. Environ Sci Proc 22(1):13. https://doi.org/10.3390/IECF2022-13130

    Article  Google Scholar 

  • Nojarov P (2017) Circulation factors affecting precipitation over Bulgaria. Theor Appl Climatol 127:87–101

    Article  Google Scholar 

  • Ozsahin E, Duru U, Eroglu I (2018) Land use and land cover changes (LULCC), a key to understand soil erosion intensities in the maritsa basin. Water 10(3):335. https://doi.org/10.3390/w10030335

    Article  Google Scholar 

  • Pandey S, Kumar P, Zlatic M, Nautiyal R, Panwar VP (2021) Recent advances in assessment of soil erosion vulnerability in a watershed. Int Soil Water Conserv Res 9(3):305–318. https://doi.org/10.1016/j.iswcr.2021.03.001

    Article  Google Scholar 

  • Pierce LE, Bergen KM, Dobson MC, Ulaby FT (1998) Multitemporal landcover classification using SIR-C/X-SAR imagery. Remote Sens Environ 64:20–33

    Article  Google Scholar 

  • Plaza A, Martínez P, Plaza J, & Pérez R (2005) Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations.IEEE Trans Geosci Remote Sens 43(3):466–479. https://doi.org/10.1109/TGRS.2004.841417

    Article  Google Scholar 

  • Plaza J, Plaza AJ, Barra C (2009) Multi-channel morphological profiles for classification of hyperspectral images using support vector machines. Sensors 9(1):196-218. https://doi.org/10.3390/s90100196

    Article  Google Scholar 

  • Rashmi S, Addamani S (2014) Spectral angle mapper algorithm for remote sensing image classification. Int J Innov Sci Eng Technol 1:201–204. https://doi.org/10.1109/CISP.2013.6745277

    Article  Google Scholar 

  • Rawat, KS, Mishra AK, Bhattacharyya R (2016) Soil erosion risk assessment and spatial mapping using LANDSAT-7 ETM+, RUSLE, and GIS—a case study. Arab J Geosci 9:1–22. https://doi.org/10.1007/s12517-015-2157-0

    Article  Google Scholar 

  • Revuelta-Acosta JD, Guerrero-Luis ES, Terrazas-Rodriguez JE, Gomez-Rodriguez C, AlcaláPerea G (2022) Application of remote sensing tools to assess the land use and land cover change in Coatzacoalcos, Veracruz, Mexico. Appl Sci 2022:12. https://doi.org/10.3390/app12041882

    Article  Google Scholar 

  • Schwarz J, Staenz K (2001) Adaptive threshold for spectral matching of hyperspectral data. Can J Remote Sens 27(3):216–224

    Article  Google Scholar 

  • Shahriar S, Mountrakis HG (2017) Effect of classifier selction, reference sample size, reference class distribution and scene heterogeneity in per-pixel classification accuracy using 26 Landsat sites. Remote Sens Environ. https://doi.org/10.1016/j.rse.2017.09.03

    Article  Google Scholar 

  • Shi D, Yang X (2015) Support vector machines for land cover mapping from remote sensor imagery. In: Li J, Yang X (eds) Monitoring and modeling of global changes: a geomatics perspective, springer remote sensing/photogrammetry. Springer Science Business Media, Dordrecht, pp 265–279

  • Skakun S, Vermote E, Roger JC, Franch B (2017) Combined use of Landsat-8 and Sentinel-2A images for winter srop mapping and winter wheat yield assessment at regional scale. Geosciences 3(2):163–186. https://doi.org/10.3934/Geosci.2017.2.163

    Article  Google Scholar 

  • Small C (2004) Landsat ETM+ spectral mixing space. Remote Sens Environ 93:1–17

    Article  Google Scholar 

  • Tadesse L, Suryabhagavan KV, Sridhar G, Legesse G (2017) Land use and land cover changes and soil erosion in Yezat Watershed, North Western Ethiopia. Int Soil Water Conserv Res 5(2):85–94

    Article  Google Scholar 

  • Tribak A, El Garouani A, Abahrour M (2009) Evaluation quantitative de l’érosion hydrique sur les terrains marneux du Prérif oriental (Maroc): cas du sous bassin de l’oued Tlata. Science Et Changements Planétaires/Sécheresse 20(4):333–337

    Google Scholar 

  • Tribak A, El Garouani A, Abahrour M (2012) L’érosion hydrique dans les séries marneuses tertiaires du Prérif oriental: agents, processus et évaluation quantitative. Revue Marocaine Des Sciences Agronomiques Et Vétérinaires 1(1):47–52

    Google Scholar 

  • Tsegaye B (2019) Effect of land use and land cover changes on soil erosion in Ethiopia. Int J Agric Sci Food Technol 5(1):026–034. https://doi.org/10.17352/2455-815X.000038

    Article  Google Scholar 

  • Turner BL, Meyer WB, Skole DL (1994) Global land-use/land-cover change: towards an integrated study. Ambio Stockholm 23(1):91–95

    Google Scholar 

  • Van der Meer F, Vasquez-Torres M, Van Dijk PM (1997) Spectral characterization of ophiolite lithologies in the troodos ophiolite complex of cyprus and its potential in prospecting for massive sulphide deposits. Int J Remote Sens 18(6):1245–1257

    Article  Google Scholar 

  • Yang X (2011) Parameterizing support vector machines for land cover classification. Photogramm Eng Remote Sens 77(1):27–37

    Article  Google Scholar 

  • Yuhas RH, Goetz AFH, Boardman JW (1992) Discrimination among semi-arid. Landscape endmembers using the spectral angle mapper (SAM) algorithm. Summaries of the 4th JPL airborne earth science workshop, JPL publication, vol 92, no 41, pp 147–149

  • ZareNaghadehi S, Asadi M, Maleki M, Tavakkoli-Sabour SM, Van Genderen JL, Saleh SS (2021) Prediction of urban area expansion with implementation of MLC, SAM and SVMs’ classifiers incorporating artificial neural network using landsat data. ISPRS Int J Geo Inf 10(8):513. https://doi.org/10.3390/ijgi10080513

    Article  Google Scholar 

  • Zewdu S, Suryabhagavan KV, Balakrishnan M (2016) Land-use/land-cover dynamics in sego irrigation farm South Ethiopia using geospatial tools. J Saudi Soc Agric Sci 15:91–97

    Google Scholar 

  • Zhang XC, Nearing MA (2005) Impact of climate change on soil erosion, runoff, and wheat productivity in central Oklohoma. CATENA 61:185–195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahim Benzougagh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benzougagh, B., Meshram, S.G., Fellah, B.E. et al. Mapping of land degradation using spectral angle mapper approach (SAM): the case of Inaouene watershed (Northeast Morocco). Model. Earth Syst. Environ. 10, 221–231 (2024). https://doi.org/10.1007/s40808-023-01711-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-023-01711-8

Keywords

Navigation