Skip to main content

Advertisement

Log in

Mapping of soil sensitivity to water erosion by RUSLE model: case of the Inaouene watershed (Northeast Morocco)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The sources of land degradation in many watersheds are runoff and erosion. In order to delay this degradation resulting in the loss of soil fertility, a system for its quantification needs to be established. Erosion severely impacts our natural capital and requires several studies and prevention and management steps. This research focuses on validating the revised universal soil loss equation (RUSLE) method through evidence from remote sensing (RS) and the Geographic Information System (GIS) in the watershed of the Inaouene river upstream of the Idriss 1st dam in the Taza region (northeast of Morocco). In this context, the approach adopted was performed, consists in combining the revised universal soil loss equation (RUSLE) to quantify erosion and GIS to spatialize the factors responsible for water erosion and soil loss (climate, soil, vegetation, and topography) GIS to produce a map of erosion risk. The results achieved show that the Inaouene watershed is characterized by an average climatic aggressiveness, a sparse vegetation cover without any safeguards, moderate to high erodible soils with a maximum ranging from 50 to 150 t/h/year. Topography characterized by high (50%) to moderately broken reliefs. The human intervention remains the most mattering factor in the embrittlement and the accentuation of the soils vulnerability for erosion for every dominant natural factor. The results of this study could be of use in prioritizing areas for soil conservation measures and watershed development and management. It is a tool for decision-makers, planners, and decision-makers in soil and water conservation decision-making to implement anti-erosion strategies to reduce the impact of erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

USLE::

universal soil loss equation

GIS::

Geographical Information Systems

DEM:

digital elevation model

t/ha/year:

tonne/hectare/year

FAO:

Food and Agricultural Organization

P:

precipitation

Fig:

figure

Tab:

table

DTM:

digital terrain model

QGIS:

Quantum GIS

Avg:

average

SW:

sub-watershed

%:

percentage

References

  • Akinseye SA (2018) an assessment of soil erosion potential in the Klipriviersberg nature reserve using GIS and remote sensing techniques. Department of Geography, Environmental Management and Energy Studies. University of Johannesburg, 88p.

  • Al Karkouri J (2003) Dégradation du milieu naturel dans le bassin de Beni Boufrah (Rif Central-Maroc): analyse des facteurs et des processus, essai de quantification et modélisation spatiale. These doctorat d’État, université Mohamed V, Rabat, faculté des lettres, Rabat.

  • Anys H, Bonn F, Merzouk A (1992) Cartographie et calcul de l'érosion hydrique à l'aide de la télédétection et du SIG, cas du bassin versant d'Oued Arich (Settat, Maroc). Géo Observateur 2:37–51

    Google Scholar 

  • Arekhi S, Niazi Y, Kalteh AM (2012) Soil erosion and sediment yield modeling using RS and GIS techniques: a case study, Iran. Arab J Geosci 5(2):285–296. https://doi.org/10.1007/s12517-010-0220-4

    Article  Google Scholar 

  • Arnold JG, Fohrer N (2005) SWAT 2000: current capabilities and research opportunities in applied watershed modeling. Hydrol Process 19:563–572

  • Beasley DB (1977) ANSWERS: a mathematical model for simulating the effects of land use and management on water quality. Unpublished PhD. thesis, Purdue University, West Lafayette. 266 pp

  • Benmoussa M, Elyamani M, Saidi A (1993) Application de l’équation universelle de perte en sol au bassin versant de l’oued Tasrafet. Géo Observateur 3:59–70

    Google Scholar 

  • Benzougagh B, Boudad L, Dridri A, Sadkaoui D (2016) Utilisation Du Sig Dans L’analyse Morphometrique Et La Prioritisation Des Sous-Bassins Versants De Oued Inaouene (Nord-Est Du Maroc). Eur Sci J 12(6):266–289

    Google Scholar 

  • Benzougagh B, Dridri A, Boudad L, Kodad O, Sdkaoui D, Bouikbane H (2017) Evaluation of natural hazard of Inaouene Watershed River in Northeast of Morocco: Application of Morphometric and Geographic Information System approaches. Int J Innov Appl Stud 19(1):85–97

    Google Scholar 

  • Benzougagh B, Dridri A, Boudad L, Sdkaoui D, Baamar B (2019) Contribution of GIS and remote sensing for the evaluation of the physical characteristics of Inaouene watershed (northeast morocco) and their uses in the field of natural hazard management. Am J Innov Res Appl Sci 8(4):120–130

    Google Scholar 

  • Borrelli P, Robinson DA, Fleischer LR, Lugato E, Ballabio C, Alewell C, Bagarello V (2017) An assessment of the global impact of 21st century land use change on soil erosion. Nat Commun 8(1):1–13. https://doi.org/10.1038/s41467-017-02142-7

    Article  Google Scholar 

  • Dabral PP, Baithuri N, Pandey A (2008) Soil erosion assessment in a hilly catchment of North Eastern India using USLE, GIS and remote sensing. Water Resour Manag 22:1783–1798. https://doi.org/10.1007/s11269-008-9253-9

    Article  Google Scholar 

  • Dahmardeh Ghaleno MR, Meshram SG, Alvandi E (2020) Pragmatic approach for prioritization of flood and sedimentation hazard potential of watersheds. Soft Comput 24:15701–15714. https://doi.org/10.1007/s00500-020-04899-4

    Article  Google Scholar 

  • De Roo APJ, Cremers NHDT (1996) LISEM: a single event physics based hydrologic and soil erosion model for drainage basins. II. Sensitivity analysis, validation and application. Hydro Proc 10:1119–1126

  • Elalaoui A, Marrakchi C, Fekri A, Maimouni S, Aradi M (2015) Mise en place d’un modèle qualitatif pour la cartographie des zones à risque d'érosion hydrique dans la chaîne atlasique: cas du bassin versant de la Tessaoute amont. (Haut Atlas Central, Maroc). Eur Sci J 11(29):106–121

    Google Scholar 

  • El Garouani A, Chen H, Lewis L, Tribak A, Abharour M (2008) Cartographie de l'utilisation du sol et de l'érosion nette à partir d'images satellitaires et du sig idrisi au nord-est du maroc. Télédétection 8(3):193–201

    Google Scholar 

  • El Garouani A, Merzouk A, Jabrane R, Boussema MR (2005) Analyse spatiale de l'érosion en nappe et de l'infiltrabilité des sols dans le Pré-Rif marocain. Télédétection 5(1-2-3): 69–80

  • El Garouani A, Merzouk A, Ozer A (2003) Cartographie et évaluation quantitative de l'érosion hydrique au Prérif marocain. IAHS Publication, Wallingford, pp 380–388

    Google Scholar 

  • Evrard O, Cerdan O, Van Wesemael B, Chauvet M, Le Bissonnais Y, Raclot D, Bielders C (2009) Reliability of an expert-based runoff and erosion model: application of STREAM to different environments. Catena 78(2):129–141

  • FAO (2005) Report of the Conference of FAO, Thirty-third Session Rome, 19-26 November 2005, 143p

  • Forootan Danesh M, Dahmardeh Ghaleno MR, Alvandi E, Meshram SG, Kahya E (2020) Predicting the Impacts of Optimal Residential Development Scenario on Soil Loss Caused by Surface Runoff and Raindrops Using TOPSIS and WetSpa Models. Water Resour Manag 34:3257–3277. https://doi.org/10.1007/s11269-020-02611-7

    Article  Google Scholar 

  • Fu G, Chen S, McCool DK (2006) Modeling the impacts of no-till practice on soil erosion and sediment yield with RUSLE, SEDD, and ArcView GIS. Soil Tillage Res 85(1-2):38–49. https://doi.org/10.1016/j.still.2004.11.009

    Article  Google Scholar 

  • Gholami DM, Baharlouii M (2019) Monitoring long-term mangrove shoreline changes along the northern coasts of the Persian Gulf and the Oman Sea. Emerg Sci J 3(2):88–100. https://doi.org/10.28991/esj-2019-01172

    Article  Google Scholar 

  • Gomer D (1994) Flow and erosion in small watersheds in marly soils under Mediterranean climate. Karlsruhe University, Germany

  • Gomez JA, Battany M, Renschler CS, Fereres E (2003) Evaluating the impact of soil management on soil loss in olive orchards. Soil Use Manag 19(2):127–134

  • Hairshine PB, Rose CW (1992a) Modeling water erosion due to overland flow using physical principles. Sheet flow. Water Resour Res 28:237–243

  • Hairsine PB, Rose CW (1992b) Modeling water erosion due to overland flow using physical principles 2. Rill flow. Wat Resour Res 28(1):245–250

  • Hammad AA, Lundekvam H, Børresen T (2004) Adaptation of RUSLE in the Eastern Part of the Mediterranean Region. Environ Manag 34(6):829–841. https://doi.org/10.1007/s00267-003-0296-7

    Article  Google Scholar 

  • Heusch B (1970) L'érosion du Prérif: une étude quantitative de l'érosion hydraulique dans les collines marneuses du Prérif occidental.

  • Irvem A, Topaloglu F, Uygur V (2007) Estimating spatial distribution of soil loss over Seyhan River Basin in Turkey. J Hydrol 336(1–2):30–37. https://doi.org/10.1016/j.jhydrol.2006.12.009

    Article  Google Scholar 

  • Isa SFM, Azhar ATS, Aziman M (2018) Design, Operation and Construction of a Large Rainfall Simulator for the Field Study on Acidic Barren Slope. Civil. Eng J 4(8):1851–1857. https://doi.org/10.28991/cej-03091119

    Article  Google Scholar 

  • Issa LK, Lech-Hab KBH, Raissouni A, El Arrim A (2016) Cartographie quantitative du risque d’erosion des sols par approche SIG/USLE au niveau du bassin versant Kalaya (Maroc Nord Occidental). J Mater Environ Sci 7(8):2778–2795. https://doi.org/10.1186/s40562-017-0091-6

    Article  Google Scholar 

  • Kim JB, Saunders PF, Finn JT (2005) Rapid assessment of soil erosion in the Rio Lempa Basin, Central America, using the universal soil loss equation and geographic information systems. Environ Manag 36(6):872–885. https://doi.org/10.1007/s12517-019-4294-3

    Article  Google Scholar 

  • Knisel WG (1980) Erosion and sediment yield models an overview. In : Symposium on Watershed Management. (ASCE). p 141–150

  • Leblanc D (1975) Etudes géologiques dans le Rif externe oriental au nord de Taza. Notes et Mém. Serv. géol. Maroc, 281, 160 p.

  • Lim KJ, Sagong M, Engel BA, Tang Z, Choi J, Kim KS (2005) GIS-based sediment assessment tool. Catena 64(1):61–80. https://doi.org/10.1016/j.catena.2005.06.013

    Article  Google Scholar 

  • Lu H, Prosser IP, Moran CJ, Gallant JC, Priestley G, Stevenson JG (2003) Predicting sheetwash and rill erosion over the Australian continent. Aust J Soil Res 41(6):1037–1062. https://doi.org/10.1071/SR02157

    Article  Google Scholar 

  • Lufafa A, Tenywa MM, Isabirye M, Majaliwa MJG, Woomer PL (2003) Prediction of soil erosion in a Lake Victoria basin catchment using a GIS-based universal soil loss model. Agric Syst 76:883–894. https://doi.org/10.1016/S0308-521X(02)00012-4

    Article  Google Scholar 

  • MAMVA (Ministry of Agriculture and Agrarian Development) (1992) Master Plan for Erosion Control in the Basinof the Ouargha (Phase I). Report, Direction des Eaux et Forêtet de la Conservation des Sols, Rabat, 247 p.

  • Merkhi A, Laftouhi NE, Soulaimani A, Fniguire F (2015) Quantification et évaluation de l’érosion hydrique en utilisant le modèle RUSLE et déposition intégrés dans un SIG. Application dans le bassin versant n'fis dans le haut atlas de Marrakech (Maroc). Eur Sci J 11(29):340–356. https://doi.org/10.19044/esj.2018.v14n5p373

  • Meshram SG, Singh VP, Kahya E, Alvandi E, Meshram C, Sharma SK (2020a) The feasibility of multi-criteria decision making approach for prioritization of sensitive area at risk of water erosion. Water Resour Manag. https://doi.org/10.1007/s11269-020-02681-7

  • Meshram SG, Alvandi E, Meshram C, Kahya E, Al-Quraishi AMF (2020b) Application of SAW and TOPSIS in prioritizing watersheds. Water Resour Manag 34:715–732. https://doi.org/10.1007/s11269-019-02470-x

  • Meshram SG, Alvandi E, Singh VP, Meshram C (2019) Comparison of AHP and fuzzy AHP models for prioritization of watersheds. Soft Comput 23(24):13615–13625. https://doi.org/10.1007/s00500-019-03900-z

  • Meshram SG, Powar PL, Singh VP (2017) Modelling soil erosion from a watershed using cubic splines. Arab J Geosci 10:155–168. https://doi.org/10.1007/s12517-017-2908-1

  • Meshram SG, Powar PL, Singh VP, Meshram C (2018a) Application of cubic spline in soil erosion modelling from Narmada Watersheds, India. Arab J Geosci 11:362. https://doi.org/10.1007/s12517-018-3699-8

    Article  Google Scholar 

  • Meshram SG, Powar PL, Meshrm C (2018b) Comparasion of cubic, quadratic and quintic splines for soil erosion modelling. Appl Water Sci 8:173. https://doi.org/10.1007/s13201-018-0807-6

    Article  Google Scholar 

  • Moore JD, Wilson JP (1992) Length slope factor for the Revised Universal Soil Loss Equation: simplified method of estimation. J Soil Water Conserv 47(5):423–428

    Google Scholar 

  • Morgan RPC, Quinton JN, Rickson RJ (1992) EUROSEM documentation manual. Version I: June 1992. Silsoe College, Silose

  • Nearing MA, Foster GR, Lane LJ, Finkner SC (1989) A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Trans ASAE 32(5):1587–1593. https://doi.org/10.13031/2013.31195

  • Ouallali A, Moukhchane M, Aassoumi H, Berrad F, Dakir I (2016) The mapping of the soils’ degradation state by adaptation the PAP/RAC guidelines in the watershed of Wadi Arbaa Ayacha, Western Rif, Morocco. J Geosci Environ Prot 4(07):77–82. https://doi.org/10.4236/gep.2016.47009

    Article  Google Scholar 

  • Ouyang D, Bartholic J (2001) Web-based GIS application for soil erosion prediction. Proceedings of an international symposium soil erosion research for the 21st century, Honolulu, HI. Jan 3–5

  • Renard KG, Foster GR, Weesies GA, Porter JP (1991) RUSLE: revised universal soil loss equation. J Soil Water Conserv 46(1):30–33

    Google Scholar 

  • Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation. US Government Printing Office, Washington DC

    Google Scholar 

  • Renard KG, Freimund JR (1994) Using monthly precipitation data to estimate the R-factor in the revised USLE. J Hydrol 157(1-4):287–306. https://doi.org/10.1016/0022-1694(94)90110-4

    Article  Google Scholar 

  • Ren Z, Li Z, Liu X, Li P, Cheng S, Xu G (2018) Comparing watershed afforestation and natural revegetation impacts on soil moisture in the semiarid Loess Plateau of China. Sci Rep 8(1):1–10. https://doi.org/10.1038/s41598-018-21362-5

  • Roose E (1994) Introduction à la gestion conservatoire de l’eau, de la biomasse et de la fertilité des sols (GCES). Bulletin pédologique de la FAO N°70, Rome. 420 p.

  • Rose CW, Williams JR, Sander GC, Barry DA (1983) A mathematical model of soil erosion and deposition processes: I. Theory for a plane land element. Soil Sci Soc Am J 47(5):991–995

  • Srinivasan R, Singh SK, Nayak DC, Hegde R, Ramesh M (2019) Estimation of soil loss by USLE model using remote sensing and GIS techniques—a case study of coastal Odisha, India. Eur J Soil Sci 8(4):321–328. https://doi.org/10.18393/ejss.598120

    Article  Google Scholar 

  • Tahri M, Merzouk A, LambHF MRW (1993) Etude de l’Erosion Hydrique dans le Plateau d’Imelchil dans le Haut Atlas Central. Utilisation d’un SIG. Geo Observateu 3:51–60

    Google Scholar 

  • Vijith H, Suma M, Rekha VB, Shiju C, Rejith PJ (2011) An assessment of soil erosion probability and erosion rate in a tropical mountainous watershed using remote sensing and GIS. Arab J Geosci. https://doi.org/10.1007/s12517-010-0265-4

  • Williams JR, Renard KG (1985) Assessments of Soil Erosion and Crop Productivity with Process Models (EPIC). Chapter 5, in the Book Soil Erosion and Crop Productivity. Book Editor(s): R. F. Follett B. A. Stewart. (1985), American Society of Agronomy, Inc., Crop Science Society of America, Inc. Soil Science Society of America, Inc., Publishers Madison, Wisconsin, USA 1985. ISBN 0-89118-087-7. https://doi.org/10.2134/1985.soilerosionandcrop.c5

  • Wischmeiere WH, Smith DD (1978) Predicting rainfall erosion losses—a guide to conservation planning. USDA Handbook No. 537, U.S. Department of Agriculture in Cooperation with Purdue Agricultural Experiment Station.

  • Yitayew M, Pokrzywka SJ, Renard KG (1999) Using GIS for facilitating erosion estimation. Appl Eng Agric 15(4):295–301. https://doi.org/10.13031/2013.5780

    Article  Google Scholar 

Download references

Acknowledgments

The study team thanks the efforts of King Khalid University in financing this applied research and providing all the facilities (laboratories, hardware, and software) in the College of Engineering. In addition, special thanks to Civil Engineering Department where this applied research work achieved. Finally, thanks again to Deanship of Scientific Research in King Khalid University to continue to support scientific research until it becomes among the best universities locally and internationally. Within the framework of small research projects given by the Deanship of Scientific Research the grant number is 123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarita Gajbhiye Meshram.

Ethics declarations

The ethical issues, including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, and redundancy, have been completely observed by the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Broder J. Merkel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brahim, B., Meshram, S.G., Abdallah, D. et al. Mapping of soil sensitivity to water erosion by RUSLE model: case of the Inaouene watershed (Northeast Morocco). Arab J Geosci 13, 1153 (2020). https://doi.org/10.1007/s12517-020-06079-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-06079-y

Keywords

Navigation