Skip to main content

Advertisement

Log in

MICROmanagement of Runx2 Function in Skeletal Cells

  • MicroRNAs in Skeletal Development (A Delany, Section Editor)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Precise and temporal expression of Runx2 and its regulatory transcriptional network is a key determinant for the intricate cellular and developmental processes in adult bone tissue formation. This review analyzes how microRNA functions to regulate this network, and how dysregulation results in bone disorders.

Recent Findings

Similar to other biologic processes, microRNA (miRNA/miR) regulation is undeniably indispensable to bone synthesis and maintenance. There exists a miRNA–RUNX2 network where RUNX2 regulates the transcription of miRs or is post-transcriptionally regulated by a class of miRs, forming a variety of miR-RUNX2 regulatory pathways which regulate osteogenesis.

Summary

The current review provides insights to understand transcriptional–post-transcriptional regulatory network governed by Runx2 and osteogenic miRs, and is based largely from in vitro and in vivo studies. When taken together, this article discusses a new regulatory layer of bone tissue-specific gene expression by RUNX2 influenced via miRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. A census of human transcription factors: function, expression and evolution. Nat Rev Genet. 2009;10(4):252–63. https://doi.org/10.1038/nrg2538.

    Article  CAS  PubMed  Google Scholar 

  2. Komori T. Regulation of osteoblast differentiation by Runx2. Adv Exp Med Biol. 2010;658:43–9. https://doi.org/10.1007/978-1-4419-1050-9_5.

    Article  CAS  PubMed  Google Scholar 

  3. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47(3):199–208. https://doi.org/10.1038/ng.3192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10(12):1957–66. https://doi.org/10.1261/rna.7135204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hassan MQ, Tye CE, Stein GS, Lian JB. Non-coding RNAs: epigenetic regulators of bone development and homeostasis. Bone. 2015;81:746–56. https://doi.org/10.1016/j.bone.2015.05.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–9. https://doi.org/10.1038/nature01957.

    Article  CAS  PubMed  Google Scholar 

  7. Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 2002;21(17):4663–70.

    Article  CAS  Google Scholar 

  8. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–60. https://doi.org/10.1038/sj.emboj.7600385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18(24):3016–27. https://doi.org/10.1101/gad.1262504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang X, Xu X, Ma Z, Huo Y, Xiao Z, Li Y, et al. Dynamic mechanisms for pre-miRNA binding and export by Exportin-5. RNA. 2011;17(8):1511–28. https://doi.org/10.1261/rna.2732611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Song MS, Rossi JJ. Molecular mechanisms of dicer: endonuclease and enzymatic activity. Biochem J. 2017;474(10):1603–18. https://doi.org/10.1042/BCJ20160759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pratt AJ, MacRae IJ. The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem. 2009;284(27):17897–901. https://doi.org/10.1074/jbc.R900012200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang B, Li S, Qi HH, Chowdhury D, Shi Y, Novina CD. Distinct passenger strand and mRNA cleavage activities of human Argonaute proteins. Nat Struct Mol Biol. 2009;16(12):1259–66. https://doi.org/10.1038/nsmb.1712.

    Article  CAS  PubMed  Google Scholar 

  14. Hu R, Liu W, Li H, Yang L, Chen C, Xia ZY, et al. A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J Biol Chem. 2011;286(14):12328–39. https://doi.org/10.1074/jbc.M110.176099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang J, Zhao L, Xing L, Chen D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells. 2010;28(2):357–64. https://doi.org/10.1002/stem.288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Z, Hassan MQ, Volinia S, van Wijnen AJ, Stein JL, Croce CM, et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci U S A. 2008;105(37):13906–11. https://doi.org/10.1073/pnas.0804438105.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wu T, Zhou H, Hong Y, Li J, Jiang X, Huang H. miR-30 family members negatively regulate osteoblast differentiation. J Biol Chem. 2012;287(10):7503–11. https://doi.org/10.1074/jbc.M111.292722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ge J, Guo S, Fu Y, Zhou P, Zhang P, Du Y, et al. Dental follicle cells participate in tooth eruption via the RUNX2-MiR-31-SATB2 loop. J Dent Res. 2015;94(7):936–44. https://doi.org/10.1177/0022034515578908.

    Article  CAS  PubMed  Google Scholar 

  19. Hassan MQ, Gordon JA, Beloti MM, Croce CM, van Wijnen AJ, Stein JL, et al. A network connecting Runx2, SATB2, and the miR-23a~27a~24-2 cluster regulates the osteoblast differentiation program. Proc Natl Acad Sci U S A. 2010;107(46):19879–84. https://doi.org/10.1073/pnas.1007698107.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Heair HM, Kemper AG, Roy B, Lopes HB, Rashid H, Clarke JC, et al. MicroRNA 665 regulates dentinogenesis through MicroRNA-mediated silencing and epigenetic mechanisms. Mol Cell Biol. 2015;35(18):3116–30. https://doi.org/10.1128/MCB.00093-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kang IH, Jeong BC, Hur SW, Choi H, Choi SH, Ryu JH, et al. MicroRNA-302a stimulates osteoblastic differentiation by repressing COUP-TFII expression. J Cell Physiol. 2015;230(4):911–21. https://doi.org/10.1002/jcp.24822.

    Article  CAS  PubMed  Google Scholar 

  22. Yu S, Geng Q, Pan Q, Liu Z, Ding S, Xiang Q, et al. MiR-690, a Runx2-targeted miRNA, regulates osteogenic differentiation of C2C12 myogenic progenitor cells by targeting NF-kappaB p65. Cell Biosci. 2016;6:10. https://doi.org/10.1186/s13578-016-0073-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lian JB, Stein GS, van Wijnen AJ, Stein JL, Hassan MQ, Gaur T, et al. MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol. 2012;8(4):212–27. https://doi.org/10.1038/nrendo.2011.234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Y, Xie RL, Croce CM, Stein JL, Lian JB, van Wijnen AJ, et al. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci U S A. 2011;108(24):9863–8. https://doi.org/10.1073/pnas.1018493108.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xu C, Zhang H, Gu W, Wu H, Chen Y, Zhou W, et al. The microRNA-10a/ID3/RUNX2 axis modulates the development of ossification of posterior longitudinal ligament. Sci Rep. 2018;8(1):9225. https://doi.org/10.1038/s41598-018-27514-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Papaioannou G, Mirzamohammadi F, Kobayashi T. MicroRNAs involved in bone formation. Cell Mol Life Sci. 2014;71(24):4747–61. https://doi.org/10.1007/s00018-014-1700-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vimalraj S, Partridge NC, Selvamurugan N. A positive role of microRNA-15b on regulation of osteoblast differentiation. J Cell Physiol. 2014;229(9):1236–44. https://doi.org/10.1002/jcp.24557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li Z, Hassan MQ, Jafferji M, Aqeilan RI, Garzon R, Croce CM, et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem. 2009;284(23):15676–84. https://doi.org/10.1074/jbc.M809787200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mizoguchi F, Murakami Y, Saito T, Miyasaka N, Kohsaka H. miR-31 controls osteoclast formation and bone resorption by targeting RhoA. Arthritis Res Ther. 2013;15(5):R102. https://doi.org/10.1186/ar4282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xie Q, Wang Z, Bi X, Zhou H, Wang Y, Gu P, et al. Effects of miR-31 on the osteogenesis of human mesenchymal stem cells. Biochem Biophys Res Commun. 2014;446(1):98–104. https://doi.org/10.1016/j.bbrc.2014.02.058.

    Article  CAS  PubMed  Google Scholar 

  31. Deng Y, Wu S, Zhou H, Bi X, Wang Y, Hu Y, et al. Effects of a miR-31, Runx2, and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells. Stem Cells Dev. 2013;22(16):2278–86. https://doi.org/10.1089/scd.2012.0686.

    Article  CAS  PubMed  Google Scholar 

  32. Stepicheva NA, Song JL. Function and regulation of microRNA-31 in development and disease. Mol Reprod Dev. 2016;83(8):654–74. https://doi.org/10.1002/mrd.22678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bae Y, Yang T, Zeng HC, Campeau PM, Chen Y, Bertin T, et al. miRNA-34c regulates notch signaling during bone development. Hum Mol Genet. 2012;21(13):2991–3000. https://doi.org/10.1093/hmg/dds129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Engin F, Yao Z, Yang T, Zhou G, Bertin T, Jiang MM, et al. Dimorphic effects of notch signaling in bone homeostasis. Nat Med. 2008;14(3):299–305. https://doi.org/10.1038/nm1712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zuo B, Zhu J, Li J, Wang C, Zhao X, Cai G, et al. microRNA-103a functions as a mechanosensitive microRNA to inhibit bone formation through targeting Runx2. J Bone Miner Res. 2015;30(2):330–45. https://doi.org/10.1002/jbmr.2352.

    Article  CAS  PubMed  Google Scholar 

  36. Cheung KS, Sposito N, Stumpf PS, Wilson DI, Sanchez-Elsner T, Oreffo RO. MicroRNA-146a regulates human foetal femur derived skeletal stem cell differentiation by down-regulating SMAD2 and SMAD3. PLoS One. 2014;9(6):e98063. https://doi.org/10.1371/journal.pone.0098063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tu B, Liu S, Yu B, Zhu J, Ruan H, Tang T, et al. miR-203 inhibits the traumatic heterotopic ossification by targeting Runx2. Cell Death Dis. 2016;7(10):e2436. https://doi.org/10.1038/cddis.2016.325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang Y, Gao Y, Cai L, Li F, Lou Y, Xu N, et al. MicroRNA-221 is involved in the regulation of osteoporosis through regulates RUNX2 protein expression and osteoblast differentiation. Am J Transl Res. 2017;9(1):126–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hamam D, Ali D, Vishnubalaji R, Hamam R, Al-Nbaheen M, Chen L, et al. microRNA-320/RUNX2 axis regulates adipocytic differentiation of human mesenchymal (skeletal) stem cells. Cell Death Dis. 2014;5:e1499. https://doi.org/10.1038/cddis.2014.462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao W, Zhang S, Wang B, Huang J, Lu WW, Chen D. Runx2 and microRNA regulation in bone and cartilage diseases. Ann N Y Acad Sci. 2016;1383(1):80–7. https://doi.org/10.1111/nyas.13206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gamez B, Rodriguez-Carballo E, Bartrons R, Rosa JL, Ventura F. MicroRNA-322 (miR-322) and its target protein Tob2 modulate Osterix (Osx) mRNA stability. J Biol Chem. 2013;288(20):14264–75. https://doi.org/10.1074/jbc.M112.432104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Itoh T, Ando M, Tsukamasa Y, Akao Y. Expression of BMP-2 and Ets1 in BMP-2-stimulated mouse pre-osteoblast differentiation is regulated by microRNA-370. FEBS Lett. 2012;586(12):1693–701. https://doi.org/10.1016/j.febslet.2012.04.014.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Z, Hou C, Meng F, Zhao X, Huang G, Chen W, et al. MiR-455-3p regulates early chondrogenic differentiation via inhibiting Runx2. FEBS Lett. 2015;589(23):3671–8. https://doi.org/10.1016/j.febslet.2015.09.032.

    Article  CAS  PubMed  Google Scholar 

  44. Kureel J, John AA, Dixit M, Singh D. MicroRNA-467g inhibits new bone regeneration by targeting Ihh/Runx-2 signaling. Int J Biochem Cell Biol. 2017;85:35–43. https://doi.org/10.1016/j.biocel.2017.01.018.

    Article  CAS  PubMed  Google Scholar 

  45. Chen H, Ji X, She F, Gao Y, Tang P. miR-628-3p regulates osteoblast differentiation by targeting RUNX2: possible role in atrophic non-union. Int J Mol Med. 2017;39(2):279–86. https://doi.org/10.3892/ijmm.2016.2839.

    Article  CAS  PubMed  Google Scholar 

  46. Liao L, Yang X, Su X, Hu C, Zhu X, Yang N, et al. Redundant miR-3077-5p and miR-705 mediate the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow. Cell Death Dis. 2013;4:e600. https://doi.org/10.1038/cddis.2013.130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li H, Xie H, Liu W, Hu R, Huang B, Tan YF, et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest. 2009;119(12):3666–77. https://doi.org/10.1172/JCI39832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu H, Zhong L, Yuan T, Chen S, Zhou Y, An L, et al. MicroRNA-155 inhibits the osteogenic differentiation of mesenchymal stem cells induced by BMP9 via downregulation of BMP signaling pathway. Int J Mol Med. 2018;41(6):3379–93. https://doi.org/10.3892/ijmm.2018.3526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tome M, Lopez-Romero P, Albo C, Sepulveda JC, Fernandez-Gutierrez B, Dopazo A, et al. miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ. 2011;18(6):985–95. https://doi.org/10.1038/cdd.2010.167.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang J, Tu Q, Bonewald LF, He X, Stein G, Lian J, et al. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res. 2011;26(8):1953–63. https://doi.org/10.1002/jbmr.377.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang L, Tang Y, Zhu X, Tu T, Sui L, Han Q, et al. Overexpression of MiR-335-5p promotes bone formation and regeneration in mice. J Bone Miner Res. 2017;32(12):2466–75. https://doi.org/10.1002/jbmr.3230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grunhagen J, Bhushan R, Degenkolbe E, Jager M, Knaus P, Mundlos S, et al. MiR-497 approximately 195 cluster microRNAs regulate osteoblast differentiation by targeting BMP signaling. J Bone Miner Res. 2015;30(5):796–808. https://doi.org/10.1002/jbmr.2412.

    Article  CAS  PubMed  Google Scholar 

  53. Almeida MI, Silva AM, Vasconcelos DM, Almeida CR, Caires H, Pinto MT, et al. miR-195 in human primary mesenchymal stromal/stem cells regulates proliferation, osteogenesis and paracrine effect on angiogenesis. Oncotarget. 2016;7(1):7–22. https://doi.org/10.18632/oncotarget.6589.

    Article  PubMed  Google Scholar 

  54. Wang Y, Chen S, Deng C, Li F, Wang Y, Hu X, et al. MicroRNA-204 targets Runx2 to attenuate BMP-2-induced osteoblast differentiation of human aortic valve interstitial cells. J Cardiovasc Pharmacol. 2015;66(1):63–71. https://doi.org/10.1097/FJC.0000000000000244.

    Article  CAS  PubMed  Google Scholar 

  55. Cui RR, Li SJ, Liu LJ, Yi L, Liang QH, Zhu X, et al. MicroRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo. Cardiovasc Res. 2012;96(2):320–9. https://doi.org/10.1093/cvr/cvs258.

    Article  CAS  PubMed  Google Scholar 

  56. Yu C, Li L, Xie F, Guo S, Liu F, Dong N, et al. LncRNA TUG1 sponges miR-204-5p to promote osteoblast differentiation through upregulating Runx2 in aortic valve calcification. Cardiovasc Res. 2018;114(1):168–79. https://doi.org/10.1093/cvr/cvx180.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang Y, Xie RL, Gordon J, LeBlanc K, Stein JL, Lian JB, et al. Control of mesenchymal lineage progression by microRNAs targeting skeletal gene regulators Trps1 and Runx2. J Biol Chem. 2012;287(26):21926–35. https://doi.org/10.1074/jbc.M112.340398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fakhry M, Hamade E, Badran B, Buchet R, Magne D. Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J Stem Cells. 2013;5(4):136–48. https://doi.org/10.4252/wjsc.v5.i4.136.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sun Q, Liu H, Lin H, Yuan G, Zhang L, Chen Z. MicroRNA-338-3p promotes differentiation of mDPC6T into odontoblast-like cells by targeting Runx2. Mol Cell Biochem. 2013;377(1–2):143–9. https://doi.org/10.1007/s11010-013-1580-3.

    Article  CAS  PubMed  Google Scholar 

  60. Liu H, Sun Q, Wan C, Li L, Zhang L, Chen Z. MicroRNA-338-3p regulates osteogenic differentiation of mouse bone marrow stromal stem cells by targeting Runx2 and Fgfr2. J Cell Physiol. 2014;229(10):1494–502. https://doi.org/10.1002/jcp.24591.

    Article  CAS  PubMed  Google Scholar 

  61. Zaragosi LE, Wdziekonski B, Brigand KL, Villageois P, Mari B, Waldmann R, et al. Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol. 2011;12(7):R64. https://doi.org/10.1186/gb-2011-12-7-r64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang R, Yan S, Wang J, Deng F, Guo Y, Li Y, et al. MiR-30a regulates the proliferation, migration, and invasion of human osteosarcoma by targeting Runx2. Tumour Biol. 2016;37(3):3479–88. https://doi.org/10.1007/s13277-015-4086-7.

    Article  CAS  PubMed  Google Scholar 

  63. Balderman JA, Lee HY, Mahoney CE, Handy DE, White K, Annis S, et al. Bone morphogenetic protein-2 decreases microRNA-30b and microRNA-30c to promote vascular smooth muscle cell calcification. J Am Heart Assoc. 2012;1(6):e003905. https://doi.org/10.1161/JAHA.112.003905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gay I, Cavender A, Peto D, Sun Z, Speer A, Cao H, et al. Differentiation of human dental stem cells reveals a role for microRNA-218. J Periodontal Res. 2014;49(1):110–20. https://doi.org/10.1111/jre.12086.

    Article  CAS  PubMed  Google Scholar 

  65. Yan J, Guo D, Yang S, Sun H, Wu B, Zhou D. Inhibition of miR-222-3p activity promoted osteogenic differentiation of hBMSCs by regulating Smad5-RUNX2 signal axis. Biochem Biophys Res Commun. 2016;470(3):498–503. https://doi.org/10.1016/j.bbrc.2016.01.133.

    Article  CAS  PubMed  Google Scholar 

  66. Yeh CH, Jin L, Shen F, Balian G, Li XJ. miR-221 attenuates the osteogenic differentiation of human annulus fibrosus cells. Spine J. 2016;16(7):896–904. https://doi.org/10.1016/j.spinee.2016.03.026.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kim DS, Lee SY, Lee JH, Bae YC, Jung JS. MicroRNA-103a-3p controls proliferation and osteogenic differentiation of human adipose tissue-derived stromal cells. Exp Mol Med. 2015;47:e172. https://doi.org/10.1038/emm.2015.39.

    Article  CAS  PubMed  Google Scholar 

  68. van der Deen M, Taipaleenmaki H, Zhang Y, Teplyuk NM, Gupta A, Cinghu S, et al. MicroRNA-34c inversely couples the biological functions of the runt-related transcription factor RUNX2 and the tumor suppressor p53 in osteosarcoma. J Biol Chem. 2013;288(29):21307–19. https://doi.org/10.1074/jbc.M112.445890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Saini S, Majid S, Yamamura S, Tabatabai L, Suh SO, Shahryari V, et al. Regulatory role of mir-203 in prostate cancer progression and metastasis. Clin Cancer Res. 2011;17(16):5287–98. https://doi.org/10.1158/1078-0432.CCR-10-2619.

    Article  CAS  PubMed  Google Scholar 

  70. Pratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL, et al. Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev. 2006;25(4):589–600. https://doi.org/10.1007/s10555-006-9032-0.

    Article  CAS  PubMed  Google Scholar 

  71. Taipaleenmaki H, Browne G, Akech J, Zustin J, van Wijnen AJ, Stein JL, et al. Targeting of Runx2 by miR-135 and miR-203 impairs progression of breast cancer and metastatic bone disease. Cancer Res. 2015;75(7):1433–44. https://doi.org/10.1158/0008-5472.CAN-14-1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chang WM, Lin YF, Su CY, Peng HY, Chang YC, Lai TC, et al. Dysregulation of RUNX2/Activin-A Axis upon miR-376c downregulation promotes lymph node metastasis in head and neck squamous cell carcinoma. Cancer Res. 2016;76(24):7140–50. https://doi.org/10.1158/0008-5472.CAN-16-1188.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the members of RNA Biology and Epigenetics laboratory, School of Dentistry, UAB, for assistance with critical comments, valuable suggestions, and support. We are thankful to the National Institute of Arthritis, Musculoskeletal, and Skin Diseases (NIH/NIAMS) under Award Number 1R01AR069578 supported research for this publication. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Funding

We are thankful to the National Institute of Arthritis, Musculoskeletal, and Skin Diseases (NIH/NIAMS) under Award Number 1R01AR069578 supported research for this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quamarul Hassan.

Ethics declarations

Conflict of Interest

Benjamin J. Wildman, Tanner C. Godfrey, Mohammad Rehan, Yuechuan Chen, Lubana H. Afreen, and Quamarul Hassan each declare that they have no conflicts of interest with the contents of this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on MicroRNAs in Skeletal Development

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wildman, B.J., Godfrey, T.C., Rehan, M. et al. MICROmanagement of Runx2 Function in Skeletal Cells. Curr Mol Bio Rep 5, 55–64 (2019). https://doi.org/10.1007/s40610-019-0115-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-019-0115-4

Keywords

Navigation