Skip to main content

Advertisement

Log in

Influence of a brisk walking program on postural responses in sedentary older women: a randomised trial

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

This study analyzes the evolution in kinematic and non-linear stabilometric parameters in elderly sedentary women selected to participate in a brisk walking program. Ninety-four women were randomly selected for a program of 78 sessions over 6 months, with three sessions of 60 min per week. On the force platform, participants were assessed with both eyes opened as well as eyes closed during a period of 51.2 s and the sampling frequency was 40 Hz. The main dependent kinematic variables were the length, stabilogram surface, and the mean position in anteroposterior as well as medio-lateral directions. For the dynamic approach, we have selected the parameters of recurrence quantification analysis, sample entropy, and multiscale entropy. The kinematic and the time series analysis of group × time interactions demonstrated that 6 months of walk-training lacked influence on kinematic postural responses and on dynamical measurements. The weekly brisk walking program was situated on flat ground and consisted of three 60-min weekly sessions lasting 6 months, leading to no significant effect on postural responses. In regards to international recommendations brisk walking is a pertinent exercise. However, in older sedentary women, our study indicated a systemic lack of influence of 6 months’ walk-training on flat ground on kinematic postural responses and on dynamical measures obtained by time series analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. American College Sport Medecine position stand (2009) Exercise and physqical activity for older adults. Med Sci Sport Exerc 30:992–1008

    Google Scholar 

  2. World Health Organisation (2010) Global recommendations on physical activity for health. WHO library cataloguing-in-publication data

  3. Tschentscher M, Niederseer D, Niebauer J (2013) Health benefits of nordic walking: a systematic review. Am J Prev Med 44:76–84. https://doi.org/10.1016/amepre.2012.09.043

    Article  PubMed  Google Scholar 

  4. Gschwind YJ, Kressig RW, Lacroix A et al (2013) A best practice fall prevention exercise program to improve balance, strength/power, and psychosocial health in older adults: study protocol for a randomized controlled trial. BMC Geriatr 13:105. https://doi.org/10.1186/1471-2318-13-105

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sugiyama K, Kawamura M, Tomita H et al (2013) Oxygen uptake, heart rate, perceived exertion, and integrated electromyogram of the lower and upper extremities during level and Nordic walking on a treadmill. J Physiol Anthropol 32:2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cadore EL, Izquierdo M (2013) How to simultaneously optimize muscle strength, power, functional capacity, and cardiovascular gains in the elderly: an update. Age 35:2329–2344. https://doi.org/10.1007/s11357-012-9503-x

    Article  CAS  PubMed  Google Scholar 

  7. Fyfe JJ, Bishop DJ, Stepto NK (2014) Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med 44:743–762. https://doi.org/10.1007/s40279-014-0162-1

    Article  PubMed  Google Scholar 

  8. Holviala J, Kraemer WJ, Sillanpää E et al (2011) Effects of strength, endurance and combined training on muscle strength, walking speed and dynamic balance in aging men. Eur J Appl Physiol 112:1335–1347

    Article  PubMed  Google Scholar 

  9. Zhuang J, Huang L, Wu Y et al (2014) The effectiveness of a combined exercise intervention on physical fitness factors related to falls in community-dwelling older adults. Clin Interv Aging 9:131–140. https://doi.org/10.1155/2013/305434

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gordon CD, Wilks R, McCaw-Binns A (2013) Effect of aerobic exercise (walking) training on functional status and health-related quality of life in chronic stroke survivors: a randomized controlled trial. Stroke 44:1179–1181

    Article  PubMed  Google Scholar 

  11. Praet SF, van Rooij ES, Wijtvliet A et al (2008) Brisk walking compared with an individualised medical fitness programme for patients with type 2 diabetes: a randomised controlled trial. Diabetologia 51:736–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tully MA, Cupples ME, Chan WS et al (2005) Brisk walking, fitness, and cardiovascular risk: a randomized controlled trial in primary care. Prev Med 41:622–628

    Article  CAS  PubMed  Google Scholar 

  13. Bernard P, Ninot G, Bernard PL et al (2014) Effects of a 6-month walking intervention on depression in inactive postmenopausal women: a randomized controlled trial. Aging Mental Health 18:1–8

    Article  Google Scholar 

  14. Rooks DS, Kiel DP, Parsons C et al (1997) Self-paced resistance training and walking exercise in community-dwelling older adults: effects on neuromotor performance. J Gerontol A Biol Sci Med Sci 52:161–168

    Article  Google Scholar 

  15. Paillard T, Lafont C, Costes-Salon M et al (2004) Effects of brisk walking on static and dynamic balance, locomotion, body composition, and aerobic capacity in ageing healthy active men. Int J Sports Med 25:539–546

    Article  CAS  PubMed  Google Scholar 

  16. Yoo EJ, Jun TW, Hawkins SA (2010) The effects of a walking exercise program on fall-related fitness, bone metabolism, and fall-related psychological factors in elderly women. Res Sports Med 18:236–250

    Article  PubMed  Google Scholar 

  17. Buchner DM, Cress ME, De Lateur BJ et al (1997) A comparison of the effects of three types of endurance training on balance and other fall risk factors in older adults. Aging 9:112–119

    CAS  PubMed  Google Scholar 

  18. Lamoth C, van Heuvelen MJG (2012) Sports activities are reflected in the local stability and regularity of body sway: older ice-skaters have better postural control than inactive elderly. Gait Posture 35:489–493

    Article  PubMed  Google Scholar 

  19. Paillard T (2017) Plasticity of the postural function to sport/or motor experience. Neurosci Biobehav Rev 72:129–152. https://doi.org/10.1016/j.neubiorev.2016.11.015

    Article  PubMed  Google Scholar 

  20. Decker L, Ramdani S, Tallon G et al (2015) Physical function decline and degradation of postural sway dynamics in asymptomatic sedentary postmenopausal women. J Nutr Health Aging 19:348–355

    Article  CAS  PubMed  Google Scholar 

  21. Piirtola M, Era P (2006) Force platform measurements as predictors of falls among older people- a review. Gerontology 52:1–16

    Article  PubMed  Google Scholar 

  22. Tallon G, Blain H, Seigle B et al (2013) Dynamical and stabilometric measures are complementary for the characterization of postural fluctuations in the older women. Gait Posture 38:92–96. https://doi.org/10.1016/j.gaitpost.2012.10.021

    Article  PubMed  Google Scholar 

  23. Ramdani S, Tallon G, Bernard PL et al (2013) Recurrence quantification analysis of human postural sway in older fallers and non-fallers. Ann Biomed Eng 41:1713–1725. https://doi.org/10.1007/s10439-013-0790-x

    Article  PubMed  Google Scholar 

  24. Riley MA, Balasubramaniam R, Turvey MT (1999) Recurrence quantification analysis of postural fluctuations. Gait Posture 9:65–78

    Article  CAS  PubMed  Google Scholar 

  25. Sabatini AM (2000) Analysis of postural sway using entropy measures of signal complexity. Med Biol Eng Comput 38:617–624

    Article  CAS  PubMed  Google Scholar 

  26. Holmes ML, Manor B, Hsieh WH et al (2016) Tai Chi training reduced coupling between respiration and postural control. Neurosci Lett 610:60–65. https://doi.org/10.1016/j.neulet.2015.10.053

    Article  CAS  PubMed  Google Scholar 

  27. Li F, Harmer P, Fitzgerald K et al (2012) Tai chi and postural stability in patients with parkinson’s disease. New Eng J Med 366:511–519. https://doi.org/10.1056/NEJMoa1107911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Voorrips LE, Ravelli AC, Dongelmans PC et al (1991) A physical activity questionnaire for the elderly. Med Sci Sports Exerc 23:974–979. https://doi.org/10.1249/00005768-199108000-00015

    Article  CAS  PubMed  Google Scholar 

  29. Troosters T, Vilaro J, Rabinovitch R et al (2002) Physiological responses to the 6-min walk test in patients with chronic obstructive pulmonary disease. Eur Respir J 20:564–569. https://doi.org/10.1183/09031936.02.020920001

    Article  CAS  PubMed  Google Scholar 

  30. ATS Statement (2002) Guidelines for the 6-min walk test. Am J Respir Crit Care Med 166:111–117. https://doi.org/10.1164/rccm.166/1/111

    Article  Google Scholar 

  31. American Academy of Neurology (1992) Assessment: posturography. Report of the therapeutics and technology assessment subcommittee. AAN Neurol 43:1261–1264

    Google Scholar 

  32. Marwan N, Romano MC, Thiel M et al (2007) Recurrence plots for the analysis of complex systems. Phys Rep 438:237–329

    Article  Google Scholar 

  33. Eckman JP, Ruelle D (1985) Ergodic theory of chaos and strange attractors. Rev Mod Phys 57:617–656

    Article  Google Scholar 

  34. Marwan N, Wessel N, Meyerfeldt U et al (2002) Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Phys Rev E Stat Nonlin Soft Matter Phys 66:026702

    Article  PubMed  Google Scholar 

  35. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278:2039–2049

    Article  Google Scholar 

  36. Ramdani S, Seigle B, Lagarde J et al (2009) On the use of sample entropy to analyze human postural sway data. Med Eng Phys 31:1023–1031

    Article  PubMed  Google Scholar 

  37. Goldberger AL, Amaral LA, Glass L et al (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101:E215–E220

    Article  CAS  PubMed  Google Scholar 

  38. Costa M, Goldberger AL, Peng CK (2002) Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 89:68–102

    Article  Google Scholar 

  39. Costa M, Priplata AA, Lipsitz LA et al (2007) Noise and poise: enhancement of postural complexity in the elderly with a stochasticresonance-based therapy. Europhys Lett 77:68008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chaikeeree N, Saengsirisuwan V, Chinsongkram B et al (2015) Interaction of age and foam types used in clinical test for sensory interaction and balance (CTSIB). Gait Posture 41:313–315. https://doi.org/10.1016/j.gaitpost.2014.09.011

    Article  PubMed  Google Scholar 

  41. Wright AD, Laing AC (2011) The influence of novel compliant floors on balance control in elderly women. A biomechanical study. Accid Anal Prev 43:1480–1487. https://doi.org/10.1016/j.aap.2011.02.028

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gillespie LD, Robertson MC, Gillespie WJ et al (2012) Interventions for preventing falls in older people living in the community (review). Cochrane Libr

  43. Bernard PL, Tallon G, Ninot G et al (2016) Influence of brisk walking program on isokinetic muscular capacities of knee of sedentary old women. Aging Clin Exp Res 28:1219–1226. https://doi.org/10.1007/S40520-015-0523-0

    Article  CAS  PubMed  Google Scholar 

  44. Lesinski M, Hortobágyi T, Muehlbauer T et al (2015) Effects of balance training on balance performance in healthy older adults: a systematic review and meta-analysis. Sports Med 45:1721–1738

    Article  PubMed  PubMed Central  Google Scholar 

  45. Roerdink M, De Haart M, Daffertshofer A et al (2006) Dynamical structure of center of pressure trafectories in patients recovering from stroke. Exp Brain Res 174:256–269

    Article  CAS  PubMed  Google Scholar 

  46. Manor B, Lipsitz LA, Wayne PM et al (2013) Complexity-based measures inform tai chi’s impact on standing postural control in older adults with peripheral neuropathy. Compl Altern Med 13:87

    Article  Google Scholar 

  47. Melzer I, Elbar O, Tsedek I et al (2008) A water-based training program that include perturbation exercises to improve stepping responses in older adults: study protocol for a randomized controlled cross-over trial. BMC Geriatr 8:19

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Bussonne (FFEPGV) for collaboration and are very grateful to Lauren Oswald for presubmission editorial assistance.

Funding

This work was supported by the French Ministry of Health [Projet Hospitalier de Recherche Clinique, UF 7606], the Montpellier University Hospital [Appel d’Offre Interne, UF 8189] and by a Grant of the French federation of Physical Education and Voluntary Gymnastic (FFEPGV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Bernard.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This study was ethically approved by the Regional Committee for the Protection of Human Subjects (CPP Sud-Méditerranée III, Number: 2008.07.04).

Informed consent

Informed consent was obtained from the patient included in the case report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernard, P.L., Blain, H., Tallon, G. et al. Influence of a brisk walking program on postural responses in sedentary older women: a randomised trial. Aging Clin Exp Res 30, 433–440 (2018). https://doi.org/10.1007/s40520-018-0916-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-018-0916-y

Keywords

Navigation