Skip to main content
Log in

Recurrence Quantification Analysis of Human Postural Fluctuations in Older Fallers and Non-fallers

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We investigate postural sway data dynamics in older adult fallers and non-fallers. Center of pressure (COP) signals were recorded during quiet standing in 28 older adults. The subjects were divided in two groups: with and without history of falls. COP time series were analyzed using recurrence quantification analysis (RQA) in both anteroposterior and mediolateral (ML) directions. Classical stabilometric variables (path length and range) were also computed. The results showed that RQA outputs quantifying predictability of COP fluctuations and Shannon entropy of recurrence plot diagonal line length distribution, were significantly higher in fallers, only for ML direction. In addition, the range of ML COP signals was also significantly higher in fallers. This result is in accordance with some findings of the literature and could be interpreted as an increased hip strategy in fallers. The RQA results seem coherent with the theory of loss of complexity with aging and disease. Our results suggest that RQA is a promising approach for the investigation of COP fluctuations in a frail population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Abarbanel, H. D. I. Analysis of Observed Chaotic Data. New-York: Springer-Verlag, 1996.

  2. Aoki, M., T. Nishihori, Y. Jiang, S. Nagasaki, T. Wakaoka, and Y. Ito. Damping control of balance in the medial/lateral direction and the risk of falling in the elderly. Geriatr. Gerontol. Int. doi:10.1111/j.1447-0594.2012.00884.x, 2012.

  3. Aufauvre, V., G. Kemoun, P. Carette, and E. Bergeal. Home postural evaluation: comparison between fallers and non fallers. Ann. Phys. Rehab. Med. 48:165–171, 2005.

    Google Scholar 

  4. Baloh, R. W., S. Corona, K. M. Jacobson, J. A. Enrietto, and T. Bell. A prospective study of posturography in normal older people. J. Am. Geriatr. Soc. 46:228–233, 1998.

    Google Scholar 

  5. Bardet, J.-M., and I. Kammoun. Asymptotic properties of the detrended fluctuation analysis of long range dependent processes. IEEE Trans. Inf. Theory 54(5):2041–2052, 2008.

    Google Scholar 

  6. Bennett, C. H. How to define complexity in physics, and why. In: Complexity, Entropy, and the Physics of Information, edited by W. H. Zurek Jr. Redwood, CA: Addison-Wesley, 1990, pp. 137-148.

  7. Bergland, A., G. B. Jarnlo, and K. Laake. Predictors of falls in the elderly by location. Aging Clin. Exp. Res. 15:43–50, 2003.

    Google Scholar 

  8. Bigelow, K. E., and N. Berme. Development of a protocol for improving the clinical utility of posturography as a fall-risk screening tool. J. Gerontol. A 66A(2):228–233, 2011.

    Google Scholar 

  9. Borg, F. G., and G. Laxåback. Entropy of balance—some recent results. J. NeuroEng. Rehab. 7:38, 2010.

    Google Scholar 

  10. Boulgarides, L. K., S. M. McGinty, J. A.Willett, and C. W. Barnes. Use of clinical and impairment based tests to predict falls by community dwelling older adults. Phys. Ther. 83: 328–339, 2003.

    Google Scholar 

  11. Brauer, S. G., Y. R. Burns, and P. Galley. A prospective study of laboratory and clinical measures of postural stability to predict community-dwelling fallers. J. Gerontol. A 55M:469–476, 2000.

    Google Scholar 

  12. Carroll, J. P., and W. Friedman. Nonstationary properties of postural sway. J. Biomech. 26:409–416, 1993.

    Google Scholar 

  13. Chen, Z., P. C. Ivanov, K. Hu, and H. E. Stanley. Effect of nonstationarities on detrended fluctuation analysis. Phys. Rev. E 65:041107, 2002.

    Google Scholar 

  14. Chiari, L., L. Rocchi, and A. Cappello. Stabilometric parameters are affected by anthropometry and foot placement. Clin. Biomech. 17:666–677, 2002.

    Google Scholar 

  15. Clark, S., and A. Riley. Multisensory information for postural control: sway-referencing gain shapes center of pressure variability and temporal dynamics. Exp. Brain Res. 176:299–310, 2007.

    Google Scholar 

  16. Collins, J. J., and C. J. DeLuca. Open-loop and closed-loop control of posture: a random-walk analysis of center-of-pressure trajectories. Exp. Brain Res. 95:308–318, 1993.

    Google Scholar 

  17. Costa, M., A. A. Priplata, L. A. Lipsitz, Z. Wu, N. E. Huang, A. L. Goldberger, and C. K. Peng. Noise and poise: enhancement of postural complexity in the elderly with a stochastic resonance-based therapy. Europhys. Lett. 77:68008, 2007.

    Google Scholar 

  18. Day, B. L., M. J. Steiger, P. D. Thompson, and C. D. Marsden. Effect of vision and stance width on human body motion when standing: implications for afferent control of lateral sway. J. Physiol. 469:479–499, 1993.

    Google Scholar 

  19. Duarte, M., and V. M. Zatsiorsky. On the fractal properties of natural human standing. Neurosci. Lett. 283:173–176, 2000.

    Google Scholar 

  20. Eckmann, J. A., S. O. Kamphorst, and D. Ruelle. Recurrence plots of dynamical systems. Europhys. Lett. 4:973–977, 1987.

    Google Scholar 

  21. Faulkner, J. A., S. V. Brooks, and E. Zerba. Skeletal muscle weakness and fatigue in old age: underlying mechanisms. Ann. Rev. Gerontol. Geriatr. 10:147–166, 1990.

    Google Scholar 

  22. Fazekas, F., R. Schmidt, and P. Scheltens. Pathophysiologic mechanisms in the development of age-related white matter changes of the brain. Dement. Geriatr. Cogn. Disord. 9:2–5, 1998.

    Google Scholar 

  23. Flandrin, P., P. Gonalves, and G. Rilling. Detrending and denoising with empirical mode decompositions. In: Proceedings of the 12th European Signal Processing Conference (EUSIPCO’04), 2004, pp. 1581–1584.

  24. Gatev, P., S. Thomas, T. Kepple, and M. Hallett. Feedforward ankle strategy of balance during quiet stance in adults. J. Physiol. 514:915–928, 1999.

    Google Scholar 

  25. Goldberger, A. L. Nonlinear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet 347:1312–1314, 1996.

    Google Scholar 

  26. Goldberger, A. L., C. K. Peng, and L. A. Lipsitz. What is physiologic complexity and how does it change with aging and disease? Neurobiol. Aging 23:23–26, 2002.

    Google Scholar 

  27. Horak, F. B. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing 35(S2):ii7–ii11, 2006.

    Google Scholar 

  28. Horak, F. B., C. L. Shupert, and A. Mirka. Components of postural dyscontrol in the elderly: a review Neurobiol. Aging 10(6):727–738, 1989.

    Google Scholar 

  29. Horak, F. B., L. M. Nashner, and H. C. Diener. Postural strategies associated with somatosensory and vestibular loss Exp. Brain Res. 82:167–177, 1990.

    Google Scholar 

  30. Hu, K., P. C. Ivanov, Z. Chen, P. Carpena, and H. E. Stanley. Effect of trends on detrended fluctuation analysis. Phys. Rev. E 64:011114, 2001.

    Google Scholar 

  31. Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454:903–995, 1998.

    Google Scholar 

  32. Inglin, B., and M. Woollacott. Age-related changes in anticipatory postural adjustments associated with arm movements. J. Gerontol. A 43:M105–113, 1988.

    Google Scholar 

  33. Jette, A. M., L. G. Branch, and J. Berlin. Musculoskeletal impairments and physical disablement among the aged. J. Gerontol. A 45:M203–M208, 1990.

    Google Scholar 

  34. Kang, H. G., M. D. Costa, A. A. Priplata, O. V. Starobinets, A. L. Goldberger, C.-K. Peng, D. K. Kiely, et al. Frailty and the degradation of complex balance dynamics during a dual-task protocol. J. Gerontol. A 64(12):1304–1311, 2009.

    Google Scholar 

  35. Kantz, H., and T. Schreiber. Nonlinear Time Series Analysis. Cambridge: Cambridge University Press, 2004.

  36. Kennel, M. B., R. Brown, H. D. I. Abarbanel. Determining embedding dimension for phase-space reconstruction using a geometrical reconstruction. Phys. Rev. A 45(6):3403–3411, 1992.

    Google Scholar 

  37. King, A. C., Z. Wang, and K. M. Newell. Asymmetry of recurrent dynamics as a function of postural stance. Exp. Brain Res. doi:10.1007/s00221-012-3133-5, 2012.

  38. Laughton, C. A., M. Slavin, K. Katdare, L. Nolan, J. F. Bean, D. C. Kerrigna, E. Phillips, L. A. Lipstiz, and J. J. Collins. Aging, muscle activity, and balance control: physiologic changes associated with balance impairment. Gait Posture 18:101–108, 2003.

    Google Scholar 

  39. Lipsitz, L. A., and A. L. Goldberger. Loss of ‘complexity’ and aging: potential applications of fractals and chaos theory to senescence. JAMA 267:1806–1809, 1992.

    Google Scholar 

  40. Lord, S. R., and R. D. Clark. Simple physiological and clinical tests for the accurate prediction of falling in older people. Gerontol. 42:199–203, 1996.

    Google Scholar 

  41. Maki, B. E., P. J. Holliday, and A. K. Topper. A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J. Gerontol. A 49:M72–M84, 1994.

    Google Scholar 

  42. Manor, B., M. D. Costa, K. Hu, E. Newton, O. Starobinets, H. G. Kang, C. K. Peng, V. Novak, et al. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults. J. Appl. Physiol. 109:1786–1791, 2010.

    Google Scholar 

  43. Marwan, N. How to avoid potential pitfalls in recurrence plot based data analysis. Int. J. Bifurcation Chaos 21(4):1003–1017, 2011.

    Google Scholar 

  44. Marwan, N., and J. Kurths. Comment on “Stochastic analysis of recurrence plots with applications to the detection of deterministic signals” by Rohde et al. [Physica D 237 (2008) 619629]. Physica D 238(16):1711–1715, 2009.

  45. Marwan, N., M. C. Romano, M. Thiel, and J. Kurths. Recurrence plots for the analysis of complex systems. Phys. Rep. 438:237–329, 2007.

    Google Scholar 

  46. Marwan, N., N. Wessel, U. Meyerfeldt, A. Schirdewan, and J. Kurths. Recurrence plot based measures of complexity and its application to heart rate variability data. Phys. Rev. E 66:026702, 2002.

    Google Scholar 

  47. Melzer, I., I. Kurz, and L. I. E. Oddsson. A retrospective analysis of balance control parameters in elderly fallers and non-fallers. Clin. Biomech. 25:984–988, 2010.

    Google Scholar 

  48. Morrison, S., S. L. Hong, and K. M. Newell. Inverse relations in the patterns of muscle and center of pressure dynamics during standing still and movement postures. Exp. Brain Res. 181:347–358, 2007.

    Google Scholar 

  49. Newell, K. M., S. M. Slobounov, E. S. Slobounova, and P. C. M. Molenaar. Short-term non-stationarity and the development of postural control. Gait Posture 6:56–62, 1997.

    Google Scholar 

  50. Norris, J. A., A. P. Marsh, I. J. Smith, R. I. Kohut, and M. E. Miller. Ability of static and statistical mechanics posturographic measures to distinguish between age and fall risk. J. Biomech. 38:1263–1272, 2005.

    Google Scholar 

  51. Novak, V., M. Haertle, P. Zhao, K. Hu, M. Munshi, P. Novak, A. Abduljalil, et al. White matter hyperintensities and dynamics of postural control. Magn. Res. Imaging 27:752–759, 2009.

    Google Scholar 

  52. Pajala, S., P. Era, M. Koskenvuo, J. Kaprio, T. Trmkangas, and T. Rantanen. Force platform balance measures as predictors of indoor and outdoor falls in community-dwelling women aged 6376 years. J. Gerontol. A 63A(2):171–178, 2008.

    Google Scholar 

  53. Pellecchia, G. L., and K. Shockley. Application of recurrence quantification analysis: influence of cognitive activity on postural fluctuations. In: Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences, edited by M. A. Riley and G. C. Van Orden, 2005, pp. 95–141.

  54. Peng, C. K., J. Mietus, J. M. Hausdorff, S. Havlin, H. E. Stanley, and A. L. Goldberger. Long-range anti-correlations and non-Gaussian behavior of the heartbeat. Phys. Rev. Lett. 70:1343–1346, 1993.

    Google Scholar 

  55. Pérennou, D., J. Prezioso, F. Favier, S. Belhassen, J. M. Jacquot, and J. Pélissier. Analyse instrumentale du comportement postural des chuteurs, In: La chute de la personne âgée, edited by J. M. Jacquot, D. Strubel, and J. Pélissier. Paris: Masson, 1999, pp. 151–159.

  56. Piirtola, M., and P. Era. Force platform measurements as predictors of falls among older people a review. Gerontology 52:1–16, 2006.

    Google Scholar 

  57. Ramdani, S., B. Seigle, J. Lagarde, F. Bouchara, and P. L. Bernard. On the use of sample entropy to analyze human postural sway data. Med. Eng. Phys. 31:1023–1031, 2009.

    Google Scholar 

  58. Ramdani, S., B. Seigle, D. Varoqui, F. Bouchara, H. Blain, and P. L. Bernard. Characterizing the dynamics of postural sway in humans using smoothness and regularity measures. Ann. Biomed. Eng. 39(1):161–171, 2011.

    Google Scholar 

  59. Rhea, C. K., T. A. Silver, S. L. Hong, J. H. Ryu, B. E. Studenka, C. M. L. Hughes, and J. M. Haddad. Noise and complexity in human postural control: interpreting the different estimations of entropy. Plos One 6(3):e17696. doi:10.1371/journal.pone.0017696, 2011.

    Google Scholar 

  60. Richman, J. S., and J. R. Moorman. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278:2039–2049, 2000.

    Google Scholar 

  61. Riley, M. A., R. Balasubramaniam, and M. T. Turvey. Recurrence quantification analysis of postural fluctuations. Gait Posture 9:65–78, 1999.

    Google Scholar 

  62. Riley, M. A., and G. C. Van Orden. Tutorials in contemporary nonlinear methods for the behavioral sciences, 2005. http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp.

  63. Robinson, G., and M. Thiel. Recurrences determine the dynamics. Chaos 023104, 2009.

  64. Rohde, G. K., J. M. Nichols, B. M. Dissinger, and F. Bucholtz. Stochastic analysis of recurrence plots with applications to the detection of deterministic signals. Physica D 237:619–629, 2008.

    Google Scholar 

  65. Schmit, J. M., M. A. Riley, A. Dalvi, A. Sahay, P. K. Shear, K. D. Shockley, and R.Y. K. Pun. Deterministic center of pressure patterns characterize postural instability in Parkinsons disease. Exp. Brain Res. 168:357–367, 2006.

    Google Scholar 

  66. Seigle, B., S. Ramdani, and P. L. Bernard. Dynamical structure of center of pressure fluctuations in elderly people. Gait Posture 30:223–226, 2009.

    Google Scholar 

  67. Skinner, H. B., R. L. Barrack, and S. D. Cook. Age-related decline in proprioception. Clin. Orthop. 184:208–211, 1984.

    Google Scholar 

  68. Sosnoff, J. J., and K. M. Newell. Age-related loss of adaptability to fast time scales in motor variability. J. Gerontol. B Psychol. Sci. Soc. Sci. 63(6):344–352, 2008.

    Google Scholar 

  69. Stergiou, N., and L. M. Decker. Human movement variability, nonlinear dynamics, and pathology: is there a connection? Hum. Mov. Sci. 30:869–888, 2011.

    Google Scholar 

  70. Strang, A. J., A. DiDomenico, W. P. Berg, and R. W. McGorry. Assessment of differenced center of pressure time series improves detection of age-related changes in postural coordination. Gait Posture, 2012. doi:10.1016/j.gaitpost.2012.11.006.

  71. Swanenburg, J., E. D. de Bruin, D. Uebelhart, and T. Mulder. Falls prediction in elderly people: a 1-year prospective study. Gait Posture 31:317–321, 2010.

    Google Scholar 

  72. Tallon, G., H. Blain, B. Seigle, P. L. Bernard, and S. Ramdani. Dynamical and stabilometric measures are complementary for the characterization of postural fluctuations in older women. Gait Posture. doi:10.1016/j.gaitpost.2012.10.021. 2012.

  73. Thapa, P. B., P. Gideon, K. G. Brockman, R. L. Fought, and W. A. Ray. Clinical and biomechanical measures of balance as fall predictors in ambulatory nursing home residents. J. Gerontol. A 51:M239–M246, 1996.

    Google Scholar 

  74. Thiel, M., C. M. Romano, P. L. Read, and J. Kurths. Estimation of dynamical invariants without embedding by recurrence plots. Chaos 14:234–243, 2004.

    Google Scholar 

  75. Tinetti, M. E. Preventing falls in elderly persons. N. Engl. J. Med. 348:42–49, 2003.

    Google Scholar 

  76. Tinetti, M. E., M. Speechley, and S. F. Ginter. Risk factors for falls among elderly persons living in the community. New Engl. J. Med. 319(26):1701–1707, 1988.

    Google Scholar 

  77. Vaillancourt, D. E., and K. M. Newell. Changing complexity in human behavior and physiology through aging and disease. Neurobiol. Aging 23:1–11, 2002.

    Google Scholar 

  78. Vaillancourt, D. E., and K. M. Newell. Aging and the time and frequency structure of force output variability. J. Appl. Physiol. 94:903–912, 2003.

    Google Scholar 

  79. Webber, C. L. Jr., and J. P. Zbilut. Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76:965–973, 1994.

    Google Scholar 

  80. Webber, C. L., and J. P. Zbilut. Recurrence quantification analysis of nonlinear dynamical systems. In: Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences, edited by M. A. Riley and G. C. Van Orden, 2005, pp. 26–94.

  81. Zbilut, J. P., and N. Marwan. The WienerKhinchin theorem and recurrence quantification. Phys. Lett. A 372:6622–6626, 2008.

    Google Scholar 

  82. Zbilut, J. P., and C. L. Webber. Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171:199–203, 1992.

    Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the French Ministry of Health (PHRC Interrégional 2010, A00564-35). The sponsor had no role in the study. The authors would like to thank the anonymous reviewers for their valuable comments and suggestions.

Conflict of interest

There are no conflicts of interest relating to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofiane Ramdani.

Additional information

Associate Editor Dan Elson oversaw the review of this article.

Appendices

Appendix A

We present here the RQA results for the comparison between the two groups with two different values of the radius: 25% and 35% of mean distance, respectively in Tables 4 and 5. All other parameters were set to the selected values (m = 8, τ = 6 and l min = 4).

Table 4 Statistical results of the comparison between the two groups for RQA measures computed with a radius \(\varepsilon = 25\%\) of mean of all distances
Table 5 Statistical results of the comparison between the two groups for RQA measures computed with a radius \(\varepsilon = 35\%\) of mean of all distances

Appendix B

We present here the MSE analysis results for the comparison between the two groups. The MSE computations were conducted according to the procedure described in Costa et al. 17 Prior to SampEn calculations, the recorded COP time series were detrended by means of Empirical Mode Decomposition (EMD).23,31 EMD is an adaptative (data-driven) technique which decomposes the signal as the sum of components called intrinsic mode functions (IMFs).31 The detrending is basically performed by removing the higher order (low-frequency) IMFs of the original signal. A global index of complexity C I was calculated by summing the SampEn values over a predefined range of scales. We used six scales. A dimension of 2 and a normalized radius of 0.15 were used for SampEn computations. Tables 6 shows the results of the comparisons between non-fallers and fallers in AP and ML directions.

Table 6 Statistical results of the comparison between the two groups for the complexity index C I provided by MSE in AP and ML directions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramdani, S., Tallon, G., Bernard, P.L. et al. Recurrence Quantification Analysis of Human Postural Fluctuations in Older Fallers and Non-fallers. Ann Biomed Eng 41, 1713–1725 (2013). https://doi.org/10.1007/s10439-013-0790-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0790-x

Keywords

Navigation