Skip to main content

Advertisement

Log in

Highlights in Contemporary Smart Dental Materials: a Review

  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review focuses on highlights in the literature about contemporary smart dental materials. The concept, classification, requirements, and examples of recently introduced smart dental materials are summarized and described.

Recent Findings

Various recently introduced smart dental materials are described, such as smart resin composites, glass ionomer, pit and fissure sealants, conservative and endodontic instruments, orthodontic wires, silicone elastomer bite registration material, and thermochromic toothbrushes. These materials are highly intelligent and responsive to their surrounding environment. They would potentially provide groundbreaking dental services with enhanced clinical outcomes from the treatment procedures.

Summary

Smart materials can respond to stimuli and environmental changes by activating their functions accordingly. Recently introduced smart dental materials have properties that could be altered in a controlled fashion by stimuli such as stress, temperature, moisture, pH, and electric or magnetic fields. There is a robust trend in dental material science for the development and application of these intelligent, smart dental materials. These materials could allow new and revolutionary dental therapeutic treatments with a significant improvement in the clinical outcome of the treatments. A limitation of the current study is mainly due to a lack of long-term studies about the durability of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

ACP :

Amorphous calcium phosphate

VPS :

Vinyl polysiloxane

GIC :

Glass-ionomer cement

HAP :

Hydroxyapatite

CPP-ACP :

Casein phosphopeptides-amorphous calcium phosphate

CaP :

Calcium phosphate

BAG :

Bioactive glass

M :

Monoclinic

C :

Cubic

T :

Tetragonal

CHX :

Chlorhexidine

MDPB :

Methacryloyloxydodecylpyridinium bromide

AMPs :

Antimicrobial peptides

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Montoya C, Roldan L, Yu M, Valliani S, Ta C, Yang M, et al. Smart dental materials for antimicrobial applications. Bioact Mater. Elsevier. 2023;24:1–19. This recently published review article describes the combination between bioactive and bioresponsive materials to provide smart antimicrobial materials for dentistry.

    PubMed  CAS  Google Scholar 

  2. Harshitha K, Shajahan T, Rao HA, Bhat SS, Sargod SS. Smart materials—making pediatric dentistry bio-smart. Dent Poster J. 2021;10:1–2.

    Google Scholar 

  3. Laws J, Parachuru R. New and emerging smart materials and their applications: a review. J Mater Sci Eng. 2021;10:5–10.

    Google Scholar 

  4. Kamila S. Introduction, classification and applications of smart materials: an overview. Am J Appl Sci. 2013;10:876–80.

    Article  Google Scholar 

  5. Vasiliu S, Racovita S, Gugoasa IA, Lungan MA, Popa M, Desbrieres J. The benefits of smart nanoparticles in dental applications. Int J Mol Sci. 2021;22:1–24.

    Article  Google Scholar 

  6. Gangele A, Mishra A. A review on smart materials, types and modelling: need of the modern era. Mater Today Proc. 2019;47:6469–74.

    Article  Google Scholar 

  7. Shanthi M, Soma Sekhar E, Ankireddy S. Smart materials in dentistry: think smart! J Pediatr Dent. 2014;2:1.

    Article  Google Scholar 

  8. Jacob J, More N, Kalia K, Kapusetti G. Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm Regen. 2018;38(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bruni A, Serra FG, Deregibus A, Castroflorio T. Shape-memory polymers in dentistry: systematic review and patent landscape report. Materials (Basel). 2019;12(14):2216.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. McCabe JF, Yan Z, Al Naimi OT, Mahmoud G, Rolland SL. Smart materials in dentistry—future prospects. Dent Mater J. 2009;28:37–43.

    Article  PubMed  Google Scholar 

  11. Ahuja K, Pannu R, Pal N, Aggarwal N, Berwal V. Biosmart dentistry—a revelation: a review. J Adv Med Dent Sci Res [Internet]. 2017;5:15–8. Available from: https://search.proquest.com/docview/1962153162?accountid=44820

    Google Scholar 

  12. Jazayeri HE, Lee SM, Kuhn L, Fahimipour F, Tahriri M, Tayebi L. Polymeric scaffolds for dental pulp tissue engineering: a review. Dent Mater. 2020;36:e47–58.

    Article  PubMed  CAS  Google Scholar 

  13. Hamdy TM, Galal M, Ismail AG, Abdelraouf RM. Evaluation of flexibility, microstructure and elemental analysis of some contemporary nickel-titanium rotary instruments. Open Access Maced J Med Sci. 2019;7:3647–54.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Olsen ME. SmartArch multi-force superelastic archwires: a new paradigm in orthodontic treatment efficiency. J Clin Orthod. 2020;54:70–81.

    PubMed  Google Scholar 

  15. Ahmed MA, Jouhar R, Khurshid Z. Smart monochromatic composite: a literature review. Int J Dent. 2022;2022:2–9.

    Article  Google Scholar 

  16. Abdelraouf RM, Habib NA. Color-matching and blending-effect of universal shade bulk-fill-resin-composite in resin-composite-models and natural teeth. Biomed Res Int. 2016;2016:4183432.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Badami V, Ahuja B. Biosmart materials: breaking new ground in dentistry. Sci World J. 2014;2014:986912.

    Article  Google Scholar 

  18. Hamdy TM, Saniour SH, Sherief MA, Zaki DY. Effect of incorporation of 20 wt% amorphous nano-hydroxyapatite fillers in poly methyl methacrylate composite on the compressive strength. Res J Pharm Biol Chem Sci. 2015;6:1136–41.

    CAS  Google Scholar 

  19. Hamdy TM, El-Korashy SA. Novel bioactive zinc phosphate dental cement with low irritation and enhanced microhardness. e-Journal Surf Sci Nanotechnol. 2018;16:431–5.

    Article  CAS  Google Scholar 

  20. Bhadra D, Shah NC, Rao AS, Dedania MS, Bajpai N. A 1-year comparative evaluation of clinical performance of nanohybrid composite with ActivaTM bioactive composite in Class II carious lesion: a randomized control study. J Conserv Dent. 2019;22:92–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Tiwari S, Abraham A. Semantic assessment of smart healthcare ontology. Int J Web Inf Syst. 2020;16:475–91.

    Article  Google Scholar 

  22. Lloyd PA. Requirements for smart materials. Proc Inst Mech Eng Part G J Aerosp Eng. 2007;221:471–8.

    Article  Google Scholar 

  23. Ramirez JL, Rubiano A, Cogollo JG. Characterization of smart materials requirements for actuation in the robotic applications. J Phys Conf Ser. 2019;1386(1):012073.

    Article  Google Scholar 

  24. Addy M. Tooth brushing, tooth wear and dentine hypersensitivity—are they associated? Int Dent J. 2005;55:261–7.

    Article  PubMed  Google Scholar 

  25. Enhanced bite registration. Br Dent J. 2005;199:682–2.

  26. Abdelraouf RM. Chemical analysis and microstructure examination of extended-pour alginate impression versus conventional one (characterization of dental extended-pour alginate). Int J Polym Mater Polym Biomater. 2018;67:612–8.

    Article  CAS  Google Scholar 

  27. Abdelraouf RM, Bayoumi RE, Hamdy TM. Effect of powder/water ratio variation on viscosity, tear strength and detail reproduction of dental alginate impression material (In vitro and clinical study). Polymers (Basel). 2021;13(17):2923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Nissan J, Rosner O, Rosen G, Naishlos S, Zenziper E, Zelikman H, et al. Influence of vinyl polysiloxane impression techniques on marginal fit of metal frameworks for fixed partial dentures. Materials (Basel). 2020;13:1–6.

    Article  Google Scholar 

  29. Yan Z, Sidhu SK, Carrick TE, McCabe JF. Response to thermal stimuli of glass ionomer cements. Dent Mater. 2007;23:597–600.

    Article  PubMed  CAS  Google Scholar 

  30. Patrick G, Sridhar M, Kishore Babu J. Thermal and mechanical properties of glass ionomer cement. AIP Conf Proc; 2020.

    Book  Google Scholar 

  31. Khoroushi M, Keshani F. A review of glass-ionomers: from conventional glass-ionomer to bioactive glass-ionomer. Dent Res J (Isfahan) [Internet]. 2013;10:411–20. Available from: https://pubmed.ncbi.nlm.nih.gov/24130573/

    Google Scholar 

  32. Bansal R, Bansal T. A comparative evaluation of the amount of fluoride release and re-release after recharging from aesthetic restorative materials: an in vitro study. J Clin Diagnostic Res. 2015;9:ZC11–4.

    CAS  Google Scholar 

  33. McCabe JF, Yan Z, Al Naimi OT, Mahmoud G, Rolland SL. Smart materials in dentistry. Aust Dent J. 2011;56:3–10.

    Article  PubMed  Google Scholar 

  34. Dionysopoulos D, Eugenia KK, Maria HA, Nikolaos K. Fluoride release and recharge abilities of contemporary fluoride-containing restorative materials and dental adhesives. Dent Mater J. 2013;32:296–304.

    Article  PubMed  CAS  Google Scholar 

  35. Yan Z, Sidhu SK, Mahmoud GA, Carrick TE, McCabe JF. Effects of temperature on the fluoride release and recharging ability of glass ionomers. Oper Dent. 2007;32:138–43.

    Article  PubMed  CAS  Google Scholar 

  36. Zawaideh FI, Owais AI, Kawaja W. Ability of pit and fissure sealant-containing amorphous calcium phosphate to inhibit enamel demineralization. Int J Clin Pediatr Dent. 2016;9:10–4.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Degli Esposti L, Ionescu AC, Carella F, Adamiano A, Brambilla E, Iafisco M. Antimicrobial activity of remineralizing ion-doped amorphous calcium phosphates for preventive dentistry. Front Mater. 2022;9:846130.

    Article  Google Scholar 

  38. Ciftci ZZ, Hanimeli S, Karayilmaz H, Gungor OE. The efficacy of resin infiltrate on the treatment of white spot lesions and developmental opacities. Niger J Clin Pract. 2018;21:1444–9.

    Article  PubMed  CAS  Google Scholar 

  39. Aref NS, Alrasheed MK. Casein phosphopeptide amorphous calcium phosphate and universal adhesive resin as a complementary approach for management of white spot lesions: an in-vitro study. Prog Orthod. 2022;23:10.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hagag NT, Fahmy OMI, Alazm EAEFA. Effect of two resin infiltration on color masking of artificial enamel white spot lesion using different pretreatment methods. (An in Vitro Study). Dent Sci Updat. 2020;1:31–8.

    Article  Google Scholar 

  41. Borges AB, Abu Hasna A, Matuda AGN, Lopes SR, Mafetano APVP, Arantes A, et al. Adhesive systems effect over bond strength of resin-infiltrated and de/remineralized enamel [version 1; peer review: 2 approved]. F1000Research. 2019;8:1743.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Garg SA, Chavda SM. Color masking white fluorotic spots by resin infiltration and its quantitation by computerized photographic analysis: a 12-month follow-up study. Oper Dent. 2020;45:1–9.

    Article  PubMed  CAS  Google Scholar 

  43. Saccucci M, Corridore D, Di Carlo G, Bonucci E, Cicciù M, Vozza I. Assessment of enamel color stability of resins infiltration treatment in human teeth: a systematic review. Int J Environ Res Public Health. 2022;19(18):11269. This comprehensive systematic review article presented the fundamental uses and mechanism of resin infiltratation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Tiuraniemi S, Yli-Mannila J, Havela P, Käkilehto T, Vähänikkilä H, Laitala ML, et al. Success of resin infiltration treatment on interproximal tooth surfaces in young adults—a practice-based follow-up study. Clin Exp Dent Res. 2021;7:189–95.

    Article  PubMed  Google Scholar 

  45. Zotti F, Albertini L, Tomizioli N, Capocasale G, Albanese M. Resin infiltration in dental fluorosis treatment—1-year follow-up. Med. 2021;57:1–14.

    Google Scholar 

  46. Cazzolla AP, De Franco AR, Lacaita M, Lacarbonara V. Efficacy of 4-year treatment of icon infiltration resin on postorthodontic white spot lesions. BMJ Case Rep. 2018;2018:bcr-2018.

    Google Scholar 

  47. Mazur M, Nardi GM, Corridore D, Ndokaj A, Rodakowska E, Ottolenghi L, et al. Treatment of post-orthodontic white spot lesions by resin infiltration: a case series. J Stomatol. 2018;71:490–6.

    Article  Google Scholar 

  48. Bourouni S, Dritsas K, Kloukos D, Wierichs RJ. Efficacy of resin infiltration to mask post-orthodontic or non-post-orthodontic white spot lesions or fluorosis — a systematic review and meta-analysis. Clin Oral Investig. 2021;25(8):4711–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Oivanen M, Keulemans F, Garoushi S, Vallittu PK, Lassila L. The effect of refractive index of fillers and polymer matrix on translucency and color matching of dental resin composite. Biomater Investig Dent. 2021;8:48–53.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. El-Rashidy AA, Abdelraouf RM, Habib NA. Effect of two artificial aging protocols on color and gloss of single-shade versus multi-shade resin composites. BMC Oral Health [Internet]. BioMed Central Ltd. 2022;22(1):321. [cited 2022 Nov 23];22:1–12. Available from: https://bmcoralhealth.biomedcentral.com/articles/10.1186/s12903-022-02351-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hamdy TM. Polymerization shrinkage in contemporary resin-based dental composites: a review article. Egypt J Chem. 2021;64:3087–92.

    Google Scholar 

  52. Bossù M, Matassa R, Relucenti M, Iaculli F, Salucci A, Di Giorgio G, et al. Morpho-chemical observations of human deciduous teeth enamel in response to biomimetic toothpastes treatment. Materials (Basel). 2020;13(8):1803.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Omar N, Abdelraouf RM, Hamdy TM. Effect of different root canal irrigants on push-out bond strength of two novel root-end filling materials. BMC Oral Health. 2023;23:1–8.

    Article  Google Scholar 

  54. Hamdy TM. Polymers and ceramics biomaterials in orthopedics and dentistry: a review article. Egypt J Chem. 2018;61:723–30.

    Google Scholar 

  55. Spagnuolo G. Bioactive dental materials: the current status. Materials (Basel). 2022;15(6):2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Hamdy TM, Mousa SMA, Sherief MA. Effect of incorporation of lanthanum and cerium-doped hydroxyapatite on acrylic bone cement produced from phosphogypsum waste. Egypt J Chem. 2020;63:1823–32.

    Google Scholar 

  57. Abdelnabi A, Hamza NK, El-Borady OM, Hamdy TM. Effect of different formulations and application methods of coral calcium on its remineralization ability on carious enamel. Open Access Maced J Med Sci. 2020;8:94–9.

    Article  Google Scholar 

  58. Vallittu PK, Boccaccini AR, Hupa L, Watts DC. Bioactive dental materials—do they exist and what does bioactivity mean? Dent. Mater. 2018;34:693–4.

    Article  PubMed  Google Scholar 

  59. Kasraei S, Haghi S, Valizadeh S, Panahandeh N, Nejadkarimi S. Phosphate ion release and alkalizing potential of three bioactive dental materials in comparison with composite resin. Int J Dent. 2021;2021:5572569.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Han X, Chen Y, Jiang Q, Liu X, Chen Y. Novel bioactive glass-modified hybrid composite resin: mechanical properties, biocompatibility, and antibacterial and remineralizing activity. Front Bioeng Biotechnol. 2021;9:661734.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Par M, Spanovic N, Bjelovucic R, Marovic D, Schmalz G, Gamulin O, et al. Long-term water sorption and solubility of experimental bioactive composites based on amorphous calcium phosphate and bioactive glass. Dent Mater J. 2019;38:555–64.

    Article  PubMed  CAS  Google Scholar 

  62. Wu DT, Munguia-Lopez JG, Cho YW, Ma X, Song V, Zhu Z, et al. Polymeric scaffolds for dental, oral, and craniofacial regenerative medicine. Molecules. 2021;26(22):7043.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Pfau MR, Grunlan MA. Smart scaffolds: shape memory polymers (SMPs) in tissue engineering. J Mater Chem B. 2021;9:4287–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Zhang K, Wang S, Zhou C, Cheng L, Gao X, Xie X, et al. Advanced smart biomaterials and constructs for hard tissue engineering and regeneration. Bone Res. 2018;6(1):31.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hamdy TM. Dental biomaterial scaffolds in tooth tissue engineering: a review. Curr Oral Heal Reports, vol. 10. Springer Science and Business Media B.V.; 2023. p. 14–21.

    Google Scholar 

  66. Malik Q u A, Iftikhar S, Zahid S, Safi SZ, Khan AF, Nawshad M, et al. Smart injectable self-setting bioceramics for dental applications. Mater Sci Eng C. 2020;113:110956.

    Article  CAS  Google Scholar 

  67. Bosetti M, Vernè E, Ferraris M, Ravaglioli A, Cannas M. In vitro characterisation of zirconia coated by bioactive glass. Biomaterials. 2001;22:987–94.

    Article  PubMed  CAS  Google Scholar 

  68. Piconi C, Porporati AA. Bioinert ceramics: zirconia and alumina. In: Handb Bioceram Biocomposites. Springer; 2016. p. 59–89.

    Chapter  Google Scholar 

  69. Verga F, Makowska M, Cellerai G, Florio K, Schmid M, Wegener K. Crack-healing, a novel approach for a laser-based powder bed fusion of high-performance ceramic oxides. Addit Manuf Lett. 2021;1:100021.

    Article  Google Scholar 

  70. Liu B, Liu N, Luo J, Xiao Z. Study of transformation toughening behavior of an edge through crack in zirconia ceramics with the cohesive zone model. Int J Appl Mech. 2018;10(06):1850066.

    Article  Google Scholar 

  71. Tavangarian F, Hui D, Li G. Crack-healing in ceramics. Compos Part B Eng. 2018;144:56–87.

    Article  CAS  Google Scholar 

  72. Wang Y, Zhu M, Zhu XX. Functional fillers for dental resin composites. Acta Biomater. 2021;122:50–65.

    Article  PubMed  CAS  Google Scholar 

  73. Abdelraouf RM, Bayoumi RE, Hamdy TM. Influence of incorporating 5% weight titanium oxide nanoparticles on flexural strength, micro-hardness, surface roughness and water sorption of dental self-cured acrylic resin. Polym. 2022;14:3767. [Internet]. Multidisciplinary Digital Publishing Institute; 2022 [cited 2022 Oct 11];14:3767. Available from: https://www.mdpi.com/2073-4360/14/18/3767/htm

    Article  CAS  Google Scholar 

  74. Guo J, Sun H, Lei W, Tang Y, Hong S, Yang H, et al. Response to letter to the editor: MMP-8-responsive polyethylene glycol hydrogel for intraoral drug delivery. J Dent Res. 2019;98(9):1046–6.

    Article  PubMed  CAS  Google Scholar 

  75. Shivasharan P, Ak F, Wakpanjar M, Shetty A. Clinical evaluation of caries removal in primary teeth using carie-care and smartprep burs: an in vivo study. Indian J Oral Heal Res. 2016;2:27.

    Article  Google Scholar 

  76. Sophana J, Borthakur BJ, Ganesan S, Swathika B. The polymer burs (Smart burs). Dent Poster J. 2020;9:1–1.

    Article  Google Scholar 

  77. Yadav S, Nawal RR, Chaudhry S, Talwar S. Assessment of quality of root canal filling with C point, guttacore and lateral compaction technique: a confocal laser scanning microscopy study. Eur Endod J. 2020;5:236–41.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Author acknowledges English language proofreading by Elliott Pearl through the AuthorAID network.

Author information

Authors and Affiliations

Authors

Contributions

T. M. Hamdy contributed to the conception and design of the review, collection of data, interpretation of the analyzed data, writing the manuscript, revised and reviewed the draft manuscript, read, and approved the manuscript.

Corresponding author

Correspondence to Tamer M. Hamdy.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The author declares no competing interests.

Human and Animal Rights and Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdy, T.M. Highlights in Contemporary Smart Dental Materials: a Review. Curr Oral Health Rep 10, 254–262 (2023). https://doi.org/10.1007/s40496-023-00348-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-023-00348-x

Keywords

Navigation