Skip to main content

Considerations for Designing Next-Generation Composite Dental Materials

  • Chapter
  • First Online:
Oral Biofilms and Modern Dental Materials
  • 529 Accesses

Abstract

Tooth-colored dental restorations, especially the ones produced chairside, have relatively short durability, leading to additional tooth loss and high costs. This chapter reviews previous research and highlights future considerations for designing new dental composite restorative materials. Materials that address failure due to the interactions with oral biofilms are explored, since secondary caries is a leading cause for restoration replacement. The process of dental caries is briefly reviewed, emphasizing the surface interactions between biofilms and materials, and the tooth structure. Current research into materials design solutions is described, and future perspectives are discussed. Importantly, a novel method for studying ion release from new dental materials and their interaction with the oral biofilm is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Opdam NJ, van de Sande FH, Bronkhorst E, Cenci MS, Bottenberg P, Pallesen U, Gaengler P, Lindberg A, Huysmans MC, van Dijken JW. Longevity of posterior composite restorations: a systematic review and meta-analysis. J Dent Res. 2014;93(10):943–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rasines Alcaraz MG, Veitz-Keenan A, Sahrmann P, Schmidlin PR, Davis D, Iheozor-Ejiofor Z. Direct composite resin fillings versus amalgam fillings for permanent or adult posterior teeth. Cochrane Database Syst Rev. 2014;3:CD005620.

    Google Scholar 

  3. Mjor IA, Toffenetti F. Secondary caries: a literature review with case reports. Quintessence Int (Berlin, Germany: 1985). 2000;31(3):165–79.

    Google Scholar 

  4. Chatzistavrou X, Lefkelidou A, Papadopoulou L, Pavlidou E, Paraskevopoulos KM, Fenno JC, Flannagan S, Gonzalez-Cabezas C, Kotsanos N, Papagerakis P. Bactericidal and bioactive dental composites. Front Physiol. 2018;9:103.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pereira-Cenci T, Cenci MS, Fedorowicz Z, Marchesan MA. Antibacterial agents in composite restorations for the prevention of dental caries. Cochrane Database Syst Rev. 2009;3:CD007819.

    Google Scholar 

  6. Han Q, Li B, Zhou X, Ge Y, Wang S, Li M, Ren B, Wang H, Zhang K, Xu HHK, et al. Anti-caries effects of dental adhesives containing quaternary ammonium methacrylates with different chain lengths. Materials. 2017;10(6):643.

    Article  PubMed Central  Google Scholar 

  7. Eriksson L, Lif Holgerson P, Johansson I. Saliva and tooth biofilm bacterial microbiota in adolescents in a low caries community. Sci Rep. 2017;7(1):5861.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ribeiro AA, Azcarate-Peril MA, Cadenas MB, Butz N, Paster BJ, Chen T, Bair E, Arnold RR. The oral bacterial microbiome of occlusal surfaces in children and its association with diet and caries. PLoS One. 2017;12(7):e0180621.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Simon-Soro A, Guillen-Navarro M, Mira A. Metatranscriptomics reveals overall active bacterial composition in caries lesions. J Oral Microbiol. 2014;6:25443.

    Article  PubMed  Google Scholar 

  10. Mira A. Oral microbiome studies: potential diagnostic and therapeutic implications. Adv Dent Res. 2018;29(1):71–7.

    Article  PubMed  Google Scholar 

  11. Rocas IN, Alves FR, Rachid CT, Lima KC, Assuncao IV, Gomes PN, Siqueira JF Jr. Microbiome of deep dentinal caries lesions in teeth with symptomatic irreversible pulpitis. PLoS One. 2016;11(5):e0154653.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mark Welch JL, Rossetti BJ, Rieken CW, Dewhirst FE, Borisy GG. Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci U S A. 2016;113(6):E791–800.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kolenbrander PE, Palmer RJ Jr, Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI. Bacterial interactions and successions during plaque development. Periodontology 2000. 2006;42:47–79.

    Article  PubMed  Google Scholar 

  14. Kolenbrander PE, Palmer RJ Jr, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol. 2010;8(7):471–80.

    Article  PubMed  Google Scholar 

  15. Kreth J, Herzberg MC. Molecular principles of adhesion and biofilm formation. In: de Paz LEC, Sedgley CM, Kishen A, editors. The root canal biofilm. Berlin: Springer; 2015. p. 23–54.

    Chapter  Google Scholar 

  16. Tanaka H, Ebara S, Otsuka K, Hayashi K. Adsorption of saliva-coated and plain streptococcal cells to the surfaces of hydroxyapatite beads. Arch Oral Biol. 1996;41(5):505–8.

    Article  PubMed  Google Scholar 

  17. Dawes C, Pedersen AM, Villa A, Ekstrom J, Proctor GB, Vissink A, Aframian D, McGowan R, Aliko A, Narayana N, et al. The functions of human saliva: a review sponsored by the World Workshop on Oral Medicine VI. Arch Oral Biol. 2015;60(6):863–74.

    Article  PubMed  Google Scholar 

  18. Nikitkova AE, Haase EM, Scannapieco FA. Taking the starch out of oral biofilm formation: molecular basis and functional significance of salivary alpha-amylase binding to oral streptococci. Appl Environ Microbiol. 2013;79(2):416–23.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Delius J, Trautmann S, Medard G, Kuster B, Hannig M, Hofmann T. Label-free quantitative proteome analysis of the surface-bound salivary pellicle. Colloids Surf B Biointerfaces. 2017;152:68–76.

    Article  PubMed  Google Scholar 

  20. Tabak LA. In defense of the oral cavity: structure, biosynthesis, and function of salivary mucins. Annu Rev Physiol. 1995;57:547–64.

    Article  PubMed  Google Scholar 

  21. Plummer C, Wu H, Kerrigan SW, Meade G, Cox D, Ian Douglas CW. A serine-rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets via GPIb. Br J Haematol. 2005;129(1):101–9.

    Article  PubMed  Google Scholar 

  22. Slomiany BL, Murty VL, Piotrowski J, Slomiany A. Salivary mucins in oral mucosal defense. Gen Pharmacol. 1996;27(5):761–71.

    Article  PubMed  Google Scholar 

  23. Caufield PW, Dasanayake AP, Li Y, Pan Y, Hsu J, Hardin JM. Natural history of Streptococcus sanguinis in the oral cavity of infants: evidence for a discrete window of infectivity. Infect Immun. 2000;68(7):4018–23.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Frenkel ES, Ribbeck K. Salivary mucins in host defense and disease prevention. J Oral Microbiol. 2015;7:29759.

    Article  PubMed  Google Scholar 

  25. Gradinaru I, Ghiciuc CM, Popescu E, Nechifor C, Mandreci I, Nechifor M. Blood plasma and saliva levels of magnesium and other bivalent cations in patients with parotid gland tumors. Magnes Res. 2007;20(4):254–8.

    PubMed  Google Scholar 

  26. Deng L, Bensing BA, Thamadilok S, Yu H, Lau K, Chen X, Ruhl S, Sullam PM, Varki A. Oral streptococci utilize a Siglec-like domain of serine-rich repeat adhesins to preferentially target platelet sialoglycans in human blood. PLoS Pathog. 2014;10(12):e1004540.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bridier A, Piard JC, Pandin C, Labarthe S, Dubois-Brissonnet F, Briandet R. Spatial organization plasticity as an adaptive driver of surface microbial communities. Front Microbiol. 2017;8:1364.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Diaz PI, Chalmers NI, Rickard AH, Kong C, Milburn CL, Palmer RJ Jr, Kolenbrander PE. Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl Environ Microbiol. 2006;72(4):2837–48.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lemos JA, Burne RA. A model of efficiency: stress tolerance by Streptococcus mutans. Microbiology. 2008;154(Pt 11):3247–55.

    Article  PubMed  Google Scholar 

  30. Liu Y, Palmer SR, Chang H, Combs AN, Burne RA, Koo H. Differential oxidative stress tolerance of Streptococcus mutans isolates affects competition in an ecological mixed-species biofilm model. Environ Microbiol Rep. 2018;10(1):12–22.

    Article  PubMed  Google Scholar 

  31. Wilking JN, Zaburdaev V, De Volder M, Losick R, Brenner MP, Weitz DA. Liquid transport facilitated by channels in Bacillus subtilis biofilms. Proc Natl Acad Sci U S A. 2013;110(3):848–52.

    Article  PubMed  Google Scholar 

  32. Hwang G, Liu Y, Kim D, Sun V, Aviles-Reyes A, Kajfasz JK, Lemos JA, Koo H. Simultaneous spatiotemporal mapping of in situ pH and bacterial activity within an intact 3D microcolony structure. Sci Rep. 2016;6:32841.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Roberts AP, Kreth J. The impact of horizontal gene transfer on the adaptive ability of the human oral microbiome. Front Cell Infect Microbiol. 2014;4:124.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fontaine L, Wahl A, Flechard M, Mignolet J, Hols P. Regulation of competence for natural transformation in streptococci. Infect Genet Evol. 2015;33:343–60.

    Article  PubMed  Google Scholar 

  35. Benitez-Paez A, Belda-Ferre P, Simon-Soro A, Mira A. Microbiota diversity and gene expression dynamics in human oral biofilms. BMC Genomics. 2014;15:311.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Edlund A, Garg N, Mohimani H, Gurevich A, He X, Shi W, Dorrestein PC, McLean JS. Metabolic fingerprints from the human oral microbiome reveal a vast knowledge gap of secreted small peptidic molecules. mSystems. 2017;2(4):e00058-17. https://doi.org/10.1128/mSystems.00058-17.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 2017;15(12):740–55.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang JF, Wu R, Fan Y, Liao S, Wang Y, Wen ZT, Xu X. Antibacterial dental composites with chlorhexidine and mesoporous silica. J Dent Res. 2014;93(12):1283–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Buxadera-Palomero J, Canal C, Torrent-Camarero S, Garrido B, Javier Gil FJ, Rodríguez D. Antifouling coatings for dental implants: polyethylene glycol-like coatings on titanium by plasma polymerization. Biointerphases. 2015;10(2):029505.

    Article  PubMed  Google Scholar 

  40. Zhang Q, Nijampatnam B, Hua Z, Nguyen T, Zou J, Cai X, Michalek SM, Velu SE, Wu H. Structure-based discovery of small molecule inhibitors of cariogenic virulence. Sci Rep. 2017;7(1):5974.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Apel C, Barg A, Rheinberg A, Conrads G, Wagner-Döbler I. Dental composite materials containing carolacton inhibit biofilm growth of Streptococcus mutans. Dent Mater. 2013;29(11):1188–99.

    Article  PubMed  Google Scholar 

  42. Cheng L, Weir MD, Xu HHK, Antonucci JM, Kraigsley AM, Lin NJ, Lin-Gibson S, Zhou X. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent Mater. 2012a;28(5):561–72.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li F, Wang P, Weir MD, Fouad AF, Xu HHK. Evaluation of antibacterial and remineralizing nanocomposite and adhesive in rat tooth cavity model. Acta Biomater. 2014a;10(6):2804–13.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li F, Weir MD, Xu HHK. Effects of quaternary ammonium chain length on antibacterial bonding agents. J Dent Res. 2013;92(10):932–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cheng L, Zhang K, Zhang N, Melo MAS, Weir MD, Zhou XD, Bai YX, Reynolds MA, Xu HHK. Developing a new generation of antimicrobial and bioactive dental resins. J Dent Res. 2017;96(8):855–63.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li F, Weir MD, Chen J, Xu HHK. Effect of charge density of bonding agent containing a new quaternary ammonium methacrylate on antibacterial and bonding properties. Dent Mater. 2014b;30(4):433–41.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liang X, Söderling E, Liu F, He J, Lassila LVJ, Vallittu PK. Optimizing the concentration of quaternary ammonium dimethacrylate monomer in bis-GMA/TEGDMA dental resin system for antibacterial activity and mechanical properties. J Mater Sci Mater Med. 2014;25(5):1387–93.

    Article  PubMed  Google Scholar 

  48. Zhou H, Liu H, Weir MD, Reynolds MA, Zhang K, Xu HHK. Three-dimensional biofilm properties on dental bonding agent with varying quaternary ammonium charge densities. J Dent. 2016;53:73–81.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Makvandi P, Ghaemy M, Mohseni M. Synthesis and characterization of photo-curable bis-quaternary ammonium dimethacrylate with antimicrobial activity for dental restoration materials. Eur Polym J. 2016;74:81–90.

    Article  Google Scholar 

  50. Wang S, Zhou C, Ren B, Li X, Weir MD, Masri RM, Oates TW, Cheng L, Xu HKH. Formation of persisters in Streptococcus mutans biofilms induced by antibacterial dental monomer. J Mater Sci Mater Med. 2017;28(11):178.

    Article  PubMed  Google Scholar 

  51. Zhang N, Ma J, Melo MAS, Weir MD, Bai Y, Xu HHK. Protein-repellent and antibacterial dental composite to inhibit biofilms and caries. J Dent. 2015a;43(2):225–34.

    Article  PubMed  Google Scholar 

  52. Zhang N, Weir MD, Romberg E, Bai Y, Xu HHK. Development of novel dental adhesive with double benefits of protein-repellent and antibacterial capabilities. Dent Mater. 2015b;31(7):845–54.

    Article  PubMed  Google Scholar 

  53. Cao B, Tang Q, Li L, Lee CJ, Wang H, Zhang Y, Castaneda H, Cheng G. Integrated zwitterionic conjugated poly(carboxybetaine thiophene) as a new biomaterial platform. Chem Sci. 2015;6(1):782–8.

    Article  PubMed  Google Scholar 

  54. Cao Z, Mi L, Mendiola J, Ella-Menye JR, Zhang L, Xue H, Jiang S. Reversibly switching the function of a surface between attacking and defending against bacteria. Angew Chem Int Ed. 2012;51(11):2602–5.

    Article  Google Scholar 

  55. Khanal M, Raks V, Issa R, Chernyshenko V, Barras A, Garcia Fernandez JM, Mikhalovska LI, Turcheniuk V, Zaitsev V, Boukherroub R, et al. Selective antimicrobial and antibiofilm disrupting properties of functionalized diamond nanoparticles against Escherichia coli and Staphylococcus aureus. Part Part Syst Charact. 2015;32(8):822–30.

    Article  Google Scholar 

  56. Turcheniuk V, Turcheniuk K, Bouckaert J, Barras A, Dumych T, Bilyy R, Zaitsev V, Siriwardena A, Wang Q, Boukherroub R, et al. Affinity of glycan-modified nanodiamonds towards lectins and uropathogenic Escherichia coli. ChemNanoMat. 2016;2(4):307–14.

    Article  Google Scholar 

  57. Wehling J, Dringen R, Zare RN, Maas M, Rezwan K. Bactericidal activity of partially oxidized nanodiamonds. ACS Nano. 2014;8(6):6475–83.

    Article  PubMed  Google Scholar 

  58. Lewis JS, Gittard SD, Narayan RJ, Berry CJ, Brigmon RL, Ramamurti R, Singh RN. Assessment of microbial biofilm growth on nanocrystalline diamond in a continuous perfusion environment. J Manuf Sci E T ASME. 2010;132(3):0309191–7.

    Article  Google Scholar 

  59. Kaushik SN, Scoffield J, Andukuri A, Alexander GC, Walker T, Kim S, Choi SC, Brott BC, Eleazer PD, Lee JY, et al. Evaluation of ciprofloxacin and metronidazole encapsulated biomimetic nanomatrix gel on Enterococcus faecalis and Treponema denticola. Biomater Res. 2015;19(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nijampatnam B, Casals L, Zheng R, Wu H, Velu SE. Hydroxychalcone inhibitors of Streptococcus mutans glucosyl transferases and biofilms as potential anticaries agents. Bioorg Med Chem Lett. 2016;26(15):3508–13.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang Q, Nguyen T, McMichael M, Velu SE, Zou J, Zhou X, Wu H. New small-molecule inhibitors of dihydrofolate reductase inhibit Streptococcus mutans. Int J Antimicrob Agents. 2015c;46(2):174–82.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hwang G, Koltisko B, Jin X, Koo H. Nonleachable imidazolium-incorporated composite for disruption of bacterial clustering, exopolysaccharide-matrix assembly, and enhanced biofilm removal. ACS Appl Mater Interfaces. 2017;9(44):38270–80.

    Article  PubMed  Google Scholar 

  63. Guo L, McLean JS, Yang Y, Eckert R, Kaplan CW, Kyme P, Sheikh O, Varnum B, Lux R, Shi W, et al. Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology. Proc Natl Acad Sci U S A. 2015;112(24):7569–74.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Qian S, Cheng YF. Fabrication of micro/nanostructured superhydrophobic ZnO-alkylamine composite films on steel for high-performance self-cleaning and anti-adhesion of bacteria. Colloids Surf A Physicochem Eng Asp. 2018;544:35–43.

    Article  Google Scholar 

  65. Michalska M, Gambacorta F, Divan R, Aranson IS, Sokolov A, Noirot P, Laible PD. Tuning antimicrobial properties of biomimetic nanopatterned surfaces. Nanoscale. 2018;10(14):6639–50.

    Article  PubMed  Google Scholar 

  66. Wu S, Zuber F, Maniura-Weber K, Brugger J, Ren Q. Nanostructured surface topographies have an effect on bactericidal activity. J Nanobiotechnol. 2018;16(1):20.

    Article  Google Scholar 

  67. Zhu C, Zhang WW, Fang SY, Kong R, Zou G, Bao NR, Zhao JN, Shang XF. Antibiotic peptide-modified nanostructured titanium surface for enhancing bactericidal property. J Mater Sci. 2018;53(8):5891–908.

    Article  Google Scholar 

  68. Amend S, Frankenberger R, Lücker S, Domann E, Krämer N. Secondary caries formation with a two-species biofilm artificial mouth. Dent Mater. 2018;34(5):786–96.

    Article  PubMed  Google Scholar 

  69. Aljerf L, Choukaife AE. Hydroxyapatite and fluorapatite behavior with pH change. Int Med J. 2017;24(5):407–10.

    Google Scholar 

  70. Andrucioli MCD, Faria G, Nelson-Filho P, Romano FL, Matsumoto MAN. Influence of resin-modified glass ionomer and topical fluoride on levels of Streptococcus mutans in saliva and biofilm adjacent to metallic brackets. J Appl Oral Sci. 2017;25(2):196–202.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Featherstone JD, Fontana M, Wolff M. Novel anticaries and remineralization agents: future research needs. J Dent Res. 2018;97(2):125–7.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Mayanagi G, Igarashi K, Washio J, Domon-Tawaraya H, Takahashi N. Effect of fluoride-releasing restorative materials on bacteria-induced pH fall at the bacteria-material interface: an in vitro model study. J Dent. 2014;42(1):15–20.

    Article  PubMed  Google Scholar 

  73. Naoum S, Ellakwa A, Martin F, Swain M. Fluoride release, recharge and mechanical property stability of various fluoride-containing resin composites. Oper Dent. 2011;36(4):422–32.

    Article  PubMed  Google Scholar 

  74. Wang Y, Samoei GK, Lallier TE, Xu X. Synthesis and characterization of new antibacterial fluoride-releasing monomer and dental composite. ACS Macro Lett. 2013;2(1):59–62.

    Article  Google Scholar 

  75. Cheng L, Weir MD, Xu HHK, Kraigsley AM, Lin NJ, Lin-Gibson S, Zhou X. Antibacterial and physical properties of calcium-phosphate and calcium-fluoride nanocomposites with chlorhexidine. Dent Mater. 2012b;28(5):573–83.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cochrane NJ, Cai F, Huq NL, Burrow MF, Reynolds EC. Critical review in oral biology & medicine: new approaches to enhanced remineralization of tooth enamel. J Dent Res. 2010;89(11):1187–97.

    Article  PubMed  Google Scholar 

  77. Rodrigues MC, Chiari MDS, Alania Y, Natale LC, Arana-Chavez VE, Meier MM, Fadel VS, Vichi FM, Hewer TLR, Braga RR. Ion-releasing dental restorative composites containing functionalized brushite nanoparticles for improved mechanical strength. Dent Mater. 2018;34:746–55.

    Article  PubMed  Google Scholar 

  78. Karlinsey RL, Mackey AC. Solid-state preparation and dental application of an organically modified calcium phosphate. J Mater Sci. 2009;44(1):346–9.

    Article  Google Scholar 

  79. Kim DA, Lee JH, Jun SK, Kim HW, Eltohamy M, Lee HH. Sol–gel-derived bioactive glass nanoparticle-incorporated glass ionomer cement with or without chitosan for enhanced mechanical and biomineralization properties. Dent Mater. 2017;33(7):805–17.

    Article  PubMed  Google Scholar 

  80. Nommeots-Nomm A, Labbaf S, Devlin A, Todd N, Geng H, Solanki AK, Tang HM, Perdika P, Pinna A, Ejeian F, et al. Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration. Acta Biomater. 2017;57:449–61.

    Article  PubMed  Google Scholar 

  81. Fernando D, Attik N, Pradelle-Plasse N, Jackson P, Grosgogeat B, Colon P. Bioactive glass for dentin remineralization: a systematic review. Mater Sci Eng C. 2017;76:1369–77.

    Article  Google Scholar 

  82. Bakri MM, Hossain MZ, Razak FA, Saqina ZH, Misroni AA, Ab-Murat N, Kitagawa J, Saub RB. Dentinal tubules occluded by bioactive glass-containing toothpaste exhibit high resistance toward acidic soft drink challenge. Aust Dent J. 2017;62(2):186–91.

    Article  PubMed  Google Scholar 

  83. Khvostenko D, Hilton TJ, Ferracane JL, Mitchell JC, Kruzic JJ. Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations. Dent Mater. 2016;32(1):73–81.

    Article  PubMed  Google Scholar 

  84. Lee SY, Regnault WF, Antonucci JM, Skrtic D. Effect of particle size of an amorphous calcium phosphate filler on the mechanical strength and ion release of polymeric composites. J Biomed Mater Res B Appl Biomater. 2007;80(1):11–7.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Marovic D, Tarle Z, Hiller KA, Müller R, Rosentritt M, Skrtic D, Schmalz G. Reinforcement of experimental composite materials based on amorphous calcium phosphate with inert fillers. Dent Mater. 2014;30(9):1052–60.

    Article  PubMed  Google Scholar 

  86. O’Donnell JNR, Schumacher GE, Antonucci JM, Skrtic D. Structure-composition-property relationships in polymeric amorphous calcium phosphate-based dental composites. Materials. 2009;2(4):1929–54.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Chen C, Weir MD, Cheng L, Lin NJ, Lin-Gibson S, Chow LC, Zhou X, Xu HHK. Antibacterial activity and ion release of bonding agent containing amorphous calcium phosphate nanoparticles. Dent Mater. 2014;30(8):891–901.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chen Z, Cao S, Wang H, Li Y, Kishen A, Deng X, Yang X, Wang Y, Cong C, Wang H, et al. Biomimetic remineralization of demineralized dentine using scaffold of CMC/ACP nanocomplexes in an in vitro tooth model of deep caries. PLoS One. 2015;10(1):e0116553.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Cheng L, Zhang K, Zhou CC, Weir MD, Zhou XD, Xu HHK. One-year water-ageing of calcium phosphate composite containing nano-silver and quaternary ammonium to inhibit biofilms. Int J Oral Sci. 2016;8(3):172–81.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zhang K, Cheng L, Weir MD, Bai YX, Xu HHK. Effects of quaternary ammonium chain length on the antibacterial and remineralizing effects of a calcium phosphate nanocomposite. Int J Oral Sci. 2016;8:45–53.

    Article  PubMed  Google Scholar 

  91. Laurent P, Camps J, About I. BiodentineTM induces TGF-β1 release from human pulp cells and early dental pulp mineralization. Int Endod J. 2012;45(5):439–48.

    Article  PubMed  Google Scholar 

  92. Hegde S, Sowmya B, Mathew S, Bhandi SH, Nagaraja S, Dinesh K. Clinical evaluation of mineral trioxide aggregate and biodentine as direct pulp capping agents in carious teeth. J Conserv Dent. 2017;20(2):91–5.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Simila HO, Karpukhina N, Hill RG. Bioactivity and fluoride release of strontium and fluoride modified biodentine. Dent Mater. 2018;34(1):e1–7.

    Article  PubMed  Google Scholar 

  94. Vural UK, Kiremitci A, Gokalp S. Randomized clinical trial to evaluate MTA indirect pulp capping in deep caries lesions after 24-months. Oper Dent. 2017;42(5):470–7.

    Article  Google Scholar 

  95. Song M, Kang M, Kim HC, Kim E. A randomized controlled study of the use of proroot mineral trioxide aggregate and endocem as direct pulp capping materials. J Endod. 2015;41(1):11–5.

    Article  PubMed  Google Scholar 

  96. Harris D, Ummadi JG, Thurber AR, Allau Y, Verba C, Colwell F, Torres ME, Koley D. Real-time monitoring of calcification process by Sporosarcina pasteurii biofilm. The Analyst. 2016;141(10):2887–95.

    Article  PubMed  Google Scholar 

  97. Joshi VS, Kreth J, Koley D. Pt-decorated MWCNTs-ionic liquid composite-based hydrogen peroxide sensor to study microbial metabolism using scanning electrochemical microscopy. Anal Chem. 2017a;89(14):7709–18.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Joshi VS, Sheet PS, Cullin N, Kreth J, Koley D. Real-time metabolic interactions between two bacterial species using a carbon-based pH microsensor as a scanning electrochemical microscopy probe. Anal Chem. 2017b;89(20):11044–52.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Liu X, Ramsey MM, Chen X, Koley D, Whiteley M, Bard AJ. Real-time mapping of a hydrogen peroxide concentration profile across a polymicrobial bacterial biofilm using scanning electrochemical microscopy. Proc Natl Acad Sci U S A. 2011;108(7):2668–73.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ummadi JG, Joshi VS, Gupta PR, Indra AK, Koley D. Single-cell migration as studied by scanning electrochemical microscopy. Anal Methods. 2015;7(20):8826–31.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ummadi JG, Downs CJ, Joshi VS, Ferracane JL, Koley D. Carbon-based solid-state calcium ion-selective microelectrode and scanning electrochemical microscopy: a quantitative study of pH-dependent release of calcium ions from bioactive glass. Anal Chem. 2016;88(6):3218–26.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Stoica L, Neugebauer S, Schuhmann W. Scanning electrochemical microscopy (SECM) as a tool in biosensor research. Adv Biochem Eng Biotechnol. 2008;109:455–92.

    PubMed  Google Scholar 

  103. Amemiya S, Bard AJ, Fan FR, Mirkin MV, Unwin PR. Scanning electrochemical microscopy. Annu Rev Anal Chem (Palo Alto, CA). 2008;1:95–131.

    Article  Google Scholar 

  104. Roberts WS, Lonsdale DJ, Griffiths J, Higson SP. Advances in the application of scanning electrochemical microscopy to bioanalytical systems. Biosens Bioelectron. 2007;23(3):301–18.

    Article  PubMed  Google Scholar 

  105. Bard AJ, Mirkin MV. Scanning electrochemical microscopy. 2nd ed. Boca Raton, FL: CRC Press; 2012.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmem S. Pfeifer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pfeifer, C.S., Kreth, J., Koley, D., Ferracane, J.L. (2021). Considerations for Designing Next-Generation Composite Dental Materials. In: Ionescu, A.C., Hahnel, S. (eds) Oral Biofilms and Modern Dental Materials . Springer, Cham. https://doi.org/10.1007/978-3-030-67388-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67388-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67387-1

  • Online ISBN: 978-3-030-67388-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics