Skip to main content

Bioinert Ceramics: Zirconia and Alumina

  • Reference work entry
  • First Online:
Handbook of Bioceramics and Biocomposites

Abstract

Alumina and zirconia are used as biomaterials since long. The use of alumina, especially, as a dental implant and porous bone substitute was reported in the first half of the 1960s.

Both these ceramics exhibit a high chemical inertness, which is the reason for their high biological safety even at the higher specific surfaces. Due to their hardness being higher than the other metal alloys, alumina and zirconia found their main application as biomaterials in the articular surfaces of joint replacements. Today, the use of zirconia ball heads has practically ceased in hip arthroplasty. Zirconia ceramics are used mostly in dentistry, while in orthopedics are still in use in some niche products. In association with alumina, zirconia is used in the ceramic composites that are presently the reference bioinert ceramic for clinical applications. This chapter is an overview of the development of bioinert ceramics, as well as of their physical and mechanical properties. The behavior of the present composite bioinert ceramics is also described in detail, and a review is given of the studies carried out to assess the biological safety of alumina and zirconia. Finally, the flow sheet of a possible production process for the manufacture of bioinert ceramic components is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piconi C, Condò SG, Kosmac T (2014) Alumina- and zirconia-based ceramics for load bearing applications. In: Shen JZ, Kosmac T (eds) Advanced ceramics for dentistry, 1st edn. Butterworth-Heinemann, Waltham, pp 220–253

    Google Scholar 

  2. Piconi C, Maccauro G (1999) Zirconia as a ceramic biomaterial. Biomaterials 20:1–25

    Article  Google Scholar 

  3. Piconi C, Rimondini L, Cerroni L (2008) La zirconia in odontoiatria. Elsevier, Milano

    Google Scholar 

  4. Rock M (1933) Künstliche Ersatzteile für das Innere und Aussere des menschliche und tierische Körpers, German Patent DRP 583.589

    Google Scholar 

  5. Piconi C (2011) Alumina. In: Ducheyne P, Healey KE, Hutmacher DW, Grainger DW, Kirkpatrick CJ (eds) Comprehensive biomaterials, vol 1. Elsevier, Amsterdam, pp 73–94

    Chapter  Google Scholar 

  6. Petzatodis GE, Papadoupoulos PP, Papavasiliou KA, Hatzokos IG, Agathangelidis FG, Christodoulou AG (2010) Primary cementless total hip arthroplasty with an alumina ceramic-on-ceramic bearing: results after a minimum of twenty years of follow-up. J Bone Joint Surg Am 92:639–644

    Google Scholar 

  7. Sedel L (2004) Thirty year experience with all ceramic bearings. In: Lazennec J-Y, Dietrich M (eds) Bioceramics in joint arthroplasty. Steinkopff, Darmstadt, pp 17–20

    Chapter  Google Scholar 

  8. Munz D, Fett T (1999) Ceramics. Material properties, failure behavior, materials selection. Springer, Berlin, pp 9–18

    Google Scholar 

  9. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297

    Google Scholar 

  10. International Standards Organization-Technical Committee ISO/TC 206 (2003) “Fine Ceramics”. Fine Ceramics (advanced ceramics, advanced technical ceramics) – Weibull statistics for strength data. ISO 20501:2003

    Google Scholar 

  11. Kuntz M, Masson B, Pandorf T (2009) Current state of the art of ceramic composite material BIOLOX delta. In: Mendes G, Lago B (eds) Strength of materials. Nova Science, Hauppauge, pp 133–158

    Google Scholar 

  12. Ruff O, Ebert F, Stephen E (1929) Contributions to the ceramics of highly refractory materials: II, System Zirconia-Lime. Z Anorg Allg Chem 180:215–224

    Article  Google Scholar 

  13. Garvie RC, Nicholson PS (1972) Structure and thermodynamical properties of partially stabilized zirconia in the CaO-ZrO2 system. J Am Ceram Soc 55:152–157

    Article  Google Scholar 

  14. Garvie RC, Hannink RHJ, Pascoe RT (1975) Ceramic steel? Nature 258:703–704

    Article  Google Scholar 

  15. Rieth PH, Reed JS, Naumann AW (1976) Fabrication and flexural strength of ultra-fine grained yttria-stabilised zirconia. Bull Am Ceram Soc 55:717

    Google Scholar 

  16. Gupta TK, Bechtold JH, Kuznickie RC, Cadoff LH, Rossing BR (1978) Stabilization of tetragonal phase in polycrystalline zirconia. J Mater Sci 13:1464

    Article  Google Scholar 

  17. Lughi V, Sergo V (2010) Low temperature degradation -aging- of zirconia: a critical review of the relevant aspects in dentistry. Dent Mater 26:807–820

    Article  Google Scholar 

  18. Lange FF (1982) Transformation toughening – part 1–4. J Mater Sci 17:225–263

    Article  Google Scholar 

  19. Becher PF, Francis Rose LR (1994) Toughening mechanisms in ceramic systems. In: Swain MV (ed) Structure and properties of ceramics, vol 11, Materials science and technology. VCH, Weinheim, pp 409–461

    Google Scholar 

  20. Hannink RHJ, Kelly PM, Muddle BC (2000) Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 83:461–487

    Article  Google Scholar 

  21. Kobayashi K, Kuwajima H, Masaki T (1981) Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after aging. Solid State Ion 3–4:461–487

    Google Scholar 

  22. Sato T, Shimada M (1985) Transformation of yttia-doped tetragonal ZrO2 polycrystals by annealing in water. J Am Ceram Soc 68:356–359

    Article  Google Scholar 

  23. Yoshimura M, Noma T, Kawabata K, Somiya S (1987) Role of H2O on the degradation process of Y-TZP. J Mater Sci Lett 6:465

    Article  Google Scholar 

  24. Chevalier J, Gremillard L, Virkar AV, Clarke DR (2009) The tetragonal–monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc 92:1901–1920

    Article  Google Scholar 

  25. Piconi C, Casarci M (2000) Purification of chemicals for the production of biomedical grade YTZP ceramics. In: Rammlair D, Mederer J, Oberthur RB, Petinghaus H (eds) Applied mineralogy. Balkema, Rotterdam, pp 205–207

    Google Scholar 

  26. Pecharromán C, Bartolomé JF, Requena J et al (2003) Percolative mechanisms of aging in zirconia-containing ceramics for medical applications. Adv Mater 15:507–511

    Article  Google Scholar 

  27. Clarke IC, Pezzotti G, Green DD, Shirasu H, Donaldson T (2005) Severe simulation test for run-in wear of all-alumina compared to alumina composite THR. In: D’Antonio J, Dietrich M (eds) Bioceramics and alternative bearings in joint arthroplasty. Steinkopff, Darmstadt, pp 11–20

    Chapter  Google Scholar 

  28. Piconi C, Porporati AA, Streicher RM (2015) Ceramics in THR bearings: behavior in off-normal conditions. Key Eng Mater 631:1–7

    Article  Google Scholar 

  29. Begand S, Oberbach T, Glien W (2005) ATZ A new material with a high potential in joint replacement. Key Eng Mater 284–286:983–986

    Article  Google Scholar 

  30. Schneider J, Begand S, Kriegel R, Kaps C, Glien W, Oberbach T (2008) Low temperature aging of alumina toughened zirconia. J Am Ceram Soc 91:3613–3618

    Article  Google Scholar 

  31. Oberbach T, Begand S, Glien W (2007) In-vitro wear of different ceramic couplings. Key Eng Mater 330–332:1231–1234

    Article  Google Scholar 

  32. Oberbach T, Ortmann C, Begand S, Glien W (2009) Investigations of an alumina ceramic with zirconia gradient for the application as load bearing implant for joint prostheses. Key Eng Mater 309–311:1247–1250

    Google Scholar 

  33. Al-Hajjar M, Jennings LM, Begand S, Oberbach T, Delfosse D, Fisher J (2013) Wear of novel ceramic-on-ceramic bearings under adverse and clinically relevant hip simulator conditions. J Biomed Mater Res B Appl Biomater 101:1456–1462

    Article  Google Scholar 

  34. Chevalier J, Grandjean S, Kuntz N, Pezzotti G (2009) On the kinetics and impact of tetragonal to monoclinic transformation in an alumina/zirconia composite for arthroplasty applications. Biomaterials 30:5279–5282

    Article  Google Scholar 

  35. Piconi C, Maccauro G, Muratori E, Brach del Prever E (2003) Alumina and zirconia ceramics in joint replacements: a review. J Appl Biomater Biomech 1:19–32

    Google Scholar 

  36. Catelas I, Petit A, Zukor DJ, Marchand R, Yahia LH, Huk OL (1999) Induction of macrophage apoptosis by ceramic and polyethylene particles in vitro. Biomaterials 20:625–630

    Article  Google Scholar 

  37. Kranz I, Gonzalez JB, Dorfel I et al (2009) Biological response to micron- and nanometer-sized particles known as potential wear products from artificial hip joints: part II: reaction of murine macrophages to corundum particles of different size distribution. J Biomed Mater Res 89-A:390–401

    Article  Google Scholar 

  38. Christel P (1992) Biocompatibility of surgical-grade dense polycrystalline alumina. Clin Orthop 282:10–18

    Google Scholar 

  39. Warashina H, Sakano S, Kitamura S et al (2003) Biological reaction to alumina, zirconia, titanium and polyethylene particles implanted into murine calvaria. Biomaterials 24:3655–3661

    Article  Google Scholar 

  40. Ryu RK, Bovill EG, Skinner HB et al (1987) Soft tissue sarcoma associated with aluminum oxide ceramic total hip arthroplasty. Clin Orthop 216:207–212

    Google Scholar 

  41. Covacci V, Bruzzese N, Maccauro G et al (1999) In vitro evaluation of the mutagenic and carcinogenic power of high purity zirconia ceramic. Biomaterials 20:371–376

    Article  Google Scholar 

  42. Maccauro G, Bianchino G, Sangiorgi S et al (2009) Development of a new zirconia-toughened alumina: promising mechanical properties and absence of in vitro carcinognenicity. Int J Immunopathol Pharmacol 22:773–779

    Google Scholar 

  43. Willert HG, Semlitsch M (1977) Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res 11:157–164

    Article  Google Scholar 

  44. Schmalzried TP, Callaghan JJ (1999) Current concepts review: wear in total hip and knee replacements. J Bone Joint Surg Am 81-A:115–136

    Google Scholar 

  45. Granchi D, Amato I, Battistelli L, Ciapetti G et al (2005) Molecular basis of ostoclastogenesis induced by osteoblasts exposed to wear particles. Biomaterials 26:2371–2379

    Article  Google Scholar 

  46. Fisher J, Jin Z, Tipper J et al (2006) Tribology of alternative bearings. Clin Orthop 453:25–34

    Article  Google Scholar 

  47. Maccauro G, Piconi C, Muratori F, De Santis V, Burger W (2003) Tissue reactions to wear debris: clinical cases vs. animal model. In: Zippel M, Dietrich M (eds) Bioceramics in joint arthroplasty. Steinkoppf, Darmstadt, pp 81–88

    Chapter  Google Scholar 

  48. Lerouge S, Yahia L’H, Huk O et al (1995) Wear debris and inflammatory response in tissues around failed alumina ceramic-on-ceramic hip prostheses. In: Wilson J, Hench LL, Greenspan D (eds) Bioceramics 8. Elsevier, New York, pp 145–150

    Google Scholar 

  49. De Santis E, Maccauro G, Proietti L et al (2001) Histologic and ultrastuctural analysis of alumina wear debris. Key Eng Mater 192–195:995–998

    Article  Google Scholar 

  50. Graci G, Spinelli MS, Del Bravo V et al (2011) An original method for the evaluation of in-vivo controlled release of ceramic materials. Int J Immunopathol Pharmacol 24(S2):107–112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corrado Piconi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Piconi, C., Porporati, A.A. (2016). Bioinert Ceramics: Zirconia and Alumina. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-12460-5_4

Download citation

Publish with us

Policies and ethics