Skip to main content
Log in

Neurobiology of Disordered Gambling

  • Gambling (J Derevensky, Section Editor)
  • Published:
Current Addiction Reports Aims and scope Submit manuscript

Abstract

Background

Gambling disorder affects 0.4 to 1.9 % of adults worldwide and is commonly associated with significant psychosocial dysfunction.

Methods

This article provides a concise primer on recent research examining the neurobiological underpinnings of gambling disorder.

Results

Although impulsivity has been seen as one cognitive component underlying gambling disorder, compulsivity may be equally important to examine. Although causality remains elusive, structural and functional neuroimaging data suggest dysfunction in top-down executive control in gambling disorder. Recent twin research suggests that gambling disorder may have genetic links to both gambling and to obsessive-compulsive disorder.

Conclusions

Understanding the neurobiology of gambling disorder may lead to improved treatment approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. http://www.statista.com/topics/1053/casinos/.

  2. Grant JE, Kim SW. Demographic and clinical features of 131 adult pathological gamblers. J Clin Psychiatry. 2001;62:957–62.

    Article  CAS  PubMed  Google Scholar 

  3. Hodgins DC, Stea JN, Grant JE. Gambling disorders. Lancet. 2011;378:1874–84.

    Article  PubMed  Google Scholar 

  4. Petry NM, Stinson FS, Grant BF. Comorbidity of DSM-IV pathological gambling and other psychiatric disorders: results from the National Epidemiologic Survey on alcohol and related conditions. J Clin Psychiatry. 2005;66:564–74.

    Article  PubMed  Google Scholar 

  5. Shaffer HJ, Hall MN, Vander Bilt J. Estimating the prevalence of disordered gambling behavior in the United States and Canada: a research synthesis. Am J Public Health. 1999;89:1369–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ashley LL, Boehlke KK. Pathological gambling: a general overview. J Psychoactive Drugs. 2012;44:27–37.

    Article  PubMed  Google Scholar 

  7. Conversano C, Marazziti D, Carmassi C, Baldini S, Barnabei G, Dell'Osso L. Pathological gambling: a systematic review of biochemical, neuroimaging, and neuropsychological findings. Harv Rev Psychiatry. 2012;20:130–48.

    Article  PubMed  Google Scholar 

  8. Shaffer HJ, Martin R. Disordered gambling: etiology, trajectory, and clinical considerations. Ann Rev Clin Psychol. 2011;7:483–510.

    Article  Google Scholar 

  9. el-Guebaly N, Mudry T, Zohar J, Tavares H, Potenza MN. Compulsive features in behavioural addictions: the case of pathological gambling. Addiction. 2012;107:1726–34.

    Article  PubMed  Google Scholar 

  10. van Holst RJ, van den Brink W, Veltman DJ, Goudriaan AE. Brain imaging studies in pathological gambling. Current Psychiatr Rep. 2010;12:418–25.

    Article  Google Scholar 

  11. van Holst RJ, van den Brink W, Veltman DJ, Goudriaan AE. Why gamblers fail to win: a review of cognitive and neuroimaging findings in pathological gambling. Neurosci Biobehav Rev. 2010;34:87–107.

    Article  PubMed  Google Scholar 

  12. Limbrick-Oldfield EH, van Holst RJ, Clark L. Fronto-striatal dysregulation in drug addiction and pathological gambling: consistent inconsistencies? NeuroImage: Clinical. 2013;2:385–93.

    Article  Google Scholar 

  13. Chambers RA, Taylor JR, Potenza MN. Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability. Am J Psychiatry. 2003;160:1041–52.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Goudriaan AE, Oosterlaan J, De Beurs E, Van Den Brink W. Neurocognitive functions in pathological gambling: a comparison with alcohol dependence, Tourette syndrome and normal controls. Addiction. 2006;101:534–47.

    Article  PubMed  Google Scholar 

  15. Roca M, Torralva T, López P, Cetkovich M, Clark L, Manes F. Executive functions in pathologic gamblers selected in an ecologic setting. Cogn Behav Neurol. 2008;21:1–4.

    Article  PubMed  Google Scholar 

  16. Petry NM. Pathological gamblers, with and without substance use disorders, discount delayed rewards at high rates. J Abnorm Psychol. 2001;110:482–7.

    Article  CAS  PubMed  Google Scholar 

  17. Grant JE, Potenza MN. Compulsive aspects of impulse-control disorders. Psychiatr Clin North Am. 2006;29:539–51.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Blaszczynski A. Pathological gambling and obsessive compulsive spectrum disorders. Psychol Rep. 1999;84:107–13.

    Article  CAS  PubMed  Google Scholar 

  19. Frost RO, Meagher BM, Riskind JH. Obsessive compulsive features in pathological lottery and stratch-ticket gamblers. J Gambl Stud. 2001;17:5–19.

    Article  CAS  PubMed  Google Scholar 

  20. Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W. Decision making in pathological gambling: a comparison between pathological gamblers, alcohol dependents, persons with Tourette syndrome, and normal controls. Brain Res Cogn Brain Res. 2005;23:137–51.

    Article  PubMed  Google Scholar 

  21. Odlaug BL, Chamberlain SR, Kim SW, Schreiber LR, Grant JEA. Neurocognitive comparison of cognitive flexibility and response inhibition in gamblers with varying degrees of clinical severity. Psychol Med. 2011;41:2111–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. •Leppink EW, Redden SA, Grant JE. Impulsivity and gambling: a complex clinical association across three measures. Am J Addict. 2016;25:138–44. First article to examine how we measure impulsivity determines clinical findings.

  23. Grant JE, Chamberlain SR, Schreiber LR, Odlaug BL, Kim SW. Selective decision-making deficits in at-risk gamblers. Psychiatry Res. 2011;189:115–20.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rahman AS, Xu J, Potenza MN. Hippocampal and amygdalar volumetric differences in pathological gambling: a preliminary study of the associations with the behavioral inhibition system. Neuropsychopharmacology. 2014;39:738–45.

    Article  PubMed  Google Scholar 

  25. Joutsa J, Saunavaara J, Parkkola R, Niemelä S, Kaasinen V. Extensive abnormality of brain white matter integrity in pathological gambling. Psychiatry Res. 2011;194:340–6.

    Article  PubMed  Google Scholar 

  26. Van Holst RJ, Van Holstein M, Van Den Brink W, Veltman DJ, Goudriaan AE. Response inhibition during cue reactivity in problem gamblers: an fMRI study. PLoS One. 2012;7:e30909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koehler S, Hasselmann E, Wüstenberg T, Heinz A, Romanczuk-Seiferth N. Higher volume of ventral striatum and right prefrontal cortex in pathological gambling. Brain Struct Funct. 2013.

  28. Yip SW, Lacadie C, Xu J, Worhunsky PD, Fulbright RK, Constable RT, Potenza MN. Reduced genual corpus callosal white matter integrity in pathological gambling and its relationship to alcohol abuse or dependence. World J Biol Psychiatry. 2013;14:129–38. doi:10.3109/15622975.2011.568068.

  29. Chamberlain SR, Derbyshire K, Daws RE, Odlaug BL, Leppink EW, Grant JE. White matter tract integrity in treatment-resistant gambling disorder. Br J Psychiatry. 2016;208:579–584. doi:10.1192/bjp.bp.115.165506.

  30. Grant JE, Odlaug BL, Chamberlain SR. Reduced cortical thickness in gambling disorder: a morphometric MRI study. Eur Arch Psychiatry Clin Neurosci. 2015;265:655–61.

    Article  PubMed  Google Scholar 

  31. Goudriaan AE, Yücel M, van Holst RJ. Getting a grip on problem gambling: what can neuroscience tell us? Front Behav Neurosci. 2014;8:141.

    PubMed  PubMed Central  Google Scholar 

  32. Potenza MN. The neural bases of cognitive processes in gambling disorder. Trends Cogn Sci. 2014;18:429–38.

    Article  PubMed  PubMed Central  Google Scholar 

  33. de Ruiter MB, Veltman DJ, Goudriaan AE, Oosterlaan J, Sjoerds Z, van den Brink W. Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology. 2009;34:1027–38.

    Article  PubMed  Google Scholar 

  34. Goudriaan AE, de Ruiter MB, van den Brink W, Oosterlaan J, Veltman DJ. Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: an fMRI study. Addict Biol. 2010;15:491–503.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Miedl SF, Peters J, Büchel C. Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. Arch Gen Psychiatry. 2012;69:177–86.

    Article  PubMed  Google Scholar 

  36. Balodis IM, Kober H, Worhunsky PD, Stevens MC, Pearlson GD, Potenza MN. Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry. 2012;71:749–57.

    Article  PubMed  PubMed Central  Google Scholar 

  37. de Greck M, Enzi B, Prösch U, Gantman A, Tempelmann C, Northoff G. Decreased neuronal activity in reward circuitry of pathological gamblers during processing of personal relevant stimuli. Hum Brain Mapp. 2010;31:1802–12.

    PubMed  Google Scholar 

  38. Tschernegg M et al. Abnormalities of functional brain networks in pathological gambling: a graph-theoretical approach. Front Hum Neurosci. 2013. doi:10.3389/fnhum.2013.00625.

    PubMed  PubMed Central  Google Scholar 

  39. Chase HW, Clark L. Gambling severity predicts midbrain response to near-miss outcomes. J Neurosci. 2010;30:6180–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Clark L, Crooks B, Clarke R, Aitken MRF, Dunn. BD. Physiological responses to near-miss outcomes and personal control during simulated gambling. J Gambl Stud. 2012;28:123–37.

    Article  PubMed  Google Scholar 

  41. Worhunsky PD, Malison RT, Rogers RD, Potenza MN. Altered neural correlates of reward and loss processing during simulated slot-machine fMRI in pathological gambling and cocaine dependence. Drug Alcohol Depend. 2014;145:77–86.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lobo DS, Kennedy JL. Genetic aspects of pathological gambling: a complex disorder with shared genetic vulnerabilities. Addiction. 2009;104:1454–65.

    Article  PubMed  Google Scholar 

  43. •Slutske WS, Ellingson JM, Richmond-Rakerd LS, Zhu G, Martin NG. Shared genetic vulnerability for disordered gambling and alcohol use disorder in men and women: evidence from a national community-based Australian Twin Study. Twin Res Hum Genet. 2013;16:525–34. Important study comparing gambling disorder to cocaine addiction.

  44. Scherrer JF, Xian H, Slutske WS, Eisen SA, Potenza MN. Associations between obsessive-compulsive classes and pathological gambling in a national cohort of male twins. JAMA Psychiatry. 2015;72:342–9.

    Article  PubMed  Google Scholar 

  45. Goudriaan AE, Oosterlaan J, de Beurs E, Van den Brink W. Pathological gambling: a comprehensive review of biobehavioral findings. Neurosci Biobehav Rev. 2004;28:123–41. Study examining the genetics of gambling and alcohol use disorder.

  46. Nussbaum D et al. An eight component decision-making model for problem gambling: a systems approach to stimulate integrative research. J Gambl Stud. 2011;27:523–63.

    Article  PubMed  Google Scholar 

  47. Ye Z, Hammer A, Camara E, Münte TF. Pramipexole modulates the neural network of reward anticipation. Hum Brain Mapp. 2011;32:800–11.

    Article  PubMed  Google Scholar 

  48. Abler B, Hahlbrock R, Unrath A, Grön G, Kassubek J. At-risk for pathological gambling: imaging neural reward processing under chronic dopamine agonists. Brain. 2009;132:2396–402.

    Article  PubMed  Google Scholar 

  49. Grant JE, Leppink EW, Redden SA, Odlaug BL, Chamberlain SR. COMT genotype, gambling activity, and cognition. J Psychiatr Res. 2015;68:371–6.

    Article  PubMed  Google Scholar 

  50. Kalivas PW. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci. 2009;10:561–72.

    Article  CAS  PubMed  Google Scholar 

  51. Kalivas PW, Volkow ND. New medications for drug addiction hiding in glutamatergic neuroplasticity. Mol Psychiatry. 2011;16:974–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nordin C, Gupta RC, Sjödin I. Cerebrospinal fluid amino acids in pathological gamblers and healthy controls. Neuropsychobiology. 2007;56:152–8.

    Article  CAS  PubMed  Google Scholar 

  53. Koot S et al. Compromised decision-making and increased gambling proneness following dietary serotonin depletion in rats. Neuropharmacology. 2012;62:1640–50.

    Article  CAS  PubMed  Google Scholar 

  54. Ishii H, Ohara S, Tobler PN, Tsutsui K-I, Iijima T. Dopaminergic and serotonergic modulation of anterior insular and orbitofrontal cortex function in risky decision making. Neurosci Res. 2015;92:53–61.

    Article  CAS  PubMed  Google Scholar 

  55. Zeeb FD, Robbins TW, Winstanley CA. Serotonergic and dopaminergic modulation of gambling behavior as assessed using a novel rat gambling task. Neuropsychopharmacology. 2009;34:2329–43.

    Article  CAS  PubMed  Google Scholar 

  56. Ibáñez A, Blanco C, Perez de Castro I, Fernandez-Piqueras J, Sáiz-Ruiz J. Genetics of pathological gambling. J Gambl Stud. 2003;19:11–22.

    Article  PubMed  Google Scholar 

  57. Wilson D, da Silva Lobo DS, Tavares H, Gentil V, Vallada H. Family-based association analysis of serotonin genes in pathological gambling disorder: evidence of vulnerability risk in the 5HT-2 A receptor gene. J Mol Neurosci. 2013;49:550–3.

    Article  CAS  PubMed  Google Scholar 

  58. Aston-Jones G, Cohen JD. Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. J Comp Neurol. 2005;493:99–110.

    Article  CAS  PubMed  Google Scholar 

  59. Bouret S, Sara SJ. Network reset: a simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci. 2005;28:574–82.

    Article  CAS  PubMed  Google Scholar 

  60. Baarendse PJJ, Winstanley CA, Vanderschuren LJMJ. Simultaneous blockade of dopamine and noradrenaline reuptake promotes disadvantageous decision making in a rat gambling task. Psychopharmacology. 2013;225:719–31.

    Article  CAS  PubMed  Google Scholar 

  61. Roy A et al. CSF GABA and neuropeptides in pathological gamblers and normal controls. Psychiatry Res. 1989;30:137–44.

    Article  CAS  PubMed  Google Scholar 

  62. Pallanti S et al. Noradrenergic function in pathological gambling: blunted growth hormone response to clonidine. J Psychopharmacol. 2010;24:847–53.

    Article  CAS  PubMed  Google Scholar 

  63. Peciña S, Smith KS, Berridge KC. Hedonic hot spots in the brain. Neuroscientist. 2006;12:500–11.

    Article  PubMed  Google Scholar 

  64. Barbano MF, Cador M. Opioids for hedonic experience and dopamine to get ready for it. Psychopharmacology. 2007;19:497–506.

    Article  CAS  Google Scholar 

  65. Shinohara K et al. Physiological changes in pachinko players; beta-endorphin, catecholamines, immune system substances and heart rate. Appl Hum Sci. 1999;18:37–42.

    Article  CAS  Google Scholar 

  66. Mick I et al. Blunted endogenous opioid release following an oral amphetamine challenge in pathological gamblers. Neuropsychopharmacology. 2016;41:1742–50.

    Article  CAS  PubMed  Google Scholar 

  67. Grant JE, Kim SW, Hartman BK. A double-blind, placebo-controlled study of the opiate antagonist naltrexone in the treatment of pathological gambling urges. J Clin Psychiatry. 2008;69:783–9.

    Article  CAS  PubMed  Google Scholar 

  68. Grant JE, Odlaug BL, Potenza MN, Hollander E, Kim SW. Nalmefene in the treatment of pathological gambling: multicentre, double-blind, placebo-controlled study. Br J Psychiatry. 2010;197:330–1.

    Article  PubMed  Google Scholar 

  69. Grant JE et al. Multicenter investigation of the opioid antagonist nalmefene in the treatment of pathological gambling. Am J Psychiatry. 2006;163:303–12.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon E. Grant.

Ethics declarations

Conflict of Interest

Dr. Jon Grant has received research grant support from NIDA, NCRG, Brainsway, TLC Foundation for Body Focused Repetitive Behaviors, the American Foundation for Suicide Prevention, Psyadon Pharmaceuticals, Forest Pharmaceuticals, Roche Pharmaceuticals, and Takeda Pharmaceuticals. He has also received royalties from American Psychiatric Publishing Inc., Oxford University Press, Norton, Johns Hopkins Press, and McGraw Hill Publishers.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Gambling

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grant, J.E. Neurobiology of Disordered Gambling. Curr Addict Rep 3, 445–449 (2016). https://doi.org/10.1007/s40429-016-0119-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40429-016-0119-6

Keywords

Navigation