Skip to main content
Log in

Opioids for hedonic experience and dopamine to get ready for it

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background and rationale

More than two decades ago, Wise proposed his “anhedonia hypothesis” to explain the role of dopamine in motivated behaviors. The hypothesis posits that dopamine mediates the pleasure experienced by reward obtainment. However, some experimental findings have contested this hypothesis and several authors have proposed alternative functions for dopamine with regard to motivation. Brain dopamine has been suggested to rather code for the preparatory aspects of behavior, while brain opioids seem to mediate the perception of the hedonic properties of rewards.

Objectives

The main goal of this review is to reexamine dopamine and opioids involvement in feeding when different aspects such as the anticipatory, motivational and consummatory components of this behavior are taken into account, but also when the physiologic state of the organism and the palatability of the food are considered.

Results and conclusions

Altogether, the data presented point out for an implication of dopamine in the anticipatory/preparatory aspects of feeding more than on the motivational and consummatory aspects. However, dopamine involvement in the anticipatory/preparatory component of feeding seems specifically related to very relevant stimuli, such as highly palatable foods. On the other hand, our data, as well as those present in the literature, strongly suggest a role for opioids in food intake through their modulation of the hedonic perception of food. As a consequence, opioids are involved in those aspects of motivation driven by food palatability rather than by food homeostatic need.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aberman JE, Salamone JD (1999) Nucleus accumbens dopamine depletions make animals more sensitive to high ratio requirements but do not impair primary food reinforcement. Neuroscience 92:545–552

    PubMed  CAS  Google Scholar 

  • Agmo A, Galvan A, Talamantes B (1995) Reward and reinforcement produced by drinking sucrose: two processes that may depend on different neurotransmitters. Pharmacol Biochem Behav 52:403–414

    PubMed  CAS  Google Scholar 

  • Bakshi VP, Kelley AE (1993a) Striatal regulation of morphine-induced hyperphagia: an anatomical mapping study. Psychopharmacology 111:207–214

    PubMed  CAS  Google Scholar 

  • Bakshi VP, Kelley AE (1993b) Feeding induced by opioid stimulation of the ventral striatum: role of opiate receptor subtypes. J Pharmacol Exp Ther 265:1253–1260

    PubMed  CAS  Google Scholar 

  • Baldo BA, Sadeghian K, Basso AM, Kelley AE (2002) Effects of selective dopamine D1 or D2 receptor blockade within the nucleus accumbens subregions on ingestive behavior and associated motor activity. Behav Brain Res 137:165–177

    PubMed  CAS  Google Scholar 

  • Barbano MF, Cador M (2005) Various aspects of feeding behavior can be partially dissociated in the rat by the incentive properties of food and the physiological state. Behav Neurosci 119:1244–1253

    PubMed  Google Scholar 

  • Barbano MF, Cador M (2006) Differential regulation of the consummatory, motivational and anticipatory aspects of feeding behavior by dopaminergic and opioidergic drugs. Neuropsychopharmacology 31:1371–1381

    PubMed  CAS  Google Scholar 

  • Barbano MF, Stinus L, Cador M, Ahmed SH (2005) Mesolimbic dopamine drives the diurnal variation in opiate-induced feeding. Pharmacol Biochem Behav 81:569–574

    PubMed  CAS  Google Scholar 

  • Barnes MJ, Lapanowski K, Conley A, Rafols JA, Jen KLC, Dunbar JC (2003) High fat feeding is associated with increased blood pressure, sympathetic nerve activity and hypothalamic mu opioid receptors. Brain Res Bull 61:511–519

    PubMed  CAS  Google Scholar 

  • Bassareo V, Di Chiara G (1997) Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum. J Neurosci 17:851–861

    PubMed  CAS  Google Scholar 

  • Bellisle F, Le Magnen J (1980) The analysis of human feeding patterns: the Edogram. Appetite 1:141–150

    Google Scholar 

  • Bellisle F, Le Magnen J (1981) The structure of meals in humans: eating and drinking patterns in lean and obese subjects. Physiol Behav 27:649–658

    PubMed  CAS  Google Scholar 

  • Bellisle F, Lucas F, Amrani R, Le Magnen J (1984) Deprivation, palatability and the micro-structure of meals in humans subjects. Appetite 5:85–94

    PubMed  CAS  Google Scholar 

  • Beninger RJ (1983) The role of dopamine in locomotor activity and learning. Brain Res Rev 6:173–196

    CAS  Google Scholar 

  • Bergmann F, Lieblich I, Cohen E, Ganchrow JR (1985) Influence of intake of sweet solutions on the analgesic effect of a low dose of morphine in randomly bred rats. Behav Neural Biol 44:347–353

    PubMed  CAS  Google Scholar 

  • Berridge KC (1991) Modulation of taste affect by hunger, caloric satiety, and sensory-specific satiety in the rat. Appetite 16:103–120

    PubMed  CAS  Google Scholar 

  • Berridge KC (1996) Food reward: brain substrates of wanting and liking. Neurosci Biobehav Rev 20:1–25

    PubMed  CAS  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 28:309–369

    PubMed  CAS  Google Scholar 

  • Bindra DA (1978) How adaptive behavior is produced: a perceptual-motivation alternative to response-reinforcement. Behav Brain Sci 1:41–91

    Google Scholar 

  • Blackburn JR, Phillips AG, Fibiger HC (1987) Dopamine and preparatory behavior: I. Effects of pimozide. Behav Neurosci 101:352–360

    PubMed  CAS  Google Scholar 

  • Blackburn JR, Phillips AG, Fibiger HC (1989) Dopamine and preparatory behavior: II. A neurochemical analysis. Behav Neurosci 103:15–23

    PubMed  CAS  Google Scholar 

  • Bodnar RJ (2004) Endogenous opioids and feeding behavior: a 30-year historical perspective. Peptides 25:697–725

    PubMed  CAS  Google Scholar 

  • Cabanac M (1971) Physiological role of pleasure. Science 173:1103–1107

    PubMed  CAS  Google Scholar 

  • Cabanac M (1988) Regulation of body weight and food palatability. Ann Endocrinol (Paris) 49:121–124

    CAS  Google Scholar 

  • Cabanac M, Lafrance L (1990) Postingestive alliesthesia: the rat tells the same story. Physiol Behav 47:539–543

    PubMed  CAS  Google Scholar 

  • Cabanac M, Duclaux R, Spector NH (1971) Sensory feedback in regulation of body weight: is there a ponderostat? Nature 229:125–127

    PubMed  CAS  Google Scholar 

  • Cador M, Robbins TW, Everitt BJ, Simon H, Le Moal M, Stinus L (1991) Limbic–striatal interactions in reward-related processes: modulation by the dopaminergic system. In: Willner P, Scheel-Krüger J (eds) The mesolimbic dopamine system: from motivation to action. Wiley, London, pp 225–250

    Google Scholar 

  • Cannon CM, Bseikri MR (2004) Is dopamine required for natural reward? Physiol Behav 81:741–748

    PubMed  CAS  Google Scholar 

  • Cannon CM, Palmiter RD (2003) Reward without dopamine. J Neurosci 23:10827–10831

    PubMed  CAS  Google Scholar 

  • Cannon CM, Abdallah L, Tecott LH, During MJ, Palmiter RD (2004) Dysregulation of striatal dopamine signaling by amphetamine inhibits feeding by hungry mice. Neuron 44:509–520

    PubMed  CAS  Google Scholar 

  • Cleary J, Weldon DT, O’Hare E, Billington C, Levine AS (1996) Naloxone effects on sucrose-motivated behavior. Psychopharmacology 126:110–114

    PubMed  CAS  Google Scholar 

  • Colantuoni C, Schwenker J, McCarthy J, Rada P, Ladenheim B, Cadet JL, Schwartz GJ, Moran TH, Hoebel BG (2001) Excessive sugar intake alters binding to dopamine and mu-opioid receptors in the brain. Neuroreport 12:3549–3552

    PubMed  CAS  Google Scholar 

  • Correa M, Carlson BB, Wisniecki A, Salamone JD (2002) Nucleus accumbens dopamine and work requirements on interval schedules. Behav Brain Res 137:179–187

    PubMed  CAS  Google Scholar 

  • Di Chiara G (1998) A motivational learning hypothesis of the role of dopamine in compulsive drug use. J Psychopharmacol 12:54–67

    PubMed  Google Scholar 

  • Di Chiara G (1999) Drug addiction as dopamine-dependent associative learning disorder. Eur J Pharmacol 375:13–30

    PubMed  Google Scholar 

  • Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114

    PubMed  Google Scholar 

  • Doyle TG, Berridge KC, Gosnell BA (1993) Morphine enhances hedonic taste palatability in rats. Pharmacol Biochem Behav 46:745–749

    PubMed  CAS  Google Scholar 

  • Drewnowski A (1998) Energy density, palatability, and satiety: implications for weight control. Nutr Rev 56:347–353

    PubMed  CAS  Google Scholar 

  • Drewnowski A, Krahn DD, Demitrack MA, Nairn K, Gosnell BA (1992) Taste responses and preferences for sweet high-fat foods: evidence for opioid involvement. Physiol Behav 51:371–379

    PubMed  CAS  Google Scholar 

  • El-Ghundi M, O’Dowd BF, Erclick M, George SR (2003) Attenuation of sucrose reinforcement in dopamine D1 receptor deficient mice. Eur J Neurosci 17:851–862

    PubMed  Google Scholar 

  • Escobar C, Díaz-Muñoz M, Encinas F, Aguilar-Roblero R (1998) Persistence of metabolic rhythmicity during fasting and its entrainment by restricted feeding schedules in rats. Am J Physiol 274:R1309–R1316

    PubMed  CAS  Google Scholar 

  • Giraudo SQ, Billington CJ, Levine AS (1998) Effects of the opioid antagonist naltrexone on feeding induced by DAMGO in the central nucleus of the amygdala and in the paraventricular nucleus in rat. Brain Res 782:18–23

    PubMed  CAS  Google Scholar 

  • Giraudo SQ, Grace MK, Welch CC, Billington CJ, Levine AS (1993) Naloxone’s anorectic effect is dependent upon the relative palatability of food. Pharmacol Biochem Behav 46:917–921

    PubMed  CAS  Google Scholar 

  • Glass MJ, Billington CJ, Levine AS (1999) Opioids and food intake: distributed functional neural pathways? Neuropeptides 33:360–368

    PubMed  CAS  Google Scholar 

  • Glass MJ, Grace MK, Cleary JP, Billington CJ, Levine AS (2001) Naloxone’s effect on meal microstructure of sucrose and cornstarch diets. Am J Physiol Regul Integr Comp Physiol 281:R1605–R1612

    PubMed  CAS  Google Scholar 

  • Hayward MD, Pintar JE, Low MJ (2002) Selective reward deficit in mice lacking β-endorphin and enkephalin. J Neurosci 22:8251–8258

    PubMed  CAS  Google Scholar 

  • Hodos W (1961) Progressive ratio as a measure of reward strength. Science 134:943–944

    PubMed  CAS  Google Scholar 

  • Horvitz JC, Ettenberg A (1991) Conditioned incentive properties of a food-paired conditioned stimulus remain intact during dopamine receptor blockade. Behav Neurosci 105:536–541

    PubMed  CAS  Google Scholar 

  • Ikemoto S, Panksepp J (1996) Dissociations between appetitive and consummatory responses by pharmacological manipulations of reward-relevant brain regions. Behav Neurosci 110:331–345

    PubMed  CAS  Google Scholar 

  • Ikemoto S, Panksepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Rev 31:6–41

    PubMed  CAS  Google Scholar 

  • Jones GH, Robbins TW (1992) Differential effects of mesocortical, mesolímbico, and mesostriatal dopamine depletion on spontaneous, conditioned, and drug-induced locomotor activity. Pharmacol Biochem Behav 43:887–895

    PubMed  CAS  Google Scholar 

  • Kanarek RB, Przypek J, D’Anci KE, Marks-Kaufman R (1997) Dietary modulation of mu and kappa opioid receptor-mediated analgesia. Pharmacol Biochem Behav 58:43–49

    PubMed  CAS  Google Scholar 

  • Kas MJH, van den Bos R, Baars AM, Lubbers M, Lesscher HLB, Hillebrand JJG, Schuller AG, Pintar JE, Spruijt BM (2004) Mu-opioid receptor knockout mice show diminished food-anticipatory activity. Eur J Neurosci 20:1624–1632

    PubMed  Google Scholar 

  • Kelley AE (2004) Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 27:765–776

    PubMed  Google Scholar 

  • Kelley AE, Berridge KC (2002) The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 22:3306–3311

    PubMed  CAS  Google Scholar 

  • Kelley AE, Bakshi VP, Haber SN, Steininger TL, Will MJ, Zhang M (2002) Opioid modulation of taste hedonics within the ventral striatum. Physiol Behav 76:365–377

    PubMed  CAS  Google Scholar 

  • Kelley AE, Will MJ, Steininger TL, Zhang M, Haber SN (2003) Restricted daily consumption of a highly palatable food (chocolate Ensure®) alters striatal enkephalin gene expression. Eur J Neurosci 18:2592–2598

    PubMed  CAS  Google Scholar 

  • Kelley AE, Baldo BA, Pratt WE, Will MJ (2005) Corticostriatal–hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav 86:773–795

    PubMed  CAS  Google Scholar 

  • Kotz CM, Billington CJ, Levine AS (1997) Opioids in the nucleus of the solitary tract are involved in feeding in the rat. Am J Physiol 272:R1028–R1032

    PubMed  CAS  Google Scholar 

  • Krieger DT (1979) Regulation of circadian periodicity of plasma corticosteroid concentrations and of body temperature by time of food presentation. In: Suda M, Hayaishi O, Nakagawa H (eds) Biological rhythms and their central mechanism. Elsevier/North-Holland Biomedical, New York, pp 247–259

    Google Scholar 

  • Levine AS, Billington CJ (2004) Opioids as agents of reward-related feeding: a consideration of the evidence. Physiol Behav 82:57–61

    PubMed  CAS  Google Scholar 

  • Louis-Sylvestre J, Giachetti I, Le Magnen J (1984) Sensory versus dietary factors in cafeteria-induced overweight. Physiol Behav 32:901–905

    PubMed  CAS  Google Scholar 

  • McCullough LD, Salamone JD (1992) Involvement of nucleus accumbens dopamine in the motor activity induced by periodic food presentation: a microdialysis and behavioural study. Brain Res 592:29–36

    PubMed  CAS  Google Scholar 

  • McFarland K, Ettenberg A (1998) Haloperidol does not affect motivational processes in an operant runway model of food-seeking behavior. Behav Neurosci 112:630–635

    PubMed  CAS  Google Scholar 

  • Mendoza J, Angeles-Castellanos M, Escobar C (2005) Entrainment by a palatable meal induces food-anticipatory activity and c-Fos expression in reward-related areas of the brain. Neuroscience 133:293–303

    PubMed  CAS  Google Scholar 

  • Merali Z, McIntosh J, Anisman H (2004) Anticipatory cues differentially provoke in vivo peptidergic and monoaminergic release at the medial prefrontal cortex. Neuropsychopharmacology 29:1409–1418

    PubMed  CAS  Google Scholar 

  • Mirenowicz J, Schultz W (1994) Importance of unpredictability for reward responses in primate dopamine neurons. J Neurophysiol 72:1024–1027

    PubMed  CAS  Google Scholar 

  • Mistlberger RE (1994) Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci Biobehav Rev 18:171–195

    PubMed  CAS  Google Scholar 

  • Mistlberger RE, Mumby DG (1992) The limbic system and food-anticipatory circadian rhythms in the rat: ablation and dopamine blocking studies. Behav Brain Res 47:159–168

    PubMed  CAS  Google Scholar 

  • Nesse RM, Berridge KC (1997) Psychoactive drug use in evolutionary perspective. Science 278:63–66

    PubMed  CAS  Google Scholar 

  • Orsini J-C (2003) Neurobiologie du comportement alimentaire. Contemporary Publishing International/GB Science, Paris

    Google Scholar 

  • Papp M, Bal A (1987) Separation of the motivational and motor consequences of 6-hydroxydopamine lesions of the mesolimbic or nigrostriatal system in rats. Behav Brain Res 23:221–231

    PubMed  CAS  Google Scholar 

  • Parkinson JA, Olmstead MC, Burns LH, Robbins TW, Everitt BJ (1999) Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive Pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine. J Neurosci 19:2401–2411

    PubMed  CAS  Google Scholar 

  • Peciña S, Cagniard B, Berridge KC, Aldridge JW, Zhuang X (2003) Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. J Neurosci 23:9395–9402

    PubMed  Google Scholar 

  • Pecoraro N (2005) A near hat trick for Harlow (1953) with further thoughts on drive : theoretical comment on Barbano and Cador (2005). Behav Neurosci 119:1403–1405

    PubMed  Google Scholar 

  • Persons JE, Stephan FK, Bays ME (1993) Diet-induced obesity attenuates anticipation of food access in rats. Physiol Behav 54:55–64

    PubMed  CAS  Google Scholar 

  • Phillips AG, Atkinson LJ, Blackburn JR, Blaha CD (1993) Increased extracellular dopamine in the nucleus accumbens of the rat elicited by a conditional stimulus for food: an electrochemical study. Can J Physiol Pharmacol 71:387–393

    PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt BJ (1996) Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol 6:228–236

    PubMed  CAS  Google Scholar 

  • Robbins TW, Cador M, Taylor JR, Everitt BJ (1989) Limbic–striatal interactions in reward-related processes. Neurosci Biobehav Rev 13:155–162

    PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 18:247–291

    PubMed  CAS  Google Scholar 

  • Roitman MF, Stuber GD, Phillips PEM, Wightman RM, Carelli RM (2004) Dopamine operates as a subsecond modulator of food seeking. J Neurosci 24:1265–1271

    PubMed  CAS  Google Scholar 

  • Salamone JD (1988) Dopaminergic involvement in activational aspects of motivation: effects of haloperidol on schedule-induced activity, feeding, and foraging in rats. Psychobiology 16:196–206

    CAS  Google Scholar 

  • Salamone JD, Correa M (2002) Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav Brain Res 137:3–25

    PubMed  CAS  Google Scholar 

  • Salamone JD, Steinpreis RE, McCullough LD, Smith P, Grebel D, Mahan K (1991) Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology 104:515–521

    PubMed  CAS  Google Scholar 

  • Salamone JD, Cousins MS, Bucher S (1994) Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav Brain Res 65:221–229

    PubMed  CAS  Google Scholar 

  • Salamone JD, Wisniecki A, Carlson BB, Correa M (2001) Nucleus accumbens dopamine depletions make animals highly sensitive to high ratio requirements but do not impair primary food reinforcement. Neuroscience 105:863–870

    PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M, Mingote S, Weber SM (2003) Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J Pharmacol Exp Ther 305:1–8

    PubMed  CAS  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    PubMed  CAS  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    PubMed  CAS  Google Scholar 

  • Solinas M, Goldberg SR (2005) Motivational effects of cannabinoids and opioids on food reinforcement depend on simultaneous activation of cannabinoid and opioid system. Neuropsychopharmacology 30:2035–2045

    PubMed  CAS  Google Scholar 

  • Stanley BG, Lanthier D, Leibowitz SF (1988) Multiple brain sites sensitive to feeding stimulation by opioid agonists: a cannula-mapping study. Pharmacol Biochem Behav 31:825–832

    PubMed  CAS  Google Scholar 

  • Tanda GL, Di Chiara G (1998) A dopamine mu(1) opioid link in the rat ventral tegmentum shared by palatable food (Fonzies) and non-psychostimulant drugs of abuse. Eur J Neurosci 10:1179–1187

    PubMed  CAS  Google Scholar 

  • Toates FM (1981) The control of ingestive behaviour by internal and external stimuli—A theoretical review. Appetite 2:35–50

    PubMed  CAS  Google Scholar 

  • Treit D, Berridge KC (1990) A comparison of benzodiazepine, serotonin, and dopamine agents in the taste-reactivity paradigm. Pharmacol Biochem Behav 37:451–456

    PubMed  CAS  Google Scholar 

  • Wardle J (1990) Conditioning processes and cue exposure in the modification of excessive eating. Addict Behav 15 387–393

    PubMed  CAS  Google Scholar 

  • Weingarten HP, Martin GM (1989) Mechanisms of conditioned meal initiation. Physiol Behav 45:735–740

    PubMed  CAS  Google Scholar 

  • Weldon DT, O’Hare E, Cleary J, Billington CJ, Levine AS (1996) Effect of naloxone on intake of cornstarch, sucrose, and polycose diets in restricted and nonrestricted rats. Am J Physiol Regul Integr Comp Physiol 270:R1183–R1188

    CAS  Google Scholar 

  • Wise RA (1982) Neuroleptics and operant behavior: the anhedonia hypothesis. Behav Brain Sci 5:39–87

    Google Scholar 

  • Wise RA, Spindler J, de Wit H, Gerber GJ (1978) Neuroleptic-induced “anhedonia” in rats: pimozide blocks reward quality of food. Science 201:262–264

    PubMed  CAS  Google Scholar 

  • Yeomans MR (1996) Palatability and the micro-structure of feeding in humans: the appetizer effect. Appetite 27:119–133

    PubMed  CAS  Google Scholar 

  • Yeomans MR (2000) Rating changes over the course of meals: what do they tell us about motivation to eat. Neurosci Biobehav Rev 24:249–259

    PubMed  CAS  Google Scholar 

  • Yeomans MR, Gray RW (1997) Effects of naltrexone on food intake and changes in subjective appetite during eating: evidence for opioid involvement in the appetizer effect. Physiol Behav 62:15–21

    PubMed  CAS  Google Scholar 

  • Yeomans MR, Gray RW (2002) Opioid peptides and the control of human ingestive behaviour. Neurosci Biobehav Rev 26:713–728

    PubMed  CAS  Google Scholar 

  • Yeomans MR, Blundell JE, Leshem M (2004) Palatability: response to nutritional need or need-free stimulation of appetite? Br J Nutr 92:S3–S14

    PubMed  CAS  Google Scholar 

  • Zhang M, Kelley AE (1997) Opiate agonists microinjected into the nucleus accumbens enhance sucrose drinking in rats. Psychopharmacology 132:350–360

    PubMed  CAS  Google Scholar 

  • Zhang M, Balmadrid C, Kelley AE (2003) Nucleus accumbens opioid, GABAergic, and dopaminergic modulation of palatable food motivation: contrasting effects revealed by a progressive ratio study in the rat. Behav Neurosci 117:202–211

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Anne Fayoux, Stephane Lelgouach, and Pierre Gonzales for technical help and the University of Bordeaux 2, the Centre National de la Recherche Scientifique (CNRS), the action of scientific cooperation Ecos Sud A01S03, and the Conseil Régional d’Aquitaine for financial support. MF Barbano was supported by a doctoral grant from the CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Flavia Barbano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbano, M.F., Cador, M. Opioids for hedonic experience and dopamine to get ready for it. Psychopharmacology 191, 497–506 (2007). https://doi.org/10.1007/s00213-006-0521-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0521-1

Keywords

Navigation