Skip to main content
Log in

Weak Solutions of McKean–Vlasov SDEs with Supercritical Drifts

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

Consider the following McKean–Vlasov SDE:

$$\begin{aligned} \textrm{d} X_t=\sqrt{2}\textrm{d} W_t+\int _{{\mathbb {R}}^d}K(t,X_t-y)\mu _{X_t}(\textrm{d} y)\textrm{d} t,\ \ X_0=x, \end{aligned}$$

where \(\mu _{X_t}\) stands for the distribution of \(X_t\) and \(K(t,x): {{\mathbb {R}}}_+\times {{\mathbb {R}}}^d\rightarrow {{\mathbb {R}}}^d\) is a time-dependent divergence free vector field. Under the assumption \(K\in L^q_t({\widetilde{L}}_x^p)\) with \(\frac{d}{p}+\frac{2}{q}<2\), where \({\widetilde{L}}^p_x\) stands for the localized \(L^p\)-space, we show the existence of weak solutions to the above SDE. As an application, we provide a new proof for the existence of weak solutions to 2D Navier–Stokes equations with measure as initial vorticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carmona, R., Delarue, F.: Probabilistic Theory of Mean Field Games with Applications. II. Mean Field Games with Common Noise and Master Equations. Probability Theory and Stochastic Modeling, vol. 84. Springer, Berlin (2018)

    Book  Google Scholar 

  2. Cottet, G.H.: Equations de Navier–Stokes dans le plan avec tourbillon initial mesure. C. R. Acad. Sci. Paris Sér. I Math. 303, 105–108 (1986)

    MathSciNet  Google Scholar 

  3. Funaki, T.: A certain class of diffusion processes associated with nonlinear parabolic equations. Prob. Theory Relat. Fields 67(3), 331–348 (1984)

    MathSciNet  Google Scholar 

  4. Gallagher, I., Gallay, T.: Uniqueness for the two-dimensional Navier–Stokes equation with a measure as initial vorticity. Math. Ann. 332, 287–327 (2005)

    Article  MathSciNet  Google Scholar 

  5. Giga, Y., Miyakawa, T., Osada, H.: Two-dimensional Naveri–Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal. 104, 223–250 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  6. Huang, X., Wang, F.Y.: Distribution dependent SDEs with singular coefficients. Stochastic Process. Appl. 129(11), 4747–4770 (2019)

    Article  MathSciNet  Google Scholar 

  7. Jabin, P.E., Wang, Z.: Quantitative estimates of propagation of chaos for stochastic systems with \(W^{-1,\infty }\) kernels. Invent. math. 214, 523–591 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  8. Li, J., Min, H.: Weak solutions of mean-field stochastic differential equations and application to zero-sum stochastic differential games. SIAM J. Control Optim. 54(3), 1826–1858 (2016)

    Article  MathSciNet  Google Scholar 

  9. Majda, A.J., Bertozzi, A.L.: Vorticity and Impressible Flow. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2002)

    Google Scholar 

  10. McKean, H.P.: A class of Markov processes associated with nonlinear parabolic equations. Proc Nat. Acad Sci USA 56(6), 1907–1911 (1966)

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mishura, Y.S., Veretennikov, A.Y.: Existence and uniqueness theorems for solutions of McKean–Vlasov stochastic equations, arXiv:1603.02212v4

  12. Röckner, M., Zhang, X.: Well-posedness of distribution dependent SDEs with singular drifts. Bernoulli 27(2), 1131–1158 (2021)

    Article  MathSciNet  Google Scholar 

  13. Stroock, D.W., Varadhan, S.S.: Multidimensional Diffusion Processes. Springer-Verlag, Berlin (1979)

    Google Scholar 

  14. Sznitman, A.S.: Topics in propagation of chaos. In: École d’Été de Prob. de Saint-Flour XIX-1989, Vol. 1464, Lecture Notes in Mathematics, pp. 165-251. Springer-Verlag (1991)

  15. Trevisan, D.: Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients. Electron. J. Probab. 21, 41 (2016)

    Article  MathSciNet  Google Scholar 

  16. Zhang, X., Zhao, G.: Singular Brownian Diffusion Processes. Communications in Mathematics and Statistics, pp. 1-49 (2018)

  17. Zhang, X., Zhao, G.: Stochastic Lagrangian path for Leray solutions of 3D Navier–Stokes equations. Comm. Math. Phys. 381(2), 491–525 (2021)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xicheng Zhang.

Additional information

This work is supported by NNSFC Grant of China (No. 11731009, 12131019) and the DFG through the CRC 1283 “Taming uncertainty and profiting from randomness and low regularity in analysis, stochastics and their applications”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X. Weak Solutions of McKean–Vlasov SDEs with Supercritical Drifts. Commun. Math. Stat. 12, 1–14 (2024). https://doi.org/10.1007/s40304-021-00277-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-021-00277-0

Keywords

Mathematics Subject Classification

Navigation