Skip to main content
Log in

Microvascular Inflammation and Cardiovascular Prevention: The Role of Microcirculation as Earlier Determinant of Cardiovascular Risk

  • Review article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Healthcare systems encumbered by cardiovascular diseases demand adequate cardiovascular prevention. Indeed, even with the most novel therapies, the residual cardiovascular risk still fuels morbidity and mortality. Addressing inflammation as a putative mediator of this risk has brought along promising in vitro results, though large clinical trials have only in part confirmed them. To fully exploit the therapeutic potential between the inflammatory hypothesis, a change of viewpoint is required. Focus on microcirculation, whose dysfunction is the primary driver of cardiometabolic disease, is mandatory. Several factors play a pivotal role in the capacity of microvascular inflammation to promote a health-to-disease transition: the adipose tissue (in particular, perivascular and epicardial), the mitochondria function, the hyperglycemic damage and their epigenetic signature. Indeed, the low-grade inflammatory response, which is now an acknowledged hallmark of cardiometabolic disease, is promoted by these mediators and leaves a permanent epigenetic scar on the microvasculature. Even if a more profound knowledge about the mechanisms of metabolic memory has been brought to light by recent evidence, we still have to fully understand its mechanisms and clinical potential. Addressing the detrimental role of inflammation by targeting the microvascular phenotype and leveraging epigenetics is the road down which we must go to achieve satisfactory cardiovascular prevention, ultimately leading to disease-free ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figure 3.

Similar content being viewed by others

References

  1. Mengozzi A, Tricò D, Natali A. A novel method for interpreting survival analysis data: description and test on three major clinical trials on cardiovascular prevention. Trials. 2020;21:578.

    PubMed  PubMed Central  Google Scholar 

  2. Eckel RH, Bornfeldt KE, Goldberg IJ. Cardiovascular disease in diabetes, beyond glucose. Cell Metab. 2021;33:1519–45.

    CAS  PubMed  Google Scholar 

  3. Liberale L, Montecucco F, Tardif JC, Libby P, Camici GG. Inflamm-ageing: the role of inflammation in age-dependent cardiovascular disease. Eur Heart J. 2020;41:2974–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, et al. ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur J Prev Cardiol. 2021. https://doi.org/10.1093/eurjpc/zwab154.

  5. Mengozzi A, Georgiopoulos G, Falcone M, Tiseo G, Pugliese NR, Dimopoulos MA, et al. The relationship between cardiac injury, inflammation and coagulation in predicting COVID-19 outcome. Sci Rep. 2021;11(1):6515. https://doi.org/10.1038/s41598-021-85646-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mengozzi A, Pugliese NR, Chiriaco M, Masi S, Virdis A, Taddei S. Microvascular ageing links metabolic disease to age-related disorders: the role of oxidative stress and inflammation in promoting microvascular dysfunction. J Cardiovasc Pharmacol. 2021 (in press).

  7. Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17:157–72.

    PubMed  Google Scholar 

  8. Park JH, Choi JY, Lee HK, Jo C, Koh YH. Notch1-mediated inflammation is associated with endothelial dysfunction in human brain microvascular endothelial cells upon particulate matter exposure. Arch Toxicol. 2021;95:529–40.

    CAS  PubMed  Google Scholar 

  9. Mengozzi A, Carli F, Guiducci L, Parolini F, Biancalana E, Gastaldelli A, et al. SGLT2 inhibitors and thiazide enhance excretion of DEHP toxic metabolites in subjects with type 2 diabetes: a randomized clinical trial. Environ Res. 2021;192:110316.

    CAS  PubMed  Google Scholar 

  10. Mengozzi A, Carli F, Biancalana E, Della Latta V, Seghieri M, Gastaldelli A, et al. Phthalates exposure as determinant of Albuminuria in subjects with type 2 diabetes: a cross-sectional study. J Clin Endocrinol Metab. 2019;104:1491–9.

    PubMed  Google Scholar 

  11. Liberale L, Montecucco F, Schwarz L, Lüscher TF, Camici GG. Inflammation and cardiovascular diseases: lessons from seminal clinical trials. Cardiovasc Res. 2021;117:411–22.

    CAS  PubMed  Google Scholar 

  12. White HD, Held C, Stewart R, Tarka E, Brown R, Davies RY, et al. Darapladib for preventing ischemic events in stable coronary heart disease. N Engl J Med. 2014;370:1702–11.

    CAS  PubMed  Google Scholar 

  13. O’Donoghue ML, Braunwald E, White HD, Lukas MA, Tarka E, Steg PG, et al. Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID-TIMI 52 randomized clinical trial. JAMA. 2014;312:1006–15.

    PubMed  Google Scholar 

  14. Nicholls SJ, Kastelein JJ, Schwartz GG, Bash D, Rosenson RS, Cavender MA, et al. Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial. JAMA. 2014;311:252–62.

    CAS  PubMed  Google Scholar 

  15. O’Donoghue ML, Glaser R, Cavender MA, Aylward PE, Bonaca MP, Budaj A, et al. Effect of losmapimod on cardiovascular outcomes in patients hospitalized with acute myocardial infarction: a randomized clinical trial. JAMA. 2016;315:1591–9.

    CAS  PubMed  Google Scholar 

  16. Ridker PM, Everett BM, Pradhan A, MacFadyen JG, Solomon DH, Zaharris E, et al. Low-dose methotrexate for the prevention of atherosclerotic events. N Engl J Med. 2019;380:752–62.

    CAS  PubMed  Google Scholar 

  17. Ray KK, Nicholls SJ, Buhr KA, Ginsberg HN, Johansson JO, Kalantar-Zadeh K, et al. Effect of apabetalone added to standard therapy on major adverse cardiovascular events in patients with recent acute coronary syndrome and type 2 diabetes: a randomized clinical trial. JAMA. 2020;323:1565.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.

    CAS  Google Scholar 

  19. Everett BM, MacFadyen JG, Thuren T, Libby P, Glynn RJ, Ridker PM. Inhibition of interleukin-1β and reduction in atherothrombotic cardiovascular events in the CANTOS trial. J Am Coll Cardiol. 2020;76:1660–70.

    CAS  PubMed  Google Scholar 

  20. Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol. 2013;61:404–10.

    CAS  PubMed  Google Scholar 

  21. Nidorf SM, Fiolet ATL, Mosterd A, Eikelboom JW, Schut A, Opstal TSJ, et al. Colchicine in patients with chronic coronary disease. N Engl J Med. 2020;383:1838–47.

    CAS  PubMed  Google Scholar 

  22. Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019;381:2497–505.

    CAS  PubMed  Google Scholar 

  23. Fiolet ATL, Opstal TSJ, Mosterd A, Eikelboom JW, Jolly SS, Keech AC, et al. Efficacy and safety of low-dose colchicine in patients with coronary disease: a systematic review and meta-analysis of randomized trials. Eur Heart J. 2021;42:2765–75.

    CAS  PubMed  Google Scholar 

  24. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM, Kastelein JJ, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195–207.

    CAS  PubMed  Google Scholar 

  25. Pradhan AD, Aday AW, Rose LM, Ridker PM. Residual inflammatory risk on treatment with PCSK9 inhibition and statin therapy. Circulation. 2018;138:141–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Adamstein NH, MacFadyen JG, Rose LM, Glynn RJ, Dey AK, Libby P, et al. The neutrophil-lymphocyte ratio and incident atherosclerotic events: analyses from five contemporary randomized trials. Eur Heart J. 2021;42:896–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R, Klein BEK, et al. Diabetic microvascular disease: an Endocrine Society scientific statement. J Clin Endocrinol Metab. 2017;102:4343–410.

    PubMed  PubMed Central  Google Scholar 

  28. Ince C, Boerma EC, Cecconi M, De Backer D, Shapiro NI, Duranteau J, et al. Second consensus on the assessment of sublingual microcirculation in critically ill patients: results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2018;44:281–99.

    PubMed  Google Scholar 

  29. Mengozzi A, Tricò D, Nesti L, Petrie J, Højlund K, Mitrakou A, et al. Disruption of fasting and post-load glucose homeostasis are largely independent and sustained by distinct and early major beta-cell function defects: a cross-sectional and longitudinal analysis of the Relationship between Insulin Sensitivity and Cardiovascular risk (RISC) study cohort. Metabolism. 2020;105:154185.

    CAS  PubMed  Google Scholar 

  30. Eckel N, Li Y, Kuxhaus O, Stefan N, Hu FB, Schulze MB. Transition from metabolic healthy to unhealthy phenotypes and association with cardiovascular disease risk across BMI categories in 90 257 women (the Nurses’ Health Study): 30 year follow-up from a prospective cohort study. Lancet Diabetes Endocrinol. 2018;6:714–24.

    PubMed  Google Scholar 

  31. Gao M, Lv J, Yu C, Guo Y, Bian Z, Yang R, et al. Metabolically healthy obesity, transition to unhealthy metabolic status, and vascular disease in Chinese adults: A cohort study. PLoS Med. 2020;17:e1003351.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Virdis A, Ghiadoni L, Versari D, Giannarelli C, Salvetti A, Taddei S. Endothelial function assessment in complicated hypertension. Curr Pharm Des. 2008;14:1761–70.

    CAS  PubMed  Google Scholar 

  33. Vanhoutte PM, Shimokawa H, Feletou M, Tang EH. Endothelial dysfunction and vascular disease—a 30th anniversary update. Acta Physiol (Oxf). 2017;219:22–96.

    CAS  Google Scholar 

  34. Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–71.

    PubMed  Google Scholar 

  35. Taddei S, Virdis A, Ghiadoni L, Salvetti G, Bernini G, Magagna A, et al. Age-related reduction of NO availability and oxidative stress in humans. Hypertension. 2001;38:274–9.

    CAS  PubMed  Google Scholar 

  36. Crewe C, An YA, Scherer PE. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J Clin Invest. 2017;127:74–82.

    PubMed  PubMed Central  Google Scholar 

  37. Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest. 2017;127:1–4.

    PubMed  PubMed Central  Google Scholar 

  38. Bhattacharya I, Drägert K, Albert V, Contassot E, Damjanovic M, Hagiwara A, et al. Rictor in perivascular adipose tissue controls vascular function by regulating inflammatory molecule expression. Arterioscler Thromb Vasc Biol. 2013;33:2105–11.

    CAS  PubMed  Google Scholar 

  39. Reilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol. 2017;13:633–43.

    CAS  Google Scholar 

  40. Antonopoulos AS, Margaritis M, Coutinho P, Shirodaria C, Psarros C, Herdman L, et al. Adiponectin as a link between type 2 diabetes and vascular NADPH oxidase activity in the human arterial wall: the regulatory role of perivascular adipose tissue. Diabetes. 2015;64:2207–19.

    CAS  PubMed  Google Scholar 

  41. Victorio JA, Davel AP. Perivascular adipose tissue oxidative stress on the pathophysiology of cardiometabolic diseases. Curr Hypertens Rev. 2020;16:192–200.

    CAS  PubMed  Google Scholar 

  42. Withers SB, Agabiti-Rosei C, Livingstone DM, Little MC, Aslam R, Malik RA, et al. Macrophage activation is responsible for loss of anticontractile function in inflamed perivascular fat. Arterioscler Thromb Vasc Biol. 2011;31:908–13.

    CAS  PubMed  Google Scholar 

  43. Guzik TJ, Touyz RM. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension. 2017;70:660–7.

    CAS  PubMed  Google Scholar 

  44. Virdis A. Endothelial dysfunction in obesity: role of inflammation. High Blood Press Cardiovasc Prev. 2016;23:83–5.

    CAS  PubMed  Google Scholar 

  45. Gruber T, Pan C, Contreras RE, Wiedemann T, Morgan DA, Skowronski AA, et al. Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metab. 2021;33:1155.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Nosalski R, Guzik TJ. Perivascular adipose tissue inflammation in vascular disease. Br J Pharmacol. 2017;174:3496–513.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Virdis A, Santini F, Colucci R, Duranti E, Salvetti G, Rugani I, et al. Vascular generation of tumor necrosis factor-alpha reduces nitric oxide availability in small arteries from visceral fat of obese patients. J Am Coll Cardiol. 2011;58:238–47.

    CAS  PubMed  Google Scholar 

  48. Virdis A, Duranti E, Rossi C, Dell’Agnello U, Santini E, Anselmino M, et al. Tumour necrosis factor-alpha participates on the endothelin-1/nitric oxide imbalance in small arteries from obese patients: role of perivascular adipose tissue. Eur Heart J. 2015;36:784–94.

    CAS  PubMed  Google Scholar 

  49. Li RM, Chen SQ, Zeng NX, Zheng SH, Guan L, Liu HM, et al. Browning of abdominal aorta perivascular adipose tissue inhibits adipose tissue inflammation. Metab Syndr Relat Disord. 2017;15:450–7.

    CAS  PubMed  Google Scholar 

  50. Ma Y, Li L, Shao Y, Bai X, Bai T, Huang X. Methotrexate improves perivascular adipose tissue/endothelial dysfunction via activation of AMPK/eNOS pathway. Mol Med Rep. 2017;15:2353–9.

    CAS  PubMed  Google Scholar 

  51. Iacobellis G. Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat Rev Endocrinol. 2015;11:363–71.

    CAS  PubMed  Google Scholar 

  52. Sacks HS, Fain JN, Holman B, Cheema P, Chary A, Parks F, et al. Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. J Clin Endocrinol Metab. 2009;94:3611–5.

    CAS  PubMed  Google Scholar 

  53. Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation. 2017;136:6–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Pugliese NR, Paneni F, Mazzola M, De Biase N, Del Punta L, Gargani L, et al. Impact of epicardial adipose tissue on cardiovascular hemodynamics, metabolic profile and prognosis in heart failure. Eur J Heart Fail. 2021. https://doi.org/10.1002/ejhf.2337.

    Article  PubMed  Google Scholar 

  55. Ayton SL, Gulsin GS, McCann GP, Moss AJ. Epicardial adipose tissue in obesity-related cardiac dysfunction. Heart. 2021. https://doi.org/10.1136/heartjnl-2020-318242.

    Article  PubMed  Google Scholar 

  56. Kudryavtseva AV, Krasnov GS, Dmitriev AA, Alekseev BY, Kardymon OL, Sadritdinova AF, et al. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget. 2016;7:44879–905.

    PubMed  PubMed Central  Google Scholar 

  57. de Mello AH, Costa AB, Engel JDG, Rezin GT. Mitochondrial dysfunction in obesity. Life Sci. 2018;192:26–32.

    PubMed  Google Scholar 

  58. Yaribeygi H, Atkin SL, Sahebkar A. Mitochondrial dysfunction in diabetes and the regulatory roles of antidiabetic agents on the mitochondrial function. J Cell Physiol. 2019;234:8402–10.

    CAS  PubMed  Google Scholar 

  59. Forbes JM, Thorburn DR. Mitochondrial dysfunction in diabetic kidney disease. Nat Rev Nephrol. 2018;14:291–312.

    CAS  PubMed  Google Scholar 

  60. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469:221–5.

    CAS  PubMed  Google Scholar 

  61. Mao Y, Luo W, Zhang L, Wu W, Yuan L, Xu H, et al. STING-IRF3 triggers endothelial inflammation in response to free fatty acid-induced mitochondrial damage in diet-induced obesity. Arterioscler Thromb Vasc Biol. 2017;37:920–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Guo Y, Gu R, Gan D, Hu F, Li G, Xu G. Mitochondrial DNA drives noncanonical inflammation activation via cGAS-STING signaling pathway in retinal microvascular endothelial cells. Cell Commun Signal. 2020. https://doi.org/10.1186/s12964-020-00637-3.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Masi S, Ambrosini S, Mohammed SA, Sciarretta S, Lüscher TF, Paneni F, et al. Epigenetic remodeling in obesity-related vascular disease. Antioxid Redox Signal. 2020;4:1165–99.

    Google Scholar 

  64. Cosentino F, Francia P, Camici GG, Pelicci PG, Lüscher TF, Volpe M. Final common molecular pathways of aging and cardiovascular disease: role of the p66Shc protein. Arterioscler Thromb Vasc Biol. 2008;28:622–8.

    CAS  PubMed  Google Scholar 

  65. Paneni F, Diaz Cañestro C, Libby P, Lüscher TF, Camici GG. The aging cardiovascular system: understanding it at the cellular and clinical levels. J Am Coll Cardiol. 2017;69:1952–67.

    PubMed  Google Scholar 

  66. Costantino S, Paneni F, Battista R, Castello L, Capretti G, Chiandotto S, et al. Impact of glycemic variability on chromatin remodeling, oxidative stress, and endothelial dysfunction in patients with type 2 diabetes and with target HbA 1c levels. Diabetes. 2017;66:2472–82.

    CAS  PubMed  Google Scholar 

  67. Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2018;61:21–8.

    CAS  PubMed  Google Scholar 

  68. Hussain S, Khan AW, Akhmedov A, Suades R, Costantino S, Paneni F, et al. Hyperglycemia induces myocardial dysfunction via epigenetic regulation of JunD. Circ Res. 2020;127:1261–73.

    CAS  PubMed  Google Scholar 

  69. Zhang P, Wang Q, Nie L, Zhu R, Zhou X, Zhao P, et al. Hyperglycemia-induced inflamm-aging accelerates gingival senescence via NLRC4 phosphorylation. J Biol Chem. 2019;294:18807–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Al-Rashed F, Sindhu S, Arefanian H, Al Madhoun A, Kochumon S, Thomas R, et al. Repetitive intermittent hyperglycemia drives the M1 polarization and inflammatory responses in THP-1 macrophages through the mechanism involving the TLR4-IRF5 pathway. Cells. 2020;9:1892.

    CAS  PubMed Central  Google Scholar 

  71. Reddy MA, Zhang E, Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia. 2015;58:443.

    CAS  PubMed  Google Scholar 

  72. Paneni F, Volpe M, Lüscher TF, Cosentino F. SIRT1, p66(Shc), and Set7/9 in vascular hyperglycemic memory: bringing all the strands together. Diabetes. 2013;62:1800–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Tammen SA, Friso S, Choi SW. Epigenetics: the link between nature and nurture. Mol Aspects Med. 2013;34:753–64.

    CAS  PubMed  Google Scholar 

  74. Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13:97–109.

    CAS  PubMed  Google Scholar 

  75. Tzika E, Dreker T, Imhof A. Epigenetics and metabolism in health and disease. Front Genet. 2018. https://doi.org/10.3389/fgene.2018.00361.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yang Y, Zeng C, Lu X, Song Y, Nie J, Ran R, et al. 5-hydroxymethylcytosines in circulating cell-free DNA reveal vascular complications of type 2 diabetes. Clin Chem. 2019;65:1414–25.

    CAS  PubMed  Google Scholar 

  77. Tsujikawa LM, Fu L, Das S, Halliday C, Rakai BD, Stotz SC, et al. Apabetalone (RVX-208) reduces vascular inflammation in vitro and in CVD patients by a BET-dependent epigenetic mechanism. Clin Epigenetics. 2019;11:102.

    PubMed  PubMed Central  Google Scholar 

  78. Sullivan KE, Reddy AB, Dietzmann K, Suriano AR, Kocieda VP, Stewart M, et al. Epigenetic regulation of tumor necrosis factor alpha. Mol Cell Biol. 2007;27:5147–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Choi JY, Yoon SS, Kim SE, Ahn JS. KDM4B histone demethylase and G9a regulate expression of vascular adhesion proteins in cerebral microvessels. Sci Rep. 2017. https://doi.org/10.1038/srep45005.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Costantino S, Paneni F, Virdis A, Hussain S, Mohammed SA, Capretti G, et al. Interplay among H3K9-editing enzymes SUV39H1, JMJD2C and SRC-1 drives p66Shc transcription and vascular oxidative stress in obesity. Eur Heart J. 2019;40:383–91.

    CAS  PubMed  Google Scholar 

  81. Kim AY, Park YJ, Pan X, Shin KC, Kwak SH, Bassas AF, et al. Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat Commun. 2015. https://doi.org/10.1038/ncomms8585.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ungvari Z, Tarantini S, Donato AJ, Galvan V, Csiszar A. Mechanisms of vascular aging. Circ Res. 2018;123:849–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen Q, Qiu F, Zhou K, Matlock HG, Takahashi Y, Rajala RVS, et al. Pathogenic role of microRNA-21 in diabetic retinopathy through downregulation of PPARα. Diabetes. 2017;66:1671–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang Y, Sun X, Icli B, Feinberg MW. Emerging roles for microRNAs in diabetic microvascular disease: novel targets for therapy. Endocr Rev. 2017;38:145–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Asgeirsdóttir SA, van Solingen C, Kurniati NF, Zwiers PJ, Heeringa P, van Meurs M, et al. MicroRNA-126 contributes to renal microvascular heterogeneity of VCAM-1 protein expression in acute inflammation. Am J Physiol Renal Physiol. 2012;302:1630–9.

    Google Scholar 

  86. Ye EA, Steinle JJ. miR-146a suppresses STAT3/VEGF pathways and reduces apoptosis through IL-6 signaling in primary human retinal microvascular endothelial cells in high glucose conditions. Vision Res. 2017;139:15–22.

    PubMed  PubMed Central  Google Scholar 

  87. Yu F, Chapman S, Pham DL, Ko ML, Zhou B, Ko GY. Decreased miR-150 in obesity-associated type 2 diabetic mice increases intraocular inflammation and exacerbates retinal dysfunction. BMJ Open Diabetes Res Care. 2020;8:e001446.

    PubMed  PubMed Central  Google Scholar 

  88. Witkowski M, Witkowski M, Saffarzadeh M, Friebel J, Tabaraie T, Ta Bao L, et al. Vascular miR-181b controls tissue factor-dependent thrombogenicity and inflammation in type 2 diabetes. Cardiovasc Diabetol. 2020. https://doi.org/10.1186/s12933-020-0993-z.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Cui C, Li Y, Liu Y. Down-regulation of miR-377 suppresses high glucose and hypoxia-induced angiogenesis and inflammation in human retinal endothelial cells by direct up-regulation of target gene SIRT1. Hum Cell. 2019;32:260–74.

    CAS  PubMed  Google Scholar 

  90. Zhou T, Xiang DK, Li SN, Yang LH, Gao LF, Feng C. MicroRNA-495 ameliorates cardiac microvascular endothelial cell injury and inflammatory reaction by suppressing the NLRP3 inflammasome signaling pathway. Cell Physiol Biochem. 2018;49:798–815.

    CAS  PubMed  Google Scholar 

  91. Liu G, Zhou S, Li X, Ding X, Tian M. Inhibition of hsa_circ_0002570 suppresses high-glucose-induced angiogenesis and inflammation in retinal microvascular endothelial cells through miR-1243/angiomotin axis. Cell Stress Chaperones. 2020;25:767–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Cummings J, Schwartz GG, Nicholls SJ, Khan A, Halliday C, Toth PP, et al. Cognitive effects of the BET protein inhibitor apabetalone: a prespecified montreal cognitive assessment analysis nested in the BETonMACE randomized controlled trial. J Alzheimers Dis. 2021;83:1703–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Nicholls S, Schwartz G, Buhr K, Ginsberg H, Johansson J, Kalantar-Zadeh K, et al. Apabetalone and hospitalization for heart failure in patients following an acute coronary syndrome: a prespecified analysis of the BETonMACE study. Cardiovasc Diabetol. 2021;20:1–9.

    Google Scholar 

  94. Vodošek Hojs N, Bevc S, Ekart R, Piko N, Petreski T, Hojs R. Mineralocorticoid receptor antagonists in diabetic kidney disease. Pharmaceuticals (Basel). 2021;14:561.

    Google Scholar 

  95. Prattichizzo F, de Candia P, Ceriello A. Diabetes and kidney disease: emphasis on treatment with SGLT-2 inhibitors and GLP-1 receptor agonists. Metabolism. 2021;120:154799.

    CAS  PubMed  Google Scholar 

  96. Rossman MJ, Santos-Parker JR, Steward CAC, Bispham NZ, Cuevas LM, Rosenberg HL, et al. Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension. 2018;71:1056–63.

    CAS  PubMed  Google Scholar 

  97. Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol. 2019;15:327–45.

    PubMed  PubMed Central  Google Scholar 

  98. Das SK, Roberts SB, Bhapkar MV, Villareal DT, Fontana L, Martin CK, et al. Body-composition changes in the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE)-2 study: a 2-y randomized controlled trial of calorie restriction in nonobese humans. Am J Clin Nutr. 2017;105:913–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lean ME, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet. 2018;391:541–51.

    PubMed  Google Scholar 

Download references

Acknowledgements

Figures 2 and 3 were created using biorender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostino Virdis.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mengozzi, A., Pugliese, N.R., Taddei, S. et al. Microvascular Inflammation and Cardiovascular Prevention: The Role of Microcirculation as Earlier Determinant of Cardiovascular Risk. High Blood Press Cardiovasc Prev 29, 41–48 (2022). https://doi.org/10.1007/s40292-021-00493-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-021-00493-3

Keywords

Navigation