Skip to main content
Log in

Glucagon-like Peptide-1 Receptor Agonists and Cardioprotective Benefit in Patients with Type 2 Diabetes Without Baseline Metformin: A Systematic Review and Update Meta-analysis

  • Original article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Introduction

Sodium Glucose Co-transporter 2 inhibitors and glucagon-like peptide 1 receptor agonists (GLP-1RAs) were associated with a reduction in cardiovascular disease events in cardiovascular outcomes trials (CVOTs) in type 2 diabetes. Most of the patients included in these trials received metformin as background therapy.

Aim

To evaluate the effect of glucagon-like peptide 1 receptor agonists on major cardiovascular events (MACE) and mortality in metformin-naïve patients with type 2 diabetes.

Methods

A systematic review and meta-analysis of randomized controlled clinical trials of GLP-1RAs on type 2 diabetes population was performed, after searching the PubMed/MEDLINE, Embase, Scielo, Google Scholar and Cochrane Controlled Trials databases. The primary endpoint was MACE. The secondary endpoints were cardiovascular death and all-cause mortality. A meta-analysis of time-to-event outcomes was performed. This meta-analysis was registered in PROSPERO (CRD42021260040)

Results

Seven trials, including 11510 patients, were identified and considered eligible for the analyses. GLP-1RAs were associated with a significant reduction in MACE incidence (HR: 0.86, 95% confidence interval: 0.79–0.94; I2: 0%). The secondary endpoints analysis showed a non-significant reduction in all-cause mortality (HR: 0.86, 95% confidence interval: 0.73–1.00 I2: 0%) and cardiovascular mortality (HR: 0.81, 95% confidence interval: 0.63–1.05; I2: 0%).

Conclusions

In this meta-analysis, GLP-1RAs reduced the incidence of MACE in patients with type 2 diabetes without metformin at baseline, without significant reduction in all-cause mortality and cardiovascular mortality. These results support the fact that when a GLP-1RAs is administered, the benefit on cardiovascular outcomes is independent of the use of metformin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Authors can confirm that all relevant data are included in the article and/or its supplementary information files.

Code Availability

Not Applicable.

References

  1. Buse JB, Ginsberg HN, Bakris GL, Clark NG, Costa F, Eckel R, et al. Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American heart association and the American diabetes association. Diabetes Care. 2007;30(1):162–72. https://doi.org/10.2337/dc07-9917.

    Article  CAS  PubMed  Google Scholar 

  2. International Diabetes Federation. Diabetes and cardiovascular disease. Brussels: International Diabetes Federation; 2016. p. 1–144.

    Google Scholar 

  3. Van Hateren KJ, Landman GW, Kleefstra N, Logtenberg SJ, Groenier KH, Kamper AM, Houweling ST, Bilo HJ. The lipid profile and mortality risk in elderly type 2 diabetic patients: a 10-year follow-up study (ZODIAC-13). PLoS ONE. 2009;4:e8464. https://doi.org/10.1371/journal.pone.0008464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mosenzon O, Alguwaihes A, Arenas Leon JL, Bayram F, Darmon P, Davis T, et al. CAPTURE: a cross-sectional study of the contemporary (2019) prevalence of cardiovascular disease in adults with type 2 diabetes across 13 countries. Diabetologia. 2020;25:1–485. https://doi.org/10.1007/s00125-020-05221-5.

    Article  Google Scholar 

  5. Cebrián-Cuenca AM, Mata-Cases M, Franch-Nadal J, Mauricio D, Orozco-Beltrán D, Consuegra-Sánchez L. Half of patients with type 2 diabetes mellitus are at very high cardiovascular risk according to the ESC/EASD: data from a large Mediterranean population. Eur J Prev Cardiol. 2020. https://doi.org/10.1093/eurjpc/zwaa073.

    Article  Google Scholar 

  6. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28. https://doi.org/10.1056/NEJMoa1504720.

    Article  CAS  PubMed  Google Scholar 

  7. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Flucher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57. https://doi.org/10.1056/NEJMoa1611925.

    Article  CAS  PubMed  Google Scholar 

  8. Wiviott S, Raz I, Bonaca MP, Mosenzon O, Kato E, Cahan A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57. https://doi.org/10.1056/NEJMoa1812389.

    Article  CAS  PubMed  Google Scholar 

  9. Cannon CP, Pratley R, Dagogo-Jack S, Mancuso J, Huyck S, Masiukiewicz U, et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med. 2020;383:1425–35. https://doi.org/10.1056/NEJMoa2004967.

    Article  CAS  PubMed  Google Scholar 

  10. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22. https://doi.org/10.1056/NEJMoa1603827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Holman RR, Bethel MA, Mentz RJ, Thompson V, Lokhnygina BJB, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13):1228–39. https://doi.org/10.1056/NEJMoa1612917.

    Article  CAS  PubMed  Google Scholar 

  12. Hernández AF, Green JB, Janmohamed S, D’Agostino RB, Granger CB, Jones NP, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet. 2018;392(10157):1519–29. https://doi.org/10.1016/S0140-6736(18)32261-X.

    Article  PubMed  Google Scholar 

  13. Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019;394(10193):121–30. https://doi.org/10.1016/S0140-6736(19)31149-3.

    Article  CAS  PubMed  Google Scholar 

  14. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–44. https://doi.org/10.1056/NEJMoa1607141.

    Article  CAS  PubMed  Google Scholar 

  15. Gerstein HC, Sattar N, Rosenstock J, Ramasundarahettige CM, Pratley R, Lopes R. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N Engl J Med. 2021. https://doi.org/10.1056/NEJMoa2108269.

    Article  PubMed  Google Scholar 

  16. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, ESC Scientific Document Group, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323. https://doi.org/10.1093/eurheartj/ehz486.

    Article  PubMed  Google Scholar 

  17. Husain M, Consoli A, De Remigis A, Meyer AS, Rasmussen S, Bain S. Semaglutide reduced cardiovascular events regardless of metformin use: a post hoc exploratory subgroup analysis of SUSTAIN 6 AND PIONEER 6. J Am Coll Cardiol. 2021;77(18):1604–1604.

    Article  Google Scholar 

  18. Crowley M, McGuire D, Alexopoulos AS, Jensen TJ, Rasmussen S, Saevereid H, et al. Effects of liraglutide on cardiovascular outcomes in type 2 diabetes patients with and without baseline metformin use: post hoc analyses of the LEADER trial. Diabetes Care. 2020;43(9):108–10. https://doi.org/10.2337/dc20-0437.

    Article  CAS  Google Scholar 

  19. Ferrannini G, Gerstein HC, Colhoun HM, Dagenais R, Diaz R, Dyal L, et al. Cardio protection with dulaglutide is not depending on baseline therapy with metformin: a subgroup analysis of the REWIND trial. Diabetologia. 2020;25:1–485. https://doi.org/10.1007/s00125-020-05221-5.

    Article  Google Scholar 

  20. Masson W, Lavalle Cobo A, Lobo M, Masson G, Graciela M. Novel antidiabetic drugs and risk of cardiovascular events in patients without baseline metformin use: a meta-analysis. Eur J Prev Cardiol. 2021;28(1):69–75. https://doi.org/10.1093/eurjpc/zwaa074.

    Article  PubMed  Google Scholar 

  21. Escobar C, Barrios V, Cosin J, Gamez MJM, Huelmos RAI, Ortiz CC, et al. SGLT2 inhibitors and GLP1 agonist administered without metformin compared to other glucose-lowering drugs in patients with type 2 diabetes mellitus to prevent cardiovascular events: a systematic review. Diabet Med. 2021;38(3):e14502. https://doi.org/10.1111/dme.14502.

    Article  CAS  PubMed  Google Scholar 

  22. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71. https://doi.org/10.1136/bmj.n71.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sterne JAC, Savovi J, Page MJ, Elbers RG, Blencowe NS, Boutronet I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898. https://doi.org/10.1136/bmj.l4898.

    Article  PubMed  Google Scholar 

  24. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;7(8):16. https://doi.org/10.1186/1745-6215-8-16.

    Article  Google Scholar 

  25. Viechtbauer W. Conducting meta-analyses in R with the metaphor package. J Stat Softw. 2010;36:1–48. https://doi.org/10.18637/jss.v036.i03.

    Article  Google Scholar 

  26. Pharmacologic Approaches to Glycemic Treatment. Standards of Medical Care in Diabetes-2021. Am Diabetes Assoc Diabetes Care. 2021;44(Supplement 1):S111–24. https://doi.org/10.2337/dc21-S009.

    Article  Google Scholar 

  27. UKPDS Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352(9131):854–65.

    Article  Google Scholar 

  28. Lamanna C, Monami M, Marchionni N, et al. Effect of metformin on cardiovascular events and mortality: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2011;13:221–8. https://doi.org/10.1111/j.1463-1326.2010.01349.x.

    Article  CAS  PubMed  Google Scholar 

  29. Han Y, Xie H, Liu Y, et al. Effect of metformin on all-cause and cardiovascular mortality in patients with coronary artery diseases: a systematic review and an updated meta-analysis. Cardiovasc Diabetol. 2019;18(96):36. https://doi.org/10.1186/s12933-019-0900-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Griffin SJ, Leaver JK, Irving GJ. Impact of metformin on cardiovascular disease: a meta-analysis of randomised trials among people with type 2 diabetes. Diabetología. 2017;60(9):1620–9. https://doi.org/10.1007/s00125-017-4337-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hinnen D. GLucagon-like peptide 1 receptor agonists for type 2 diabetes. Diabetes Spectr. 2017;30(3):202–10. https://doi.org/10.2337/ds16-0026.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nauck MA, Meier JJ, Cavender MA, Abd El Aziz M, Drucker DJ. Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Circulation. 2017;136:849–70. https://doi.org/10.1161/CIRCULATIONAHA.117.028136.

    Article  CAS  PubMed  Google Scholar 

  33. Zoungas S, Arima H, Gerstein HC, Holman RR, Woodward M, Reaven P, et al. Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials. Lancet Diabetes Endocrinol. 2017;5:431–7. https://doi.org/10.1016/S2213-8587(17)30104-3.

    Article  PubMed  Google Scholar 

  34. Holman RR, Paul SK, Bethel MA, Matthews DR. Neil HA 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89. https://doi.org/10.1056/NEJMoa0806470.

    Article  CAS  PubMed  Google Scholar 

  35. Abai CC. Nine-Year effects of 3.7 years of intensive glycemic control on cardiovascular outcomes. Diabetes Care. 2016;39:701–8. https://doi.org/10.2337/dc15-2283.

    Article  CAS  Google Scholar 

  36. Macisaac RJ, Jerums G. Intensive glucose control and cardiovascular outcomes in type 2 diabetes. Heart Lung Circ. 2011;20(10):647–54. https://doi.org/10.1016/j.hlc.2010.07.013.

    Article  CAS  PubMed  Google Scholar 

  37. Bahne E, Sun EWL, Young R, et al. Metformin-induced glucagon-like peptide-1 secretion contributes to the action of metformin in type 2 diabetes. JCI Insight. 2018;3(23):e93936. https://doi.org/10.1172/jci.insight.93936.JCI.

    Article  PubMed Central  Google Scholar 

  38. Giugliano D, Maiorino M, Bellastella G, Longo M, Chiodini P, Esposito K. GLP-1 receptor agonists for prevention of cardiorenal outcomes in type 2 diabetes: an updated meta-analysis including de REWIND and PIONEER 6 trials. Diabetes Obes Metab. 2019;21:2576–80. https://doi.org/10.1111/dom.13847.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ALC was the main coordinator of the project and was responsible for the study design. ALC and WM drafted the manuscript of the present paper. ML was involved in the supervising of data collection and stratification. ML and GM contributed to data assembly and analysis. GM contributed with manuscript revision. All authors contributed intellectually to this manuscript and have approved this final version.

Corresponding author

Correspondence to Augusto Lavalle-Cobo.

Ethics declarations

Conflict of interest

Augusto Lavalle Cobo has received honoraria from Novo Nordisk.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 103 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavalle-Cobo, A., Masson, W., Lobo, M. et al. Glucagon-like Peptide-1 Receptor Agonists and Cardioprotective Benefit in Patients with Type 2 Diabetes Without Baseline Metformin: A Systematic Review and Update Meta-analysis. High Blood Press Cardiovasc Prev 28, 605–612 (2021). https://doi.org/10.1007/s40292-021-00479-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-021-00479-1

Keywords

Navigation