Skip to main content
Log in

The Value of Pharmacogenetics to Reduce Drug-Related Toxicity in Cancer Patients

  • Current Opinion
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Many anticancer drugs cause adverse drug reactions (ADRs) that negatively impact safety and reduce quality of life. The typical narrow therapeutic range and exposure-response relationships described for anticancer drugs make precision dosing critical to ensure safe and effective drug exposure. Germline mutations in pharmacogenes contribute to inter-patient variability in pharmacokinetics and pharmacodynamics of anticancer drugs. Patients carrying reduced-activity or loss-of-function alleles are at increased risk for ADRs. Pretreatment genotyping offers a proactive approach to identify these high-risk patients, administer an individualized dose, and minimize the risk of ADRs. In the field of oncology, the most well-studied gene-drug pairs for which pharmacogenetic dosing recommendations have been published to improve safety are DPYD-fluoropyrimidines, TPMT/NUDT15-thiopurines, and UGT1A1-irinotecan. Despite the presence of these guidelines, the scientific evidence showing the benefits of pharmacogenetic testing (e.g., improved safety and cost-effectiveness) and the development of efficient multi-gene genotyping panels, routine pretreatment testing for these gene-drug pairs has not been implemented widely in the clinic. Important considerations required for widespread clinical implementation include pharmacogenetic education of physicians, availability or allocation of institutional resources to build an efficient clinical infrastructure, international standardization of guidelines, uniform adoption of guidelines by regulatory agencies leading to genotyping requirements in drug labels, and development of cohesive reimbursement policies for pretreatment genotyping. Without clinical implementation, the potential of pharmacogenetics to improve patient safety remains unfulfilled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Barnes TA, Amir E, Templeton AJ, Gomez-Garcia S, Navarro B, Seruga B, et al. Efficacy, safety, tolerability and price of newly approved drugs in solid tumors. Cancer Treat Rev. 2017;56:1–7.

    Article  CAS  PubMed  Google Scholar 

  2. Du R, Wang X, Ma L, Larcher LM, Tang H, Zhou H, et al. Adverse reactions of targeted therapy in cancer patients: a retrospective study of hospital medical data in China. BMC Cancer. 2021;21(1):206.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Borghaei H, Yim YM, Guerin A, Pivneva I, Shi S, Gandhi M, et al. Severe adverse events impact overall survival and costs in elderly patients with advanced non-small cell lung cancer on second-line therapy. Lung Cancer. 2018;119:112–9.

    Article  PubMed  Google Scholar 

  4. Grivas P, DerSarkissian M, Shenolikar R, Laliberte F, Doleh Y, Duh MS. Healthcare resource utilization and costs of adverse events among patients with metastatic urothelial cancer in USA. Future Oncol. 2019;15(33):3809–18.

    Article  CAS  PubMed  Google Scholar 

  5. Engel-Nitz NM, Johnson MP, Bunner SH, Ryan KJ. Real-world costs of adverse events in first-line treatment of metastatic non-small cell lung cancer. J Manag Care Spec Pharm. 2020;26(6):729–40.

    PubMed  Google Scholar 

  6. Paci A, Veal G, Bardin C, Levêque D, Widmer N, Beijnen J, et al. Review of therapeutic drug monitoring of anticancer drugs part 1–cytotoxics. Eur J Cancer. 2014;50(12):2010–9.

    Article  CAS  PubMed  Google Scholar 

  7. Undevia SD, Gomez-Abuin G, Ratain MJ. Pharmacokinetic variability of anticancer agents. Nat Rev Cancer. 2005;5(6):447–58.

    Article  CAS  PubMed  Google Scholar 

  8. Hertz DL, Rae J. Pharmacogenetics of cancer drugs. Annu Rev Med. 2015;66:65–81.

    Article  CAS  PubMed  Google Scholar 

  9. Stillemans G, Belkhir L, Hesselink DA, Haufroid V, Elens L. Pharmacogenetic associations with cytochrome P450 in antiretroviral therapy: what does the future hold? Expert Opin Drug Metab Toxicol. 2018;14(6):601–11.

    Article  CAS  PubMed  Google Scholar 

  10. Marin JJG, Serrano MA, Monte MJ, Sanchez-Martin A, Temprano AG, Briz O, et al. Role of genetic variations in the hepatic handling of drugs. Int J Mol Sci. 2020;21(8):2884.

    Article  CAS  PubMed Central  Google Scholar 

  11. Mathijssen RH, Sparreboom A, Verweij J. Determining the optimal dose in the development of anticancer agents. Nat Rev Clin Oncol. 2014;11(5):272–81.

    Article  CAS  PubMed  Google Scholar 

  12. Song G, Wu H, Yoshino K, Zamboni WC. Factors affecting the pharmacokinetics and pharmacodynamics of liposomal drugs. J Liposome Res. 2012;22(3):177–92.

    Article  CAS  PubMed  Google Scholar 

  13. Rodríguez-Vicente AE, Lumbreras E, Hernández JM, Martín M, Calles A, Otín CL, et al. Pharmacogenetics and pharmacogenomics as tools in cancer therapy. Drug Metab Pers Ther. 2016;31(1):25–34.

    PubMed  Google Scholar 

  14. US Food and Drug Administration. Highlights of prescribing information: Herceptin (trastuzumab intravenous infusion). 2010. https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/103792s5250lbl.pdf. Accessed 11 Jan 2022.

  15. Parve J, Carlile J, Parve J. Pharmacogenetic testing in primary care. Nurse Pract. 2019;44(10):44–9.

    Article  PubMed  Google Scholar 

  16. Malsagova KA, Butkova TV, Kopylov AT, Izotov AA, Potoldykova NV, Enikeev DV, et al. Pharmacogenetic testing: a tool for personalized drug therapy optimization. Pharmaceutics. 2020;12(12):1240.

    Article  CAS  PubMed Central  Google Scholar 

  17. Hicks JK, Stowe D, Willner MA, Wai M, Daly T, Gordon SM, et al. Implementation of clinical pharmacogenomics within a large health system: from electronic health record decision support to consultation services. Pharmacotherapy. 2016;36(8):940–8.

    Article  CAS  PubMed  Google Scholar 

  18. Clinical Pharmacogenetics Implementation Consortium (CPIC). https://cpicpgx.org/. Accessed 11 Nov 2021.

  19. Dutch Pharmacogenetics Working Group (DPWG). https://www.knmp.nl/downloads/pharmacogenetic-recommendations-3mei2021.pdf. Accessed 25 Nov 2021.

  20. Canadian Pharmacogenomics Network for Drug Safety (CPNDS). https://cpnds.ubc.ca/. Accessed 25 Nov 2021.

  21. Picard N, Boyer JC, Etienne-Grimaldi MC, Barin-Le Guellec C, Thomas F, Loriot MA, et al. Pharmacogenetics-based personalized therapy: levels of evidence and recommendations from the French Network of Pharmacogenetics (RNPGx). Therapie. 2017;72(2):185–92.

    Article  PubMed  Google Scholar 

  22. Pharmacogenomics Knowledgebase (PharmGKB). https://www.pharmgkb.org/. Accessed 25 Nov 2021.

  23. Pharmacogene Variation Consortium (PharmVar). https://www.pharmvar.org/. Accessed 25 Nov 2021.

  24. ClinVar. https://www.ncbi.nlm.nih.gov/clinvar/. Accessed 25 Nov 2021.

  25. ClinGen. https://clinicalgenome.org/. Accessed 25 Nov 2021.

  26. PharmGKB. Clinical Guideline Annotations. 2021. https://www.pharmgkb.org/guidelineAnnotations. Accessed 8 Oct 2021.

  27. Amstutz U, Henricks LM, Offer SM, Barbarino J, Schellens JHM, Swen JJ, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin Pharmacol Ther. 2018;103(2):210–6.

    Article  CAS  PubMed  Google Scholar 

  28. Lunenburg C, van der Wouden CH, Nijenhuis M, Crommentuijn-van Rhenen MH, de Boer-Veger NJ, Buunk AM, et al. Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction of DPYD and fluoropyrimidines. Eur J Hum Genet. 2020;28(4):508–17.

    Article  CAS  PubMed  Google Scholar 

  29. Loriot MA, Ciccolini J, Thomas F, Barin-Le-Guellec C, Royer B, Milano G, et al. Dihydropyrimidine dehydrogenase (DPD) deficiency screening and securing of fluoropyrimidine-based chemotherapies: update and recommendations of the French GPCO-Unicancer and RNPGx networks. Bull Cancer. 2018;105(4):397–407.

    Article  PubMed  Google Scholar 

  30. Relling MV, Schwab M, Whirl-Carrillo M, Suarez-Kurtz G, Pui CH, Stein CM, et al. Clinical pharmacogenetics implementation consortium guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. Clin Pharmacol Ther. 2019;105(5):1095–105.

    Article  CAS  PubMed  Google Scholar 

  31. Royal Dutch Pharmacists Association—Pharmacogenetics Working Group. Pharmacogenetic Recommendations. https://www.knmp.nl/downloads/farmacogenetica-engels-recommendation-tekst.pdf. Accessed 5 Oct 2021.

  32. Quaranta S, Thomas F. Pharmacogenetics of anti-cancer drugs: State of the art and implementation—recommendations of the French National Network of Pharmacogenetics. Therapie. 2017;72(2):205–15.

    Article  PubMed  Google Scholar 

  33. Caudle KE, Sangkuhl K, Whirl-Carrillo M, Swen JJ, Haidar CE, Klein TE, et al. Standardizing CYP2D6 genotype to phenotype translation: consensus recommendations from the clinical pharmacogenetics implementation consortium and Dutch Pharmacogenetics Working Group. Clin Transl Sci. 2020;13(1):116–24.

    Article  PubMed  Google Scholar 

  34. Garcia-Alfonso P, Saiz-Rodriguez M, Mondejar R, Salazar J, Paez D, Borobia AM, et al. Consensus of experts from the Spanish Pharmacogenetics and Pharmacogenomics Society and the Spanish Society of Medical Oncology for the genotyping of DPYD in cancer patients who are candidates for treatment with fluoropyrimidines. Clin Transl Oncol. 2021. (online ahead of print). https://pubmed.ncbi.nlm.nih.gov/34773566/.

  35. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology—Pediatric Acute Lymphoblastic Leukemia. 2021. https://www.nccn.org/professionals/physician_gls/pdf/ped_all.pdf. Accessed 8 Dec 2021.

  36. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology—Colon Cancer. 2021. https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf. Accessed 8 Dec 2021.

  37. Krebs K, Milani L. Translating pharmacogenomics into clinical decisions: do not let the perfect be the enemy of the good. Hum Genom. 2019;13(1):39.

    Article  Google Scholar 

  38. Relling MV, Evans WE. Pharmacogenomics in the clinic. Nature. 2015;526(7573):343–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. US Food and Drug Administration. Highlights of prescribing information: Xeloda (capecitabine). 2015. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/020896s037lbl.pdf. Accessed 4 Oct 2021.

  40. US Food and Drug Administration. Highlights of prescribing information: fluorouracil. 2016. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/012209s040lbl.pdf. Accessed 4 Oct 2021.

  41. van Kuilenburg AB, Meinsma R, Zonnenberg BA, Zoetekouw L, Baas F, Matsuda K, et al. Dihydropyrimidinase deficiency and severe 5-fluorouracil toxicity. Clin Cancer Res. 2003;9(12):4363–7.

    PubMed  Google Scholar 

  42. van Kuilenburg AB. Dihydropyrimidine dehydrogenase and the efficacy and toxicity of 5-fluorouracil. Eur J Cancer. 2004;40(7):939–50.

    Article  PubMed  Google Scholar 

  43. European Medicines Agency (EMA). EMA recommendations on DPD testing prior to treatment with fluorouracil, capecitabine, tegafur and flucytosine. 2020. https://www.ema.europa.eu/en/news/ema-recommendations-dpd-testing-prior-treatment-fluorouracil-capecitabine-tegafur-flucytosine. Accessed 15 Sep 2021.

  44. Swiss Agency of Therapeutic Products (Swissmedic). Drug label fluorouracil. 2020. https://amiko.oddb.org/de/fi?gtin=36464. Accessed 4 Oct 2021.

  45. Swiss Agency of Therapeutic Products (Swissmedic). Drug label Xeloda (capecitabine). 2021. https://amiko.oddb.org/de/fi?gtin=54657&highlight=DPD-Aktivit%C3%A4t. Accessed 4 Oct 2021.

  46. Bank PCD, Swen JJ, Guchelaar HJ. Estimated nationwide impact of implementing a preemptive pharmacogenetic panel approach to guide drug prescribing in primary care in The Netherlands. BMC Med. 2019;17(1):110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saarenheimo J, Wahid N, Eigeliene N, Ravi R, Salomons GS, Ojeda MF, et al. Preemptive screening of DPYD as part of clinical practice: high prevalence of a novel exon 4 deletion in the Finnish population. Cancer Chemother Pharmacol. 2021;87(5):657–63.

    Article  CAS  PubMed  Google Scholar 

  48. van der Wouden CH, Cambon-Thomsen A, Cecchin E, Cheung KC, Davila-Fajardo CL, Deneer VH, et al. Implementing pharmacogenomics in Europe: design and implementation strategy of the ubiquitous pharmacogenomics consortium. Clin Pharmacol Ther. 2017;101(3):341–58.

    Article  PubMed  Google Scholar 

  49. Innocenti F, Mills SC, Sanoff H, Ciccolini J, Lenz H-J, Milano G. All you need to know about DPYD genetic testing for patients treated with fluorouracil and capecitabine: a practitioner-friendly guide. JCO Oncol Pract. 2020;16(12):793–8.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bielinski SJ, Olson JE, Pathak J, Weinshilboum RM, Wang L, Lyke KJ, et al. Preemptive genotyping for personalized medicine: design of the right drug, right dose, right time-using genomic data to individualize treatment protocol. Mayo Clin Proc. 2014;89(1):25–33.

    Article  PubMed  Google Scholar 

  51. Scott SA, Scott ER, Seki Y, Chen AJ, Wallsten R, Owusu Obeng A, et al. Development and analytical validation of a 29 gene clinical pharmacogenetic genotyping panel: multi-ethnic allele and copy number variant detection. Clin Transl Sci. 2021;14(1):204–13.

    Article  CAS  PubMed  Google Scholar 

  52. Fernandez CA, Smith C, Yang W, Lorier R, Crews KR, Kornegay N, et al. Concordance of DMET plus genotyping results with those of orthogonal genotyping methods. Clin Pharmacol Ther. 2012;92(3):360–5.

    Article  CAS  PubMed  Google Scholar 

  53. Johnson JA, Burkley BM, Langaee TY, Clare-Salzler MJ, Klein TE, Altman RB. Implementing personalized medicine: development of a cost-effective customized pharmacogenetics genotyping array. Clin Pharmacol Ther. 2012;92(4):437–9.

    Article  CAS  PubMed  Google Scholar 

  54. Oetjens MT, Denny JC, Ritchie MD, Gillani NB, Richardson DM, Restrepo NA, et al. Assessment of a pharmacogenomic marker panel in a polypharmacy population identified from electronic medical records. Pharmacogenomics. 2013;14(7):735–44.

    Article  CAS  PubMed  Google Scholar 

  55. Brooks GA, Waleed M, McGrath EB, Beloin K, Walsh SK, Benoit PR, et al. Sustainability and clinical outcomes of routine screening for pathogenic DPYD gene variants prior to fluoropyrimidine (FP) chemotherapy for gastrointestinal (GI) cancer. J Clin Oncol. 2021;39(28_suppl):216.

    Article  Google Scholar 

  56. Bishop JR, Huang RS, Brown JT, Mroz P, Johnson SG, Allen JD, et al. Pharmacogenomics education, research and clinical implementation in the state of Minnesota. Pharmacogenomics. 2021;22(11):681–91.

    Article  CAS  PubMed  Google Scholar 

  57. Winquist LE, Sanatani M, Kim RB, Winquist E. Near miss or standard of care? DPYD screening for cancer patients receiving fluorouracil. Curr Oncol. 2020;28(1):94–7.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Jolivet C, Nassabein R, Soulieres D, Weng X, Amireault C, Ayoub JP, et al. Implementing DPYD*2A genotyping in clinical practice: The Quebec, Canada, Experience. Oncologist. 2021;26(4):e597–602.

    Article  PubMed  Google Scholar 

  59. Pharmaceuticals and Medical Devices Agency (Japan). Drug label fluorouracil. 2011. https://api.pharmgkb.org/v1/download/file/attachment/Fluorouracil_PMDA_10_05_16.pdf. Accessed 19 Oct 2021.

  60. Pharmaceuticals and Medical Devices Agency (Japan). Drug label capecitabine. 2011. https://api.pharmgkb.org/v1/download/file/attachment/Capecitabine_PMDA_11_14_14.pdf. Accessed 4 Oct 2021.

  61. Zaza G, Cheok M, Krynetskaia N, Thorn C, Stocco G, Hebert JM, et al. Thiopurine pathway. Pharmacogenet Genom. 2010;20(9):573–4.

    Article  CAS  Google Scholar 

  62. Wang L, Pelleymounter L, Weinshilboum R, Johnson JA, Hebert JM, Altman RB, et al. Very important pharmacogene summary: thiopurine S-methyltransferase. Pharmacogenet Genom. 2010;20(6):401–5.

    Article  CAS  Google Scholar 

  63. Moriyama T, Nishii R, Perez-Andreu V, Yang W, Klussmann FA, Zhao X, et al. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat Genet. 2016;48(4):367–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. European Medicines Agency (EMA). Summary of product characteristics Xaluprine (mercaptopurine oral suspension). 2021. https://www.ema.europa.eu/en/documents/product-information/xaluprine-epar-product-information_en.pdf. Accessed 4 Oct 2021.

  65. Swiss Agency of Therapeutic Products (Swissmedic). Drug label Puri-Nethol (mercaptopurine tablets). 2017. https://amiko.oddb.org/de/fi?gtin=21713&highlight=TPMT. Accessed 10 Oct 2021.

  66. Swiss Agency of Therapeutic Products (Swissmedic). Drug label Xaluprine (mercaptopurine suspension). 2021. https://amiko.oddb.org/de/fi?gtin=65371. Accessed 10 Oct 2021.

  67. Swiss Agency of Therapeutic Products (Swissmedic). Drug label Lanvis (thioguanine). 2017. https://amiko.oddb.org/de/fi?gtin=37890. Accessed 9 Oct 2021.

  68. Lennard L. Implementation of TPMT testing. Br J Clin Pharmacol. 2014;77(4):704–14.

    Article  PubMed  PubMed Central  Google Scholar 

  69. US Food and Drug Administration. Highlights of prescribing information: Purinethol (mercaptopurine tablets). 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/009053s040lbl.pdf. Accessed 4 Oct 2021.

  70. US Food and Drug Administration. Highlights of prescribing information: Purixan (mercaptopurine oral suspension). 2014. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/205919s000lbl.pdf. Accessed 4 Oct 2021.

  71. Ramsey LB, Prows CA, Zhang K, Saldana SN, Sorter MT, Pestian JP, et al. Implementation of pharmacogenetics at Cincinnati Children’s Hospital Medical Center: lessons learned over 14 years of personalizing medicine. Clin Pharmacol Ther. 2019;105(1):49–52.

    Article  PubMed  Google Scholar 

  72. Root A, Johnson R, McGee A, Lee HJ, Yang S, Voora D. Understanding the state of pharmacogenomic testing for thiopurine methyltransferase within a large health system. Pharmacogenomics. 2020;21(6):411–8.

    Article  CAS  PubMed  Google Scholar 

  73. Manzi SF, Fusaro VA, Chadwick L, Brownstein C, Clinton C, Mandl KD, et al. Creating a scalable clinical pharmacogenomics service with automated interpretation and medical record result integration—experience from a pediatric tertiary care facility. J Am Med Inform Assoc. 2017;24(1):74–80.

    Article  PubMed  Google Scholar 

  74. Cavallari LH, Weitzel KW, Elsey AR, Liu X, Mosley SA, Smith DM, et al. Institutional profile: University of Florida Health Personalized Medicine Program. Pharmacogenomics. 2017;18(5):421–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hoffman JM, Haidar CE, Wilkinson MR, Crews KR, Baker DK, Kornegay NM, et al. PG4KDS: a model for the clinical implementation of pre-emptive pharmacogenetics. Am J Med Genet C Semin Med Genet. 2014;166c(1):45–55.

    Article  PubMed  Google Scholar 

  76. US Food and Drug Administration. Highlights of prescribing information: Camptosar (irinotecan). 2014. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/020571s048lbl.pdf. Accessed 4 Oct 2021.

  77. Iyer L, King CD, Whitington PF, Green MD, Roy SK, Tephly TR, et al. Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Investig. 1998;101(4):847–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Levesque E, Belanger AS, Harvey M, Couture F, Jonker D, Innocenti F, et al. Refining the UGT1A haplotype associated with irinotecan-induced hematological toxicity in metastatic colorectal cancer patients treated with 5-fluorouracil/irinotecan-based regimens. J Pharmacol Exp Ther. 2013;345(1):95–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu X, Cheng D, Kuang Q, Liu G, Xu W. Association of UGT1A1*28 polymorphisms with irinotecan-induced toxicities in colorectal cancer: a meta-analysis in Caucasians. Pharmacogenom J. 2014;14(2):120–9.

    Article  CAS  Google Scholar 

  80. de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S. Individualization of irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin Pharmacokinet. 2018;57(10):1229–54.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pharmaceuticals and Medical Devices Agency (Japan). Label for irinotecan hydrochloride I.V. infusion. 2014. https://api.pharmgkb.org/v1/download/file/attachment/Irinotecan_PMDA_10_31_16.pdf. Accessed 19 Oct 2021.

  82. European Medicines Agency (EMA). Summary of product characteristics Onivyde (irinotecan hydrochloride trihydrate). 2021. https://www.ema.europa.eu/en/documents/product-information/onivyde-pegylated-liposomal-epar-product-information_en.pdf. Accessed 4 Oct 2021.

  83. Swiss Agency of Therapeutic Products (Swissmedic). Drug label Onivyde (irinotecan). 2021. https://amiko.oddb.org/de/fi?gtin=65994. Accessed 4 Oct 2021.

  84. Health Canada (Santé Canada) (HCSC). Product Monograph Camptosar (irinotecan hydrochloride trihydrate for injection). 2014. https://api.pharmgkb.org/v1/download/file/attachment/Irinotecan_HCSC_06_02_15.pdf. Accessed 4 Oct 2021.

  85. Etienne-Grimaldi MC, Boyer JC, Thomas F, Quaranta S, Picard N, Loriot MA, et al. UGT1A1 genotype and irinotecan therapy: general review and implementation in routine practice. Fundam Clin Pharmacol. 2015;29(3):219–37.

    Article  CAS  PubMed  Google Scholar 

  86. Velez-Velez LM, Hughes CL, Kasi PM. Clinical value of pharmacogenomic testing in a patient receiving FOLFIRINOX for pancreatic adenocarcinoma. Front Pharmacol. 2018;9:1309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. ClinicalTrials.gov. PREemptive Pharmacogenomic Testing for Preventing Adverse Drug REactions (PREPARE). 2017. https://clinicaltrials.gov/ct2/show/NCT03093818. Accessed 8 Oct 2021.

  88. ClinicalTrials.gov. Implementing Pharmacogenetic Testing in Gastrointestinal Cancers (IMPACT-GI). 2021. https://clinicaltrials.gov/ct2/show/NCT04736472. Accessed 8 Oct 2021.

  89. Deenen MJ, Meulendijks D, Cats A, Sechterberger MK, Severens JL, Boot H, et al. Upfront genotyping of DPYD*2A to individualize fluoropyrimidine therapy: a safety and cost analysis. J Clin Oncol. 2016;34(3):227–34.

    Article  CAS  PubMed  Google Scholar 

  90. Henricks LM, Lunenburg C, de Man FM, Meulendijks D, Frederix GWJ, Kienhuis E, et al. DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: a prospective safety analysis. Lancet Oncol. 2018;19(11):1459–67.

    Article  CAS  PubMed  Google Scholar 

  91. Toffoli G, Cecchin E, Gasparini G, D’Andrea M, Azzarello G, Basso U, et al. Genotype-driven phase I study of irinotecan administered in combination with fluorouracil/leucovorin in patients with metastatic colorectal cancer. J Clin Oncol. 2010;28(5):866–71.

    Article  CAS  PubMed  Google Scholar 

  92. Innocenti F, Schilsky RL, Ramirez J, Janisch L, Undevia S, House LK, et al. Dose-finding and pharmacokinetic study to optimize the dosing of irinotecan according to the UGT1A1 genotype of patients with cancer. J Clin Oncol. 2014;32(22):2328–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Marcuello E, Paez D, Pare L, Salazar J, Sebio A, del Rio E, et al. A genotype-directed phase I–IV dose-finding study of irinotecan in combination with fluorouracil/leucovorin as first-line treatment in advanced colorectal cancer. Br J Cancer. 2011;105(1):53–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Toffoli G, Sharma MR, Marangon E, Posocco B, Gray E, Mai Q, et al. Genotype-guided dosing study of FOLFIRI plus bevacizumab in patients with metastatic colorectal cancer. Clin Cancer Res. 2017;23(4):918–24.

    Article  CAS  PubMed  Google Scholar 

  95. Hulshof EC, De With M, De Man FM, Creemers G-J, Deiman BALM, Swen JJ, et al. Safety and pharmacokinetic analysis of UGT1A1 genotype-guided dosing of irinotecan. J Clin Oncol. 2021;39(15_suppl):3574.

    Article  Google Scholar 

  96. Stocco G, Cheok MH, Crews KR, Dervieux T, French D, Pei D, et al. Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clin Pharmacol Ther. 2009;85(2):164–72.

    Article  CAS  PubMed  Google Scholar 

  97. Yun JA, Kim HC, Son HS, Kim HR, Yun HR, Cho YB, et al. Oncologic outcome after cessation or dose reduction of capecitabine in patients with colon cancer. J Korean Soc Coloproctol. 2010;26(4):287–92.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Apperley JF, Szydlo RM, Gerrard G, McCue JR, Wardle J, Clark RE, et al. Dose interruption/reduction of tyrosine kinase inhibitors in the first 3 months of treatment of CML is associated with inferior early molecular responses and predicts for an increased likelihood of discontinuation of the 1st line agent. Washington, DC: American Society of Hematology; 2013.

    Book  Google Scholar 

  99. Obradovic M, Mrhar A, Kos M. Cost-effectiveness of UGT1A1 genotyping in second-line, high-dose, once every 3 weeks irinotecan monotherapy treatment of colorectal cancer. Pharmacogenomics. 2008;9(5):539–49.

    Article  CAS  PubMed  Google Scholar 

  100. Gold HT, Hall MJ, Blinder V, Schackman BR. Cost effectiveness of pharmacogenetic testing for uridine diphosphate glucuronosyltransferase 1A1 before irinotecan administration for metastatic colorectal cancer. Cancer. 2009;115(17):3858–67.

    Article  CAS  PubMed  Google Scholar 

  101. Pichereau S, Le Louarn A, Lecomte T, Blasco H, Le Guellec C, Bourgoin H. Cost-effectiveness of UGT1A1*28 genotyping in preventing severe neutropenia following FOLFIRI therapy in colorectal cancer. J Pharm Pharm Sci. 2010;13(4):615–25.

    Article  PubMed  Google Scholar 

  102. Wei X, Cai J, Sun H, Li N, Xu C, Zhang G, et al. Cost-effectiveness analysis of UGT1A1*6/*28 genotyping for preventing FOLFIRI-induced severe neutropenia in Chinese colorectal cancer patients. Pharmacogenomics. 2019;20(4):241–9.

    Article  CAS  PubMed  Google Scholar 

  103. Brooks GA, Tapp S, Daly AT, Busam J, Tosteson ANA. Cost effectiveness of DPYD genotyping to screen for dihydropyrimidine dehydrogenase (DPD) deficiency prior to adjuvant chemotherapy for colon cancer. J Clin Oncol. 2021;39(3_suppl):55.

    Article  Google Scholar 

  104. Fragoulakis V, Roncato R, Fratte CD, Ecca F, Bartsakoulia M, Innocenti F, et al. Estimating the effectiveness of DPYD genotyping in Italian individuals suffering from cancer based on the cost of chemotherapy-induced toxicity. Am J Hum Genet. 2019;104(6):1158–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Henricks LM, Lunenburg C, de Man FM, Meulendijks D, Frederix GWJ, Kienhuis E, et al. A cost analysis of upfront DPYD genotype-guided dose individualisation in fluoropyrimidine-based anticancer therapy. Eur J Cancer. 2019;107:60–7.

    Article  PubMed  Google Scholar 

  106. Dubinsky MC, Reyes E, Ofman J, Chiou CF, Wade S, Sandborn WJ. A cost-effectiveness analysis of alternative disease management strategies in patients with Crohn’s disease treated with azathioprine or 6-mercaptopurine. Am J Gastroenterol. 2005;100(10):2239–47.

    Article  CAS  PubMed  Google Scholar 

  107. Marra CA, Esdaile JM, Anis AH. Practical pharmacogenetics: the cost effectiveness of screening for thiopurine s-methyltransferase polymorphisms in patients with rheumatological conditions treated with azathioprine. J Rheumatol. 2002;29(12):2507–12.

    PubMed  Google Scholar 

  108. Priest VL, Begg EJ, Gardiner SJ, Frampton CM, Gearry RB, Barclay ML, et al. Pharmacoeconomic analyses of azathioprine, methotrexate and prospective pharmacogenetic testing for the management of inflammatory bowel disease. Pharmacoeconomics. 2006;24(8):767–81.

    Article  PubMed  Google Scholar 

  109. Zarca K, Chansavang A, Loriot MA, Durand-Zaleski I, Pallet N. Cost-effectiveness analysis of pretreatment screening for NUDT15 defective alleles. Pharmacogenet Genom. 2020;30(8):175–83.

    Article  CAS  Google Scholar 

  110. van den Akker-van Marle ME, Gurwitz D, Detmar SB, Enzing CM, Hopkins MM, Gutierrez de Mesa E, et al. Cost-effectiveness of pharmacogenomics in clinical practice: a case study of thiopurine methyltransferase genotyping in acute lymphoblastic leukemia in Europe. Pharmacogenomics. 2006;7(5):783–92.

    Article  PubMed  Google Scholar 

  111. Donnan JR, Ungar WJ, Mathews M, Hancock-Howard RL, Rahman P. A cost effectiveness analysis of thiopurine methyltransferase testing for guiding 6-mercaptopurine dosing in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011;57(2):231–9.

    Article  PubMed  Google Scholar 

  112. Abbasi J. Getting pharmacogenomics into the clinic. JAMA. 2016;316(15):1533–5.

    Article  PubMed  Google Scholar 

  113. Hulshof EC, Deenen MJ, Guchelaar HJ, Gelderblom H. Pre-therapeutic UGT1A1 genotyping to reduce the risk of irinotecan-induced severe toxicity: ready for prime time. Eur J Cancer. 2020;141:9–20.

    Article  CAS  PubMed  Google Scholar 

  114. Young J, Bhattacharya K, Ramachandran S, Lee A, Bentley JP. Rates of genetic testing in patients prescribed drugs with pharmacogenomic information in FDA-approved labeling. Pharmacogenom J. 2021;21(3):318–25.

    Article  CAS  Google Scholar 

  115. Caraballo PJ, Bielinski SJ, St Sauver JL, Weinshilboum RM. Electronic medical record-integrated pharmacogenomics and related clinical decision support concepts. Clin Pharmacol Ther. 2017;102(2):254–64.

    Article  CAS  PubMed  Google Scholar 

  116. Johansen Taber KA, Dickinson BD. Pharmacogenomic knowledge gaps and educational resource needs among physicians in selected specialties. Pharmgenom Pers Med. 2014;7:145–62.

    Google Scholar 

  117. Stanek EJ, Sanders CL, Taber KA, Khalid M, Patel A, Verbrugge RR, et al. Adoption of pharmacogenomic testing by US physicians: results of a nationwide survey. Clin Pharmacol Ther. 2012;91(3):450–8.

    Article  CAS  PubMed  Google Scholar 

  118. Haga SB, Burke W, Ginsburg GS, Mills R, Agans R. Primary care physicians’ knowledge of and experience with pharmacogenetic testing. Clin Genet. 2012;82(4):388–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Unertl KM, Jaffa H, Field JR, Price L, Peterson JF. Clinician perspectives on using pharmacogenomics in clinical practice. Per Med. 2015;12(4):339–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zanardi R, Manfredi E, Montrasio C, Colombo C, Serretti A, Fabbri C. Pharmacogenetic-guided treatment of depression: real-world clinical applications, challenges, and perspectives. Clin Pharmacol Ther. 2021;110(3):573–81.

    Article  PubMed  Google Scholar 

  121. Abacan M, Alsubaie L, Barlow-Stewart K, Caanen B, Cordier C, Courtney E, et al. The global state of the genetic counseling profession. Eur J Hum Genet. 2019;27(2):183–97.

    Article  PubMed  Google Scholar 

  122. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology—Melanoma: Cutaneous. 2021. https://www.nccn.org/professionals/physician_gls/pdf/cutaneous_melanoma.pdf. Accessed 7 Dec 2021.

  123. Michielin O, van Akkooi ACJ, Ascierto PA, Dummer R, Keilholz U, clinicalguidelines@esmo.org EGCEa. Cutaneous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-updagger. Ann Oncol. 2019;30(12):1884–901.

    Article  CAS  PubMed  Google Scholar 

  124. US Food and Drug Administration. Guidance for Industry: Pharmacogenomic Data Submissions. 2005. https://www.fda.gov/media/122944/download. Accessed 2 Dec 2021.

  125. Drozda K, Pacanowski MA, Grimstein C, Zineh I. Pharmacogenetic labeling of FDA-approved drugs: a regulatory retrospective. JACC Basic Transl Sci. 2018;3(4):545–9.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Koutsilieri S, Tzioufa F, Sismanoglou DC, Patrinos GP. Unveiling the guidance heterogeneity for genome-informed drug treatment interventions among regulatory bodies and research consortia. Pharmacol Res. 2020;153:104590.

    Article  CAS  PubMed  Google Scholar 

  127. Bank PCD, Caudle KE, Swen JJ, Gammal RS, Whirl-Carrillo M, Klein TE, et al. Comparison of the guidelines of the clinical pharmacogenetics implementation consortium and the Dutch Pharmacogenetics Working Group. Clin Pharmacol Ther. 2018;103(4):599–618.

    Article  CAS  PubMed  Google Scholar 

  128. Bell GC, Crews KR, Wilkinson MR, Haidar CE, Hicks JK, Baker DK, et al. Development and use of active clinical decision support for preemptive pharmacogenomics. J Am Med Inform Assoc. 2014;21(e1):e93–9.

    Article  PubMed  Google Scholar 

  129. Cook KJ, Duong BQ, Seligson ND, Arn P, Funanage VL, Gripp KW, et al. Key considerations for selecting a genomic decision support platform for implementing pharmacogenomics. Clin Pharmacol Ther. 2021;110(3):555–8.

    Article  PubMed  Google Scholar 

  130. Hicks JK, Dunnenberger HM, Gumpper KF, Haidar CE, Hoffman JM. Integrating pharmacogenomics into electronic health records with clinical decision support. Am J Health Syst Pharm. 2016;73(23):1967–76.

    Article  PubMed  Google Scholar 

  131. Haidar CE, Relling MV, Hoffman JM. Preemptively precise: returning and updating pharmacogenetic test results to realize the benefits of preemptive testing. Clin Pharmacol Ther. 2019;106(5):942–4.

    Article  PubMed  Google Scholar 

  132. O’Donnell PH, Bush A, Spitz J, Danahey K, Saner D, Das S, et al. The 1200 patients project: creating a new medical model system for clinical implementation of pharmacogenomics. Clin Pharmacol Ther. 2012;92(4):446–9.

    Article  CAS  PubMed  Google Scholar 

  133. Eadon MT, Desta Z, Levy KD, Decker BS, Pierson RC, Pratt VM, et al. Implementation of a pharmacogenomics consult service to support the INGENIOUS trial. Clin Pharmacol Ther. 2016;100(1):63–6.

    Article  CAS  PubMed  Google Scholar 

  134. Cavic M, Krivokuca A, Boljevic I, Brotto K, Jovanovic K, Tanic M, et al. Pharmacogenetics in cancer therapy—8 years of experience at the Institute for Oncology and Radiology of Serbia. J Buon. 2016;21(5):1287–95.

    PubMed  Google Scholar 

  135. Dai Z, Papp AC, Wang D, Hampel H, Sadee W. Genotyping panel for assessing response to cancer chemotherapy. BMC Med Genom. 2008;11(1):24.

    Article  Google Scholar 

  136. Martens FK, Huntjens DW, Rigter T, Bartels M, Bet PM, Cornel MC. DPD testing before treatment with fluoropyrimidines in the Amsterdam UMCs: an evaluation of current pharmacogenetic practice. Front Pharmacol. 2019;10:1609.

    Article  CAS  PubMed  Google Scholar 

  137. Tata EB, Ambele MA, Pepper MS. Barriers to implementing clinical pharmacogenetics testing in Sub-Saharan Africa. A critical review. Pharmaceutics. 2020;12(9):809.

    Article  Google Scholar 

  138. Mitropoulos K, Johnson L, Vozikis A, Patrinos GP. Relevance of pharmacogenomics for developing countries in Europe. Drug Metabol Drug Interact. 2011;26(4):143–6.

    Article  CAS  PubMed  Google Scholar 

  139. El Shamieh S, Zgheib NK. Pharmacogenetics in developing countries and low resource environments. Hum Genet. 2021.

  140. Madhavan S, Subramaniam S, Brown TD, Chen JL. Art and challenges of precision medicine: interpreting and integrating genomic data into clinical practice. Am Soc Clin Oncol Educ Book. 2018;23(38):546–53.

    Article  Google Scholar 

  141. Levit LA, Kim ES, McAneny BL, Nadauld LD, Levit K, Schenkel C, et al. Implementing precision medicine in community-based oncology programs: three models. J Oncol Pract. 2019;15(6):325–9.

    Article  PubMed  Google Scholar 

  142. Rogers SL, Keeling NJ, Giri J, Gonzaludo N, Jones JS, Glogowski E, et al. PARC report: a health-systems focus on reimbursement and patient access to pharmacogenomics testing. Pharmacogenomics. 2020;21(11):785–96.

    Article  Google Scholar 

  143. van Schaik RHN, Muller DJ, Serretti A, Ingelman-Sundberg M. Pharmacogenetics in psychiatry: an update on clinical usability. Front Pharmacol. 2020;11:575540.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Abou Diwan E, Zeitoun RI, Abou Haidar L, Cascorbi I, Khoueiry ZN. Implementation and obstacles of pharmacogenetics in clinical practice: an international survey. Br J Clin Pharmacol. 2019;85(9):2076–88.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Verbelen M, Weale ME, Lewis CM. Cost-effectiveness of pharmacogenetic-guided treatment: are we there yet? Pharmacogenom J. 2017;17(5):395–402.

    Article  CAS  Google Scholar 

  146. Park SK, Thigpen J, Lee IJ. Coverage of pharmacogenetic tests by private health insurance companies. J Am Pharm Assoc (2003). 2020;60(2):352-6 e3.

    Article  Google Scholar 

  147. Anderson HD, Crooks KR, Kao DP, Aquilante CL. The landscape of pharmacogenetic testing in a US managed care population. Genet Med. 2020;22(7):1247–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hresko A, Haga SB. Insurance coverage policies for personalized medicine. J Pers Med. 2012;2(4):201–16.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Empey PE, Pratt VM, Hoffman JM, Caudle KE, Klein TE. Expanding evidence leads to new pharmacogenomics payer coverage. Genet Med. 2021;23(5):830–2.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Centers for Medicare & Medicaid Services. MolDX: Pharmacogenomics Testing (L38294). 2020. https://www.cms.gov/medicare-coverage-database/view/lcd.aspx?LCDId=38294&ver=16. Accessed 26 Nov 2021.

  151. Keeling NJ, Rosenthal MM, West-Strum D, Patel AS, Haidar CE, Hoffman JM. Preemptive pharmacogenetic testing: exploring the knowledge and perspectives of US payers. Genet Med. 2019;21(5):1224–32.

    Article  PubMed  Google Scholar 

  152. Meckley LM, Neumann PJ. Personalized medicine: factors influencing reimbursement. Health Policy. 2010;94(2):91–100.

    Article  PubMed  Google Scholar 

  153. Hippman C, Nislow C. Pharmacogenomic testing: clinical evidence and implementation challenges. J Pers Med. 2019;9(3):40.

    Article  PubMed Central  Google Scholar 

  154. Lennard L, Cartwright CS, Wade R, Vora A. Thiopurine methyltransferase and treatment outcome in the UK acute lymphoblastic leukaemia trial ALL2003. Br J Haematol. 2015;170(4):550–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. European Organisation for Research and Treatment (EORTC)—Quality of Life Group. EORTC QLQ-C30. 2021. https://qol.eortc.org/questionnaires/. Accessed 9 Dec 2021.

  156. FACIT group. Functional Assessment of Cancer Therapy—General. 2021. https://www.facit.org/measures/FACT-G. Accessed 9 Dec 2021.

  157. Hertz DL, Sahai V. Including DPYD on cancer genetic panels to prevent fatal fluoropyrimidine toxicity. J Natl Compr Cancer Netw. 2020;18(4):372–4.

    Article  Google Scholar 

  158. Jones S, Anagnostou V, Lytle K, Parpart-Li S, Nesselbush M, Riley DR, et al. Personalized genomic analyses for cancer mutation discovery and interpretation. Sci Transl Med. 2015;7(283):283ra53.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Schrader KA, Cheng DT, Joseph V, Prasad M, Walsh M, Zehir A, et al. Germline variants in targeted tumor sequencing using matched normal DNA. JAMA Oncol. 2016;2(1):104–11.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Hertz DL, Glatz A, Pasternak AL, Lonigro RJ, Vats P, Wu YM, et al. Integration of germline pharmacogenetics into a tumor sequencing program. JCO Precis Oncol. 2018;2:1–15.

    Google Scholar 

Download references

Acknowledgements

We thank Dr. James L. Mohler for critically reading the manuscript and providing helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew K. L. Goey.

Ethics declarations

Funding

This work was supported by Roswell Park Comprehensive Cancer Center and National Cancer Institute (NCI) grant P30CA016056.

Conflict of interest

Doreen Mhandire and Andrew Goey declare that they have no conflicts of interest.

Author contributions

Doreen Mhandire contributed to the conceptual design and wrote the first draft of the manuscript. Andrew Goey contributed to the conceptual design and critically revised the work. Both authors read and approved the final version of the manuscript.

Ethics and consent

Not applicable.

Data availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mhandire, D.Z., Goey, A.K.L. The Value of Pharmacogenetics to Reduce Drug-Related Toxicity in Cancer Patients. Mol Diagn Ther 26, 137–151 (2022). https://doi.org/10.1007/s40291-021-00575-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-021-00575-x

Navigation