Skip to main content
Log in

Linking Genetic Diagnosis to Therapeutic Approach in Very Early Onset Inflammatory Bowel Disease: Pharmacologic Considerations

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Very early onset inflammatory bowel disease (VEO-IBD) is diagnosed in children < 6 years of age, and in rare cases may be due to an identifiable monogenic cause. Recent advances in genetic testing have allowed for more accurate diagnosis, with as many as 100 genes now known to be associated with monogenic inflammatory bowel disease. These genes are involved in many immune pathways and thus may represent potential avenues for targeted precision medicine with pharmacologic treatments aimed at these. This review describes the broad classifications of monogenic disorders known to cause VEO-IBD, as well as empiric and disease-specific medical therapies. These include immune-modulating or immunosuppressant medications, nutritional therapy, surgery, and hematopoietic stem cell transplantation. We aim to provide an overview of the current state of targeted therapy for VEO-IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uhlig HH, Schwerd T, Koletzko S, Shah N, Kammermeier J, Elkadri A, et al. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology. 2014;147(5):990–1007.

    Article  PubMed  Google Scholar 

  2. Worthey EA, Mayer AN, Syverson GD, Helbling D, Bonacci BB, Decker B, et al. Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med. 2011;13(3):255–62.

    Article  PubMed  Google Scholar 

  3. Benchimol EI, Fortinsky KJ, Gozdyra P, Van den Heuvel M, Van Limbergen J, Griffiths AM. Epidemiology of pediatric inflammatory bowel disease: a systematic review of international trends. Inflamm Bowel Dis. 2011;17(1):423–39.

    Article  PubMed  Google Scholar 

  4. Benchimol EI, Bernstein CN, Bitton A, Carroll MW, Singh H, Otley AR, et al. Trends in epidemiology of pediatric inflammatory bowel disease in Canada: distributed network analysis of multiple population-based provincial health administrative databases. Am J Gastroenterol. 2017;112(7):1120–34.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bequet E, Sarter H, Fumery M, Vasseur F, Armengol-Debeir L, Pariente B, et al. Incidence and phenotype at diagnosis of very-early-onset compared with later-onset paediatric inflammatory bowel disease: a population-based study [1988-2011]. J Crohns Colitis. 2017;11(5):519–26.

    CAS  PubMed  Google Scholar 

  6. Ong C, Aw MM, Liwanag MJ, Quak SH, Phua KB. Rapid rise in the incidence and clinical characteristics of pediatric inflammatory bowel disease in a South-East Asian cohort in Singapore, 1994–2015. J Dig Dis. 2018;19(7):395–403.

    Article  PubMed  Google Scholar 

  7. Bolton CSC, Pandey S, et al. An integrated taxonomy for monogenic inflammatory bowel disease. Gastroenterology. 2022;162(3):859–76.

    Article  PubMed  Google Scholar 

  8. Uhlig HH C-HF, Kotlarz D, et al. Clinical genomics for the diagnosis of monogenic forms of inflammatory bowel disease: a position paper from the paediatric IBD Porto Group of European Society of Paediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr. 2021;72(3):456–73.

  9. Nambu RWN, Mulder DJ, et al. A systematic review of monogenic inflammatory bowel disease. Clin Gastroenterol Hepatol. 2021;21:00331–41.

    Google Scholar 

  10. Zheng HB, de-la-Morena MT, Suskind DL. The growing need to understand very early onset inflammatory bowel disease. Front Immunol. 2021;12:675186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Conrad MA, Kelsen JR. Genomic and immunologic drivers of very early-onset inflammatory bowel disease. Pediatr Dev Pathol. 2019;22(3):183–93.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ouahed J, Spencer E, Kotlarz D, Shouval DS, Kowalik M, Peng K, et al. Very early onset inflammatory bowel disease: a clinical approach with a focus on the role of genetics and underlying immune deficiencies. Inflamm Bowel Dis. 2020;26(6):820–42.

    Article  PubMed  Google Scholar 

  13. Kelsen JR, Sullivan KE, Rabizadeh S, Singh N, Snapper S, Elkadri A, et al. North American society for pediatric gastroenterology, hepatology, and nutrition position paper on the evaluation and management for patients with very early-onset inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2020;70(3):389–403.

    Article  PubMed  Google Scholar 

  14. Orange JS, Jain A, Ballas ZK, Schneider LC, Geha RS, Bonilla FA. The presentation and natural history of immunodeficiency caused by nuclear factor kappaB essential modulator mutation. J Allergy Clin Immunol. 2004;113(4):725–33.

    Article  CAS  PubMed  Google Scholar 

  15. Freeman EB, Koglmeier J, Martinez AE, Mellerio JE, Haynes L, Sebire NJ, et al. Gastrointestinal complications of epidermolysis bullosa in children. Br J Dermatol. 2008;158(6):1308–14.

    Article  CAS  PubMed  Google Scholar 

  16. Blaydon DC, Biancheri P, Di WL, Plagnol V, Cabral RM, Brooke MA, et al. Inflammatory skin and bowel disease linked to ADAM17 deletion. N Engl J Med. 2011;365(16):1502–8.

    Article  CAS  PubMed  Google Scholar 

  17. Kern JS, Herz C, Haan E, Moore D, Nottelmann S, von Lilien T, et al. Chronic colitis due to an epithelial barrier defect: the role of kindlin-1 isoforms. J Pathol. 2007;213(4):462–70.

    Article  CAS  PubMed  Google Scholar 

  18. Naviglio S, Arrigo S, Martelossi S, Villanacci V, Tommasini A, Loganes C, et al. Severe inflammatory bowel disease associated with congenital alteration of transforming growth factor beta signaling. J Crohns Colitis. 2014;8(8):770–4.

    Article  PubMed  Google Scholar 

  19. Avitzur Y, Guo C, Mastropaolo LA, Bahrami E, Chen H, Zhao Z, et al. Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease. Gastroenterology. 2014;146(4):1028–39.

    Article  CAS  PubMed  Google Scholar 

  20. Schappi MG, Smith VV, Goldblatt D, Lindley KJ, Milla PJ. Colitis in chronic granulomatous disease. Arch Dis Child. 2001;84(2):147–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alimchandani M, Lai JP, Aung PP, Khangura S, Kamal N, Gallin JI, et al. Gastrointestinal histopathology in chronic granulomatous disease: a study of 87 patients. Am J Surg Pathol. 2013;37(9):1365–72.

    Article  PubMed  PubMed Central  Google Scholar 

  22. D’Agata ID, Paradis K, Chad Z, Bonny Y, Seidman E. Leucocyte adhesion deficiency presenting as a chronic ileocolitis. Gut. 1996;39(4):605–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Uzel G, Kleiner DE, Kuhns DB, Holland SM. Dysfunctional LAD-1 neutrophils and colitis. Gastroenterology. 2001;121(4):958–64.

    Article  CAS  PubMed  Google Scholar 

  24. van de Vijver E, Maddalena A, Sanal O, Holland SM, Uzel G, Madkaikar M, et al. Hematologically important mutations: leukocyte adhesion deficiency (first update). Blood Cells Mol Dis. 2012;48(1):53–61.

    Article  PubMed  CAS  Google Scholar 

  25. Roifman CM, Zhang J, Atkinson A, Grunebaum E, Mandel K. Adenosine deaminase deficiency can present with features of Omenn syndrome. J Allergy Clin Immunol. 2008;121(4):1056–8.

    Article  CAS  PubMed  Google Scholar 

  26. Rohr J, Pannicke U, Doring M, Schmitt-Graeff A, Wiech E, Busch A, et al. Chronic inflammatory bowel disease as key manifestation of atypical ARTEMIS deficiency. J Clin Immunol. 2010;30(2):314–20.

    Article  CAS  PubMed  Google Scholar 

  27. Grunebaum E, Bates A, Roifman CM. Omenn syndrome is associated with mutations in DNA ligase IV. J Allergy Clin Immunol. 2008;122(6):1219–20.

    Article  CAS  PubMed  Google Scholar 

  28. Chou J, Hanna-Wakim R, Tirosh I, Kane J, Fraulino D, Lee YN, et al. A novel homozygous mutation in recombination activating gene 2 in 2 relatives with different clinical phenotypes: Omenn syndrome and hyper-IgM syndrome. J Allergy Clin Immunol. 2012;130(6):1414–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chan AY, Punwani D, Kadlecek TA, Cowan MJ, Olson JL, Mathes EF, et al. A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70. J Exp Med. 2016;213(2):155–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Catucci M, Castiello MC, Pala F, Bosticardo M, Villa A. Autoimmunity in Wiskott-Aldrich syndrome: an unsolved enigma. Front Immunol. 2012;3:209.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Maekawa K, Yamada M, Okura Y, Sato Y, Yamada Y, Kawamura N, et al. X-linked agammaglobulinemia in a 10-year-old boy with a novel non-invariant splice-site mutation in Btk gene. Blood Cells Mol Dis. 2010;44(4):300–4.

    Article  CAS  PubMed  Google Scholar 

  32. Takahashi N, Matsumoto K, Saito H, Nanki T, Miyasaka N, Kobata T, et al. Impaired CD4 and CD8 effector function and decreased memory T cell populations in ICOS-deficient patients. J Immunol. 2009;182(9):5515–27.

    Article  CAS  PubMed  Google Scholar 

  33. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27(1):20–1.

    Article  CAS  PubMed  Google Scholar 

  34. Barzaghi F, Passerini L, Bacchetta R. Immune dysregulation, polyendocrinopathy, enteropathy, x-linked syndrome: a paradigm of immunodeficiency with autoimmunity. Front Immunol. 2012;3:211.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zeissig S, Petersen BS, Tomczak M, Melum E, Huc-Claustre E, Dougan SK, et al. Early-onset Crohn’s disease and autoimmunity associated with a variant in CTLA-4. Gut. 2015;64(12):1889–97.

    Article  CAS  PubMed  Google Scholar 

  36. Lopez-Herrera G, Tampella G, Pan-Hammarstrom Q, Herholz P, Trujillo-Vargas CM, Phadwal K, et al. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am J Hum Genet. 2012;90(6):986–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gambineri E, Ciullini Mannurita S, Hagin D, Vignoli M, Anover-Sombke S, DeBoer S, et al. Clinical, immunological, and molecular heterogeneity of 173 patients with the phenotype of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Front Immunol. 2018;9:2411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol. 2007;119(2):482–7.

    Article  CAS  PubMed  Google Scholar 

  39. Latour S, Aguilar C. XIAP deficiency syndrome in humans. Semin Cell Dev Biol. 2015;39:115–23.

    Article  CAS  PubMed  Google Scholar 

  40. Aguilar C, Latour S. X-linked inhibitor of apoptosis protein deficiency: more than an X-linked lymphoproliferative syndrome. J Clin Immunol. 2015;35(4):331–8.

    Article  CAS  PubMed  Google Scholar 

  41. van der Burgh R, Ter Haar NM, Boes ML, Frenkel J. Mevalonate kinase deficiency, a metabolic autoinflammatory disease. Clin Immunol. 2013;147(3):197–206.

    Article  PubMed  CAS  Google Scholar 

  42. Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, Loring E, Choi M, et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet. 2014;46(10):1135–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li Q, Lee CH, Peters LA, Mastropaolo LA, Thoeni C, Elkadri A, et al. Variants in TRIM22 that affect NOD2 signaling are associated with very-early-onset inflammatory bowel disease. Gastroenterology. 2016;150(5):1196–207.

    Article  CAS  PubMed  Google Scholar 

  44. Glocker EO, Frede N, Perro M, Sebire N, Elawad M, Shah N, et al. Infant colitis–it’s in the genes. Lancet. 2010;376(9748):1272.

    Article  PubMed  Google Scholar 

  45. Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schaffer AA, Noyan F, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361(21):2033–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Neven B, Mamessier E, Bruneau J, Kaltenbach S, Kotlarz D, Suarez F, et al. A Mendelian predisposition to B-cell lymphoma caused by IL-10R deficiency. Blood. 2013;122(23):3713–22.

    Article  CAS  PubMed  Google Scholar 

  47. Grossman AB, Noble AJ, Mamula P, Baldassano RN. Increased dosing requirements for 6-mercaptopurine and azathioprine in inflammatory bowel disease patients six years and younger. Inflamm Bowel Dis. 2008;14(6):750–5.

    Article  PubMed  Google Scholar 

  48. Hyams J, Crandall W, Kugathasan S, Griffiths A, Olson A, Johanns J, et al. Induction and maintenance infliximab therapy for the treatment of moderate-to-severe Crohn’s disease in children. Gastroenterology. 2007;132(3):863–73.

    Article  CAS  PubMed  Google Scholar 

  49. Kelsen JR, Grossman AB, Pauly-Hubbard H, Gupta K, Baldassano RN, Mamula P. Infliximab therapy in pediatric patients 7 years of age and younger. J Pediatr Gastroenterol Nutr. 2014;59(6):758–62.

    Article  CAS  PubMed  Google Scholar 

  50. Bramuzzo M, Arrigo S, Romano C, Filardi MC, Lionetti P, Agrusti A, et al. Efficacy and safety of infliximab in very early onset inflammatory bowel disease: a national comparative retrospective study. United Eur Gastroenterol J. 2019;7(6):759–66.

    Article  CAS  Google Scholar 

  51. Jongsma MME, Winter DA, Huynh HQ, Norsa L, Hussey S, Kolho KL, et al. Infliximab in young paediatric IBD patients: it is all about the dosing. Eur J Pediatr. 2020;179(12):1935–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mizukami T, Obara M, Nishikomori R, Kawai T, Tahara Y, Sameshima N, et al. Successful treatment with infliximab for inflammatory colitis in a patient with X-linked anhidrotic ectodermal dysplasia with immunodeficiency. J Clin Immunol. 2012;32(1):39–49.

    Article  PubMed  Google Scholar 

  53. Ishihara J, Mizuochi T, Uchida T, Takaki Y, Konishi KI, Joo M, et al. Infantile-onset inflammatory bowel disease in a patient with Hermansky-Pudlak syndrome: a case report. BMC Gastroenterol. 2019;19(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Uzel G, Orange JS, Poliak N, Marciano BE, Heller T, Holland SM. Complications of tumor necrosis factor-alpha blockade in chronic granulomatous disease-related colitis. Clin Infect Dis. 2010;51(12):1429–34.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fabiszewska S, Derda E, Szymanska E, Osiecki M, Kierkus J. Safety and effectiveness of vedolizumab for the treatment of pediatric patients with very early onset inflammatory bowel diseases. J Clin Med. 2021;10:13.

    Article  CAS  Google Scholar 

  56. Campbell N, Chapdelaine H. Treatment of chronic granulomatous disease-associated fistulising colitis with vedolizumab. J Allergy Clin Immunol Pract. 2017;5(6):1748–9.

    Article  PubMed  Google Scholar 

  57. Kamal N, Marciano B, Curtin B, Strongin A, DeRavin SS, Bousvaros A, et al. The response to vedolizumab in chronic granulomatous disease-related inflammatory bowel disease. Gastroenterol Rep (Oxf). 2020;8(5):404–6.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Navarini AA, Hruz P, Berger CT, Hou TZ, Schwab C, Gabrysch A, et al. Vedolizumab as a successful treatment of CTLA-4-associated autoimmune enterocolitis. J Allergy Clin Immunol. 2017;139(3):1043–6.

    Article  CAS  PubMed  Google Scholar 

  59. Conrad MA, Kelsen JR. The treatment of pediatric inflammatory bowel disease with biologic therapies. Curr Gastroenterol Rep. 2020;22(8):36.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dayan JR, Dolinger M, Benkov K, Dunkin D, Jossen J, Lai J, et al. Real world experience with ustekinumab in children and young adults at a tertiary care pediatric inflammatory bowel disease center. J Pediatr Gastroenterol Nutr. 2019;69(1):61–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Butte MJPK, Lewis DB. Treatment of CGD-associated Colitis with the IL-23 Blocker Ustekinumab. J Clin Immunol. 2016;36(7):619–20.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bhattacharya SMB, Malech HL, et al. Safety and efficacy of ustekinumab in the inflammatory bowel disease of chronic granulomatous disease. Clin Gastroenterol Hepatol. 2022;20(2):461-4.e2.

    Article  CAS  PubMed  Google Scholar 

  63. Treem WR, Cohen J, Davis PM, Justinich CJ, Hyams JS. Cyclosporine for the treatment of fulminant ulcerative colitis in children. Immediate response, long-term results, and impact on surgery. Dis Colon Rectum. 1995;38(5):474–9.

    Article  CAS  PubMed  Google Scholar 

  64. Kino T, Hatanaka H, Miyata S, Inamura N, Nishiyama M, Yajima T, et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot (Tokyo). 1987;40(9):1256–65.

    Article  CAS  Google Scholar 

  65. Turner D. Severe acute ulcerative colitis: the pediatric perspective. Dig Dis. 2009;27(3):322–6.

    Article  PubMed  Google Scholar 

  66. Ruemmele FM, El Khoury MG, Talbotec C, Maurage C, Mougenot JF, Schmitz J, et al. Characteristics of inflammatory bowel disease with onset during the first year of life. J Pediatr Gastroenterol Nutr. 2006;43(5):603–9.

    Article  PubMed  Google Scholar 

  67. Cannioto Z, Berti I, Martelossi S, Bruno I, Giurici N, Crovella S, et al. IBD and IBD mimicking enterocolitis in children younger than 2 years of age. Eur J Pediatr. 2009;168(2):149–55.

    Article  CAS  PubMed  Google Scholar 

  68. Thapar N, Shah N, Ramsay AD, Lindley KJ, Milla PJ. Long-term outcome of intractable ulcerating enterocolitis of infancy. J Pediatr Gastroenterol Nutr. 2005;40(5):582–8.

    Article  PubMed  Google Scholar 

  69. Lekbua A, Ouahed J, O’Connell AE, Kahn SA, Goldsmith JD, Imamura T, et al. Risk-factors associated with poor outcomes in VEO-IBD secondary to XIAP deficiency: a case report and literature review. J Pediatr Gastroenterol Nutr. 2019;69(1):e13–8.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rudra SSE, Conrad MA, et al. Ruxolitinib: targeted approach for treatment of autoinflammatory very early onset inflammatory bowel disease. Clin Gastroenterol Hepatol. 2021;21:00822–3.

    Google Scholar 

  71. Parlato M, Charbit-Henrion F, Abi-Nader E, Begue B, Guegan N, Bruneau J, et al. Efficacy of ruxolitinib therapy in a patient with severe enterocolitis associated with a STAT3 gain-of-function mutation. Gastroenterology. 2019;156(4):1206–10.

    Article  PubMed  Google Scholar 

  72. Joosse ME, Charbit-Henrion F, Boisgard R, Raatgeep RHC, Lindenbergh-Kortleve DJ, Costes LMM, et al. Duplication of the IL2RA locus causes excessive IL-2 signaling and may predispose to very early onset colitis. Mucosal Immunol. 2021;14(5):1172–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Magnani A, Mahlaoui N. Managing inflammatory manifestations in patients with chronic granulomatous disease. Paediatr Drugs. 2016;18(5):335–45.

    Article  PubMed  Google Scholar 

  74. Pariano M, Pieroni S, De-Luca A, Iannitti RG, Borghi M, Puccetti M, et al. Anakinra activates superoxide dismutase 2 to mitigate inflammasome activity. Int J Mol Sci. 2021;22:12.

    Article  CAS  Google Scholar 

  75. Yamasaki YKT, Takei S, Imanaka H, Nonaka Y, Kawano Y. A case of cryopyrin-associated periodic fever syndrome during canakinumab administration complicated by inflammatory bowel disease. Clin Rheumatol. 2021;40(1):393–7.

    Article  PubMed  Google Scholar 

  76. de Luca A, Smeekens SP, Casagrande A, Iannitti R, Conway KL, Gresnigt MS, et al. IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc Natl Acad Sci USA. 2014;111(9):3526–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Hahn KJ, Ho N, Yockey L, Kreuzberg S, Daub J, Rump A, et al. Treatment with anakinra, a recombinant IL-1 receptor antagonist, unlikely to induce lasting remission in patients with CGD colitis. Am J Gastroenterol. 2015;110(6):938–9.

    Article  CAS  PubMed  Google Scholar 

  78. Peciuliene S, Burnyte B, Gudaitiene R, Rusoniene S, Drazdiene N, Liubsys A, et al. Perinatal manifestation of mevalonate kinase deficiency and efficacy of anakinra. Pediatr Rheumatol Online J. 2016;14(1):19.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Levy M, Arion A, Berrebi D, Cuisset L, Jeanne-Pasquier C, Bader-Meunier B, et al. Severe early-onset colitis revealing mevalonate kinase deficiency. Pediatrics. 2013;132(3):e779–83.

    Article  PubMed  Google Scholar 

  80. Campanilho-Marques R, Brogan PA. Mevalonate kinase deficiency in two sisters with therapeutic response to anakinra: case report and review of the literature. Clin Rheumatol. 2014;33(11):1681–4.

    Article  PubMed  Google Scholar 

  81. Bader-Meunier BMA, Charbit-Henrion F, et al. Mevalonate kinase deficiency: a cause of severe very-early-onset inflammatory bowel disease. Inflamm Bowel Dis. 2021;27(11):1853–7.

    Article  PubMed  Google Scholar 

  82. Kotlarz D, Beier R, Murugan D, Diestelhorst J, Jensen O, Boztug K, et al. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology. 2012;143(2):347–55.

    Article  CAS  PubMed  Google Scholar 

  83. Shouval DS, Biswas A, Kang YH, Griffith AE, Konnikova L, Mascanfroni ID, et al. Interleukin 1beta mediates intestinal inflammation in mice and patients with interleukin 10 receptor deficiency. Gastroenterology. 2016;151(6):1100–4.

    Article  CAS  PubMed  Google Scholar 

  84. Canna SW, de Jesus AA, Gouni S, Brooks SR, Marrero B, Liu Y, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014;46(10):1140–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Canna SW, Girard C, Malle L, de Jesus A, Romberg N, Kelsen J, et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J Allergy Clin Immunol. 2017;139(5):1698–701.

    Article  CAS  PubMed  Google Scholar 

  86. Gabay CFB, Rech J, et al. Open-label, multicentre, dose-escalating phase II clinical trial on the safety and efficacy of tadekinig alfa (IL-18BP) in adult-onset Still’s disease. Ann Rheum Dis. 2018;77(6):840–7.

    CAS  PubMed  Google Scholar 

  87. (U.S.) NLoM. Study to evaluate the efficacy and safety of MAS825 in NLRC4-GOF patients (MAS NLRC4-GOF). 2021. https://clinicaltrials.gov/ct2/show/NCT04641442.

  88. Lo B, Zhang K, Lu W, Zheng L, Zhang Q, Kanellopoulou C, et al. AUTOIMMUNE DISEASE. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science. 2015;349(6246):436–40.

  89. Kiykim A, Ogulur I, Dursun E, Charbonnier LM, Nain E, Cekic S, et al. Abatacept as a long-term targeted therapy for LRBA deficiency. J Allergy Clin Immunol Pract. 2019;7(8):2790–800.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lanz ALRM, Peters P, et al. Abatacept for treatment-refractory pediatric CTLA4-haploinsufficiency. Clin Immunol. 2021;2021(229):108779.

    Article  CAS  Google Scholar 

  91. DA Critch J, Otley A, et al. Use of enteral nutrition for the control of intestinal inflammation in pediatric Crohn disease. J Pediatr Gastroenterol Nutr. 2012;54(2):298–305.

    Article  PubMed  Google Scholar 

  92. Heuschkel RBMC, Megerian JT, Baird AE. Enteral nutrition and corticosteroids in the treatment of acute Crohn’s disease in children. J Pediatr Gastroenterol Nutr. 2000;31(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  93. Miller TLLD, Giefer M, Wahbeh G, Suskind DL. Nutritional therapy in very early-onset inflammatory bowel disease: a case report. DIg Dis Sci. 2017;62(8):2196–200.

    Article  PubMed  Google Scholar 

  94. Aloi M, Lionetti P, Barabino A, Guariso G, Costa S, Fontana M, et al. Phenotype and disease course of early-onset pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2014;20(4):597–605.

    Article  PubMed  Google Scholar 

  95. Permaul PNA, Hornick JL, Pai SY. Allogeneic hematopoietic stem cell transplantation for X-linked ectodermal dysplasia and immunodeficiency: case report and review of outcomes. Immunol Res. 2009;44(1–3):89–98.

    Article  PubMed  Google Scholar 

  96. Klemann CPU, Morris-Rosendahl DJ, et al. Transplantation from a symptomatic carrier sister restores host defenses but does not prevent colitis in NEMO deficiency. Clin Immunol. 2016;164:52–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kammermeier JLG, Pai SY, et al. Stem cell transplantation for tetratricopeptide repeat domain 7A deficiency: long-term follow-up. Blood. 2016;128(9):1306–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Suskind.

Ethics declarations

Ethics Declarations

None.

Funding

None.

Conflict of interest

DLS is co-founder and Chief Medical Officer of NiMBAL Health, a digital Health Platform for IBD and is an Inventor for MicrobiomX. AEL and HBZ have declare they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Author contributions

Dr Levine drafted the initial manuscript. Drs Zheng and Suskind reviewed and edited the manuscript. All authors approved the final version.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levine, A.E., Zheng, H.B. & Suskind, D.L. Linking Genetic Diagnosis to Therapeutic Approach in Very Early Onset Inflammatory Bowel Disease: Pharmacologic Considerations. Pediatr Drugs 24, 207–216 (2022). https://doi.org/10.1007/s40272-022-00503-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-022-00503-4

Navigation