Skip to main content

Very Early Onset Inflammatory Bowel Disease (VEOIBD)

  • Chapter
  • First Online:
Textbook of Autoinflammation
  • 1828 Accesses

Abstract

Inflammatory bowel disease (IBD) is a chronic gastrointestinal tract disorder with many clinical presentations. The most common forms of IBD are ulcerative colitis, Crohn disease, and overlapping disease termed IBD unclassified (IBDU). In general, IBD is considered a complex disease with contributions from genetics (polygenic), an abnormal immune response and the microbiome, and unknown environmental factors. Recently, there has been a world-wide increase in the incidence of IBD including in developing countries. In developed nations, the biggest increase is observed in children, especially very young children who develop the disease before 6 years of age (very early onset IBD—VEOIBD). Recent genetic studies have shown that some VEOIBD patients will have monogenic forms of IBD and these are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARPC:

Actin-related protein complex

CD:

Crohn disease

CGD:

Chronic granulomatous disease

CMPI:

Cow’s milk protein intolerance

CTLA4:

Cytotoxic T-lymphocyte-associated protein 4

DUOX:

Dual oxidase

GWAS:

Genome-wide association studies

HLH:

Hemophagocytic lymphohistiocytosis

IBD:

Inflammatory bowel disease

IBDU:

IBD undetermined

IPEX:

Imunodysregulation polyendocrinopathy, enteropathy X-linked

LRBA:

Lipopolysaccharide-responsive and beige-like anchor

NADPH:

Nicotinamide adenine dinucleotide phosphate

NF-ÎşB:

Nuclear factor kappa B

NLRC4:

NOD-like receptors caspase containing 4

NO:

Nitric oxide

NOD2:

Nucleotide-binding oligomerization domain-containing protein 2

NOS:

Nitric oxide synthase

NOX:

NADPH oxidase

PID:

Primary immunodeficiency

ROS:

Reactive oxygen species

SNP:

Single nucleotide polymorphism

TRIM22:

Tripartite motif-containing 22

TTC7A:

Tetratricopeptide repeat domain 7

UC:

Ulcerative colitis

VEOIBD:

Very early onset inflammatory bowel disease

XIAP:

X-linked inhibitor of apoptosis

References

  1. Cleynen I, Boucher G, Jostins L, et al. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet. 2016;387:156–67.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Uhlig HH, Muise AM. Clinical genomics in inflammatory bowel disease. Trends Genet. 2017;33:629–41.

    Article  CAS  PubMed  Google Scholar 

  3. Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet. 2012;380:1590–605.

    Article  PubMed  Google Scholar 

  4. Ordas I, Eckmann L, Talamini M, Baumgart DC, Sandborn WJ. Ulcerative colitis. Lancet. 2012;380:1606–19.

    Article  PubMed  Google Scholar 

  5. Ruemmele FM, El Khoury MG, Talbotec C, et al. Characteristics of inflammatory bowel disease with onset during the first year of life. J Pediatr Gastroenterol Nutr. 2006;43:603–9.

    Article  PubMed  Google Scholar 

  6. Paul T, Birnbaum A, Pal DK, et al. Distinct phenotype of early childhood inflammatory bowel disease. J Clin Gastroenterol. 2006;40:583–6.

    Article  PubMed  Google Scholar 

  7. Griffiths AM. Specificities of inflammatory bowel disease in childhood. Best Pract Res Clin Gastroenterol. 2004;18:509–23.

    Article  PubMed  Google Scholar 

  8. Heyman MB, Kirschner BS, Gold BD, et al. Children with early-onset inflammatory bowel disease (IBD): analysis of a pediatric IBD consortium registry. J Pediatr. 2005;146:35–40.

    Article  PubMed  Google Scholar 

  9. Levine A, Griffiths A, Markowitz J, et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: the Paris classification. Inflamm Bowel Dis. 2011;17:1314–21.

    Article  PubMed  Google Scholar 

  10. Silverberg MS, Satsangi J, Ahmad T, et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol. 2005;19(Suppl A):5–36.

    Article  Google Scholar 

  11. Uhlig HH, Schwerd T, Koletzko S, et al. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology. 2014;147:990–1007.e3.

    Article  PubMed  Google Scholar 

  12. Ruel J, Ruane D, Mehandru S, Gower-Rousseau C, Colombel JF. IBD across the age spectrum: is it the same disease? Nat Rev Gastroenterol Hepatol. 2014;11:88–98.

    Article  PubMed  Google Scholar 

  13. Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2018;390:2769–78.

    Article  Google Scholar 

  14. Benchimol EI, Fortinsky KJ, Gozdyra P, Van den Heuvel M, Van Limbergen J, Griffiths AM. Epidemiology of pediatric inflammatory bowel disease: a systematic review of international trends. Inflamm Bowel Dis. 2011;17:423–39.

    Article  PubMed  Google Scholar 

  15. El Mouzan MI, Saadah O, Al-Saleem K, et al. Incidence of pediatric inflammatory bowel disease in Saudi Arabia: a multicenter national study. Inflamm Bowel Dis. 2014;20:1085–90.

    PubMed  Google Scholar 

  16. Pinsk V, Lemberg DA, Grewal K, Barker CC, Schreiber RA, Jacobson K. Inflammatory bowel disease in the South Asian pediatric population of British Columbia. Am J Gastroenterol. 2007;102:1077–83.

    Article  PubMed  Google Scholar 

  17. Benchimol EI, Mack DR, Guttmann A, et al. Inflammatory bowel disease in immigrants to Canada and their children: a population-based cohort study. Am J Gastroenterol. 2015;110:553–63.

    Article  PubMed  Google Scholar 

  18. Benchimol EI, Manuel DG, To T, et al. Asthma, type 1 and type 2 diabetes mellitus, and inflammatory bowel disease amongst South Asian immigrants to Canada and their children: a population-based cohort study. PLoS One. 2015;10:e0123599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Benchimol EI, Bernstein CN, Bitton A, et al. Trends in epidemiology of pediatric inflammatory bowel disease in Canada: distributed network analysis of multiple population-based provincial health administrative databases. Am J Gastroenterol. 2017;112:1120–34.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Henderson P, Hansen R, Cameron FL, et al. Rising incidence of pediatric inflammatory bowel disease in Scotland. Inflamm Bowel Dis. 2012;18:999–1005.

    Article  PubMed  Google Scholar 

  21. Hope B, Shahdadpuri R, Dunne C, et al. Rapid rise in incidence of Irish paediatric inflammatory bowel disease. Arch Dis Child. 2012;97:590–4.

    Article  CAS  PubMed  Google Scholar 

  22. Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134:577–94.

    Article  CAS  PubMed  Google Scholar 

  23. Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Franke A, McGovern DPB, Barrett JC, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42:1118–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Anderson CA, Boucher G, Lees CW, et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet. 2011;43:246–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peters LA, Perrigoue J, Mortha A, et al. A functional genomics predictive network model identifies regulators of inflammatory bowel disease. Nat Genet. 2017;49:1437–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marigorta UM, Denson LA, Hyams JS, et al. Transcriptional risk scores link GWAS to eQTLs and predict complications in Crohn’s disease. Nat Genet. 2017;49:1517–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Imielinski M, Baldassano RN, Griffiths A, et al. Common variants at five new loci associated with early-onset inflammatory bowel disease. Nat Genet. 2009;41:1335–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kugathasan S, Baldassano RN, Bradfield JP, et al. Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat Genet. 2008;40:1211–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smith AM, Rahman FZ, Hayee B, et al. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn’s disease. J Exp Med. 2009;206:1883–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–6.

    Article  CAS  PubMed  Google Scholar 

  32. Hampe J, Franke A, Rosenstiel P, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007;39:207–11.

    Article  CAS  PubMed  Google Scholar 

  33. Rioux JD, Xavier RJ, Taylor KD, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet. 2007;39:596–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Villani AC, Lemire M, Fortin G, et al. Common variants in the NLRP3 region contribute to Crohn’s disease susceptibility. Nat Genet. 2009;41:71–6.

    Article  CAS  PubMed  Google Scholar 

  35. Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:599–603.

    Article  CAS  PubMed  Google Scholar 

  36. Parkes M, Barrett JC, Prescott NJ, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet. 2007;39:830–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Choudhery MS, Badowski M, Muise A, Pierce J, Harris DT. Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J Transl Med. 2014;12:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Muise AM, Walters T, Xu W, et al. Single nucleotide polymorphisms that increase expression of the guanosine triphosphatase RAC1 are associated with ulcerative colitis. Gastroenterology. 2011;141:633–41.

    Article  CAS  PubMed  Google Scholar 

  39. Liu JZ, van Sommeren S, Huang H, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47:979–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474:307–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shaw MH, Kamada N, Warner N, Kim YG, Nunez G. The ever-expanding function of NOD2: autophagy, viral recognition, and T cell activation. Trends Immunol. 2011;32:73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Strober W, Watanabe T. NOD2, an intracellular innate immune sensor involved in host defense and Crohn’s disease. Mucosal Immunol. 2011;4:484–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Philpott DJ, Sorbara MT, Robertson SJ, Croitoru K, Girardin SE. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol. 2014;14:9–23.

    Article  CAS  PubMed  Google Scholar 

  44. Benchimol EI, Guttmann A, Griffiths AM, et al. Increasing incidence of paediatric inflammatory bowel disease in Ontario, Canada: evidence from health administrative data. Gut. 2009;58:1490–7.

    Article  CAS  PubMed  Google Scholar 

  45. Calkins BM. A meta-analysis of the role of smoking in inflammatory bowel disease. Dig Dis Sci. 1989;34:1841–54.

    Article  CAS  PubMed  Google Scholar 

  46. Klement E, Cohen RV, Boxman J, Joseph A, Reif S. Breastfeeding and risk of inflammatory bowel disease: a systematic review with meta-analysis. Am J Clin Nutr. 2004;80:1342–52.

    Article  CAS  PubMed  Google Scholar 

  47. Sawczenko A, Sandhu BK, Logan RF, et al. Prospective survey of childhood inflammatory bowel disease in the British Isles. Lancet. 2001;357:1093–4.

    Article  CAS  PubMed  Google Scholar 

  48. Henriksen M, Jahnsen J, Lygren I, et al. Ulcerative colitis and clinical course: results of a 5-year population-based follow-up study (the IBSEN study). Inflamm Bowel Dis. 2006;12:543–50.

    Article  PubMed  Google Scholar 

  49. Van Limbergen J, Russell RK, Drummond HE, et al. Definition of phenotypic characteristics of childhood-onset inflammatory bowel disease. Gastroenterology. 2008;135:1114–22.

    Article  PubMed  Google Scholar 

  50. Abraham BP, Mehta S, El-Serag HB. Natural history of pediatric-onset inflammatory bowel disease: a systematic review. J Clin Gastroenterol. 2012;46:581–9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bequet E, Sarter H, Fumery M, et al. Incidence and phenotype at diagnosis of very-early-onset compared with later-onset paediatric inflammatory bowel disease: a population-based study [1988-2011]. J Crohns Colitis. 2017;11:519–26.

    CAS  PubMed  Google Scholar 

  52. Moeeni V, Day AS. Impact of inflammatory bowel disease upon growth in children and adolescents. ISRN Pediatr. 2011;2011:365712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Benchimol EI, Mack DR, Nguyen GC, et al. Incidence, outcomes, and health services burden of very early onset inflammatory bowel disease. Gastroenterology. 2014;147:803–13 e7; quiz e14-5.

    Article  PubMed  Google Scholar 

  54. Dhillon SS, Fattouh R, Elkadri A, et al. Variants in nicotinamide adenine dinucleotide phosphate oxidase complex components determine susceptibility to very early onset inflammatory bowel disease. Gastroenterology. 2014;147:680–9 e2.

    Article  CAS  PubMed  Google Scholar 

  55. Muise AM, Xu W, Guo CH, et al. NADPH oxidase complex and IBD candidate gene studies: identification of a rare variant in NCF2 that results in reduced binding to RAC2. Gut. 2012;61:1028–35.

    Article  CAS  PubMed  Google Scholar 

  56. Dhillon SS, Mastropaolo LA, Murchie R, et al. Higher activity of the inducible nitric oxide synthase contributes to very early onset inflammatory bowel disease. Clin Transl Gastroenterol. 2014;5:e46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hayes P, Dhillon S, O’Neill K, et al. Defects in NADPH oxidase genes and in very early onset inflammatory bowel disease. Cell Mol Gastroenterol Hepatol. 2015;1:489–502.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Blaydon DC, Biancheri P, Di WL, et al. Inflammatory skin and bowel disease linked to ADAM17 deletion. N Engl J Med. 2011;365:1502–8.

    Article  CAS  PubMed  Google Scholar 

  59. Freeman EB, Koglmeier J, Martinez AE, et al. Gastrointestinal complications of epidermolysis bullosa in children. Br J Dermatol. 2008;158:1308–14.

    Article  CAS  PubMed  Google Scholar 

  60. van den Akker PC, Mellerio JE, Martinez AE, et al. The inversa type of recessive dystrophic epidermolysis bullosa is caused by specific arginine and glycine substitutions in type VII collagen. J Med Genet. 2011;48:160–7.

    Article  PubMed  CAS  Google Scholar 

  61. Zimmer KP, Schumann H, Mecklenbeck S, Bruckner-Tuderman L. Esophageal stenosis in childhood: dystrophic epidermolysis bullosa without skin blistering due to collagen VII mutations. Gastroenterology. 2002;122:220–5.

    Article  PubMed  Google Scholar 

  62. Kammermeier J, Drury S, James CT, et al. Targeted gene panel sequencing in children with very early onset inflammatory bowel disease—evaluation and prospective analysis. J Med Genet. 2014;51:748–55.

    Article  CAS  PubMed  Google Scholar 

  63. Salomon J, Goulet O, Canioni D, et al. Genetic characterization of congenital tufting enteropathy: epcam associated phenotype and involvement of SPINT2 in the syndromic form. Hum Genet. 2014;133:299–310.

    Article  CAS  PubMed  Google Scholar 

  64. Vetrano S, Rescigno M, Cera MR, et al. Unique role of junctional adhesion molecule-a in maintaining mucosal homeostasis in inflammatory bowel disease. Gastroenterology. 2008;135:173–84.

    Article  CAS  PubMed  Google Scholar 

  65. Kern JS, Herz C, Haan E, et al. Chronic colitis due to an epithelial barrier defect: the role of kindlin-1 isoforms. J Pathol. 2007;213:462–70.

    Article  CAS  PubMed  Google Scholar 

  66. Sadler E, Klausegger A, Muss W, et al. Novel KIND1 gene mutation in Kindler syndrome with severe gastrointestinal tract involvement. Arch Dermatol. 2006;142:1619–24.

    Article  CAS  PubMed  Google Scholar 

  67. Ussar S, Moser M, Widmaier M, et al. Loss of Kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelial dysfunction. PLoS Genet. 2008;4:e1000289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Cheng LE, Kanwar B, Tcheurekdjian H, et al. Persistent systemic inflammation and atypical enterocolitis in patients with NEMO syndrome. Clin Immunol. 2009;132:124–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mizukami T, Obara M, Nishikomori R, et al. Successful treatment with infliximab for inflammatory colitis in a patient with X-linked anhidrotic ectodermal dysplasia with immunodeficiency. J Clin Immunol. 2012;32:39–49.

    Article  PubMed  Google Scholar 

  70. Orange JS, Jain A, Ballas ZK, Schneider LC, Geha RS, Bonilla FA. The presentation and natural history of immunodeficiency caused by nuclear factor kappaB essential modulator mutation. J Allergy Clin Immunol. 2004;113:725–33.

    Article  CAS  PubMed  Google Scholar 

  71. Karamchandani-Patel G, Hanson EP, Saltzman R, Kimball CE, Sorensen RU, Orange JS. Congenital alterations of NEMO glutamic acid 223 result in hypohidrotic ectodermal dysplasia and immunodeficiency with normal serum IgG levels. Ann Allergy Asthma Immunol. 2011;107:50–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Janecke AR, Heinz-Erian P, Muller T. Congenital sodium diarrhea: a form of intractable diarrhea, with a link to inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2016;63:170–6.

    Article  CAS  PubMed  Google Scholar 

  73. Janecke AR, Heinz-Erian P, Yin J, et al. Reduced sodium/proton exchanger NHE3 activity causes congenital sodium diarrhea. Hum Mol Genet. 2015;24:6614–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Avitzur Y, Guo C, Mastropaolo LA, et al. Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease. Gastroenterology. 2014;146:1028–39.

    Article  CAS  PubMed  Google Scholar 

  75. Fiskerstrand T, Arshad N, Haukanes BI, et al. Familial diarrhea syndrome caused by an activating GUCY2C mutation. N Engl J Med. 2012;366:1586–95.

    Article  CAS  PubMed  Google Scholar 

  76. Uhlig HH. Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory bowel disease. Gut. 2013;62:1795–805.

    Article  CAS  PubMed  Google Scholar 

  77. Felgentreff K, Perez-Becker R, Speckmann C, et al. Clinical and immunological manifestations of patients with atypical severe combined immunodeficiency. Clin Immunol. 2011;141:73–82.

    Article  CAS  PubMed  Google Scholar 

  78. Quartier P, Bustamante J, Sanal O, et al. Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to activation-induced cytidine deaminase deficiency. Clin Immunol. 2004;110:22–9.

    Article  CAS  PubMed  Google Scholar 

  79. Kahr WH, Pluthero FG, Elkadri A, et al. Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease. Nat Commun. 2017;8:14816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Agarwal S, Mayer L. Pathogenesis and treatment of gastrointestinal disease in antibody deficiency syndromes. J Allergy Clin Immunol. 2009;124:658–64.

    Article  CAS  PubMed  Google Scholar 

  81. Maekawa K, Yamada M, Okura Y, et al. X-linked agammaglobulinemia in a 10-year-old boy with a novel non-invariant splice-site mutation in Btk gene. Blood Cells Mol Dis. 2010;44:300–4.

    Article  CAS  PubMed  Google Scholar 

  82. Uniken Venema WT, Voskuil MD, Dijkstra G, Weersma RK, Festen EA. The genetic background of inflammatory bowel disease: from correlation to causality. J Pathol. 2017;241:146–58.

    Article  PubMed  Google Scholar 

  83. Ozgur TT, Asal GT, Cetinkaya D, et al. Hematopoietic stem cell transplantation in a CD3 gamma-deficient infant with inflammatory bowel disease. Pediatr Transplant. 2008;12:910–3.

    Article  PubMed  Google Scholar 

  84. Levy J, Espanol-Boren T, Thomas C, et al. Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr. 1997;131:47–54.

    Article  CAS  PubMed  Google Scholar 

  85. Rohr J, Pannicke U, Doring M, et al. Chronic inflammatory bowel disease as key manifestation of atypical ARTEMIS deficiency. J Clin Immunol. 2010;30:314–20.

    Article  CAS  PubMed  Google Scholar 

  86. Borggraefe I, Koletzko S, Arenz T, et al. Severe variant of x-linked dyskeratosis congenita (Hoyeraal-Hreidarsson Syndrome) causes significant enterocolitis in early infancy. J Pediatr Gastroenterol Nutr. 2009;49:359–63.

    Article  PubMed  Google Scholar 

  87. Sznajer Y, Baumann C, David A, et al. Further delineation of the congenital form of X-linked dyskeratosis congenita (Hoyeraal-Hreidarsson syndrome). Eur J Pediatr. 2003;162:863–7.

    Article  PubMed  Google Scholar 

  88. Knight SW, Heiss NS, Vulliamy TJ, et al. Unexplained aplastic anaemia, immunodeficiency, and cerebellar hypoplasia (Hoyeraal-Hreidarsson syndrome) due to mutations in the dyskeratosis congenita gene, DKC1. Br J Haematol. 1999;107:335–9.

    Article  CAS  PubMed  Google Scholar 

  89. Sanal O, Jing H, Ozgur T, et al. Additional diverse findings expand the clinical presentation of DOCK8 deficiency. J Clin Immunol. 2012;32:698–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Salzer E, Kansu A, Sic H, et al. Early-onset inflammatory bowel disease and common variable immunodeficiency-like disease caused by IL-21 deficiency. J Allergy Clin Immunol. 2014;133:1651–9 e12.

    Article  CAS  PubMed  Google Scholar 

  91. Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol. 2007;119:482–7.

    Article  CAS  PubMed  Google Scholar 

  92. de Saint-Basile G, Le Deist F, Caniglia M, Lebranchu Y, Griscelli C, Fischer A. Genetic study of a new X-linked recessive immunodeficiency syndrome. J Clin Invest. 1992;89:861–6.

    Article  PubMed  PubMed Central  Google Scholar 

  93. DiSanto JP, Rieux-Laucat F, Dautry-Varsat A, Fischer A, de Saint Basile G. Defective human interleukin 2 receptor gamma chain in an atypical X chromosome-linked severe combined immunodeficiency with peripheral T cells. Proc Natl Acad Sci U S A. 1994;91:9466–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gamez-Diaz L, August D, Stepensky P, et al. The extended phenotype of LPS-responsive beige-like anchor protein (LRBA) deficiency. J Allergy Clin Immunol. 2016;137:223–30.

    Article  CAS  PubMed  Google Scholar 

  95. Serwas NK, Kansu A, Santos-Valente E, et al. Atypical manifestation of LRBA deficiency with predominant IBD-like phenotype. Inflamm Bowel Dis. 2015;21:40–7.

    Article  PubMed  Google Scholar 

  96. Schubert D, Bode C, Kenefeck R, et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med. 2014;20:1410–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Conley ME, Dobbs AK, Quintana AM, et al. Agammaglobulinemia and absent B lineage cells in a patient lacking the p85alpha subunit of PI3K. J Exp Med. 2012;209:463–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Steinbach EC, Kobayashi T, Russo SM, et al. Innate PI3K p110delta regulates Th1/Th17 development and microbiota-dependent colitis. J Immunol. 2014;192:3958–68.

    Article  CAS  PubMed  Google Scholar 

  99. Heindl M, Handel N, Ngeow J, et al. Autoimmunity, intestinal lymphoid hyperplasia, and defects in mucosal B-cell homeostasis in patients with PTEN hamartoma tumor syndrome. Gastroenterology. 2012;142:1093–6 e6.

    Article  PubMed  Google Scholar 

  100. Driessen GJ, IJspeert H, Wentink M, et al. Increased PI3K/Akt activity and deregulated humoral immune response in human PTEN deficiency. J Allergy Clin Immunol. 2016;138:1744–7 e5.

    Article  CAS  PubMed  Google Scholar 

  101. Shearer WT, Dunn E, Notarangelo LD, et al. Establishing diagnostic criteria for severe combined immunodeficiency disease (SCID), leaky SCID, and Omenn syndrome: the Primary Immune Deficiency Treatment Consortium experience. J Allergy Clin Immunol. 2014;133:1092–8.

    Article  PubMed  Google Scholar 

  102. Naviglio S, Arrigo S, Martelossi S, et al. Severe inflammatory bowel disease associated with congenital alteration of transforming growth factor beta signaling. J Crohns Colitis. 2014;8:770–4.

    Article  PubMed  Google Scholar 

  103. Gallo EM, Loch DC, Habashi JP, et al. Angiotensin II-dependent TGF-beta signaling contributes to Loeys-Dietz syndrome vascular pathogenesis. J Clin Invest. 2014;124:448–60.

    Article  CAS  PubMed  Google Scholar 

  104. Ballew BJ, Joseph V, De S, et al. A recessive founder mutation in regulator of telomere elongation helicase 1, RTEL1, underlies severe immunodeficiency and features of Hoyeraal Hreidarsson syndrome. PLoS Genet. 2013;9:e1003695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ballew BJ, Yeager M, Jacobs K, et al. Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita. Hum Genet. 2013;132:473–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Catucci M, Castiello MC, Pala F, Bosticardo M, Villa A. Autoimmunity in wiskott-Aldrich syndrome: an unsolved enigma. Front Immunol. 2012;3:209.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Chan AY, Punwani D, Kadlecek TA, et al. A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70. J Exp Med. 2016;213:155–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27:20–1.

    Article  CAS  PubMed  Google Scholar 

  109. Murugan D, Albert MH, Langemeier J, et al. Very early onset inflammatory bowel disease associated with aberrant trafficking of IL-10R1 and cure by T cell replete haploidentical bone marrow transplantation. J Clin Immunol. 2014;34:331–9.

    Article  CAS  PubMed  Google Scholar 

  110. Barzaghi F, Passerini L, Bacchetta R. Immune dysregulation, polyendocrinopathy, enteropathy, x-linked syndrome: a paradigm of immunodeficiency with autoimmunity. Front Immunol. 2012;3:211.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Uzel G, Sampaio EP, Lawrence MG, et al. Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation-polyendocrinopathy-enteropathy-X-linked-like syndrome. J Allergy Clin Immunol. 2013;131:1611–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Takahashi N, Matsumoto K, Saito H, et al. Impaired CD4 and CD8 effector function and decreased memory T cell populations in ICOS-deficient patients. J Immunol. 2009;182:5515–27.

    Article  CAS  PubMed  Google Scholar 

  113. Glocker EO, Kotlarz D, Boztug K, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361:2033–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Glocker EO, Frede N, Perro M, et al. Infant colitis—it’s in the genes. Lancet. 376:1272.

    Article  Google Scholar 

  115. Aguilar C, Lenoir C, Lambert N, et al. Characterization of Crohn disease in X-linked inhibitor of apoptosis-deficient male patients and female symptomatic carriers. J Allergy Clin Immunol. 2014;134(5):1131–41.e9.

    Article  CAS  PubMed  Google Scholar 

  116. Marks DJ, Miyagi K, Rahman FZ, Novelli M, Bloom SL, Segal AW. Inflammatory bowel disease in CGD reproduces the clinicopathological features of Crohn’s disease. Am J Gastroenterol. 2009;104:117–24.

    Article  CAS  PubMed  Google Scholar 

  117. Schappi MG, Smith VV, Goldblatt D, Lindley KJ, Milla PJ. Colitis in chronic granulomatous disease. Arch Dis Child. 2001;84:147–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Al-Bousafy A, Al-Tubuly A, Dawi E, Zaroog S, Schulze I. Libyan Boy with Autosomal Recessive Trait (P22-phox Defect) of chronic granulomatous disease. Libyan J Med. 2006;1:162–71.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Matute JD, Arias AA, Wright NA, et al. A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity. Blood. 2009;114:3309–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kang EM, Marciano BE, DeRavin S, Zarember KA, Holland SM, Malech HL. Chronic granulomatous disease: overview and hematopoietic stem cell transplantation. J Allergy Clin Immunol. 2011;127:1319–26; quiz 27–8.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature. 1991;353:668–70.

    Article  CAS  PubMed  Google Scholar 

  122. Fernandez BA, Green JS, Bursey F, et al. Adult siblings with homozygous G6PC3 mutations expand our understanding of the severe congenital neutropenia type 4 (SCN4) phenotype. BMC Med Genet. 2012;13:111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cullinane AR, Vilboux T, O'Brien K, et al. Homozygosity mapping and whole-exome sequencing to detect SLC45A2 and G6PC3 mutations in a single patient with oculocutaneous albinism and neutropenia. J Invest Dermatol. 2011;131:2017–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Begin P, Patey N, Mueller P, et al. Inflammatory bowel disease and T cell lymphopenia in G6PC3 deficiency. J Clin Immunol. 2013;33:520–5.

    Article  CAS  PubMed  Google Scholar 

  125. Uzel G, Kleiner DE, Kuhns DB, Holland SM. Dysfunctional LAD-1 neutrophils and colitis. Gastroenterology. 2001;121:958–64.

    Article  CAS  PubMed  Google Scholar 

  126. D’Agata ID, Paradis K, Chad Z, Bonny Y, Seidman E. Leucocyte adhesion deficiency presenting as a chronic ileocolitis. Gut. 1996;39:605–8.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Visser G, Rake JP, Fernandes J, et al. Neutropenia, neutrophil dysfunction, and inflammatory bowel disease in glycogen storage disease type Ib: results of the European Study on Glycogen Storage Disease type I. J Pediatr. 2000;137:187–91.

    Article  CAS  PubMed  Google Scholar 

  128. Yamaguchi T, Ihara K, Matsumoto T, et al. Inflammatory bowel disease-like colitis in glycogen storage disease type 1b. Inflamm Bowel Dis. 2001;7:128–32.

    Article  CAS  PubMed  Google Scholar 

  129. Davis MK, Rufo PA, Polyak SF, Weinstein DA. Adalimumab for the treatment of Crohn-like colitis and enteritis in glycogen storage disease type Ib. J Inherit Metab Dis. 2008;31(Suppl 3):505–9.

    Article  PubMed  Google Scholar 

  130. Rigaud S, Fondaneche MC, Lambert N, et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature. 2006;444:110–4.

    Article  CAS  PubMed  Google Scholar 

  131. Worthey EA, Mayer AN, Syverson GD, et al. Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med. 2011;13:255–62.

    Article  PubMed  Google Scholar 

  132. Zeissig Y, Petersen BS, Milutinovic S, et al. XIAP variants in male Crohn’s disease. Gut. 2015;64(1):66–76.

    Article  CAS  PubMed  Google Scholar 

  133. Pachlopnik Schmid J, Canioni D, Moshous D, et al. Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency). Blood. 2011;117:1522–9.

    Article  PubMed  CAS  Google Scholar 

  134. Yang X, Kanegane H, Nishida N, et al. Clinical and genetic characteristics of XIAP deficiency in Japan. J Clin Immunol. 2012;32:411–20.

    Article  CAS  PubMed  Google Scholar 

  135. Speckmann C, Ehl S. XIAP deficiency is a mendelian cause of late-onset IBD. Gut. 2014;63:1031–2.

    Article  PubMed  Google Scholar 

  136. Booth C, Gilmour KC, Veys P, et al. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood. 2011;117:53–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Li Q, Lee CH, Peters LA, et al. Variants in TRIM22 that affect NOD2 signaling are associated with very-early-onset inflammatory bowel disease. Gastroenterology. 2016;150:1196–207.

    Article  CAS  PubMed  Google Scholar 

  138. van Haaften-Visser DY, Harakalova M, Mocholi E, et al. Ankyrin repeat and zinc-finger domain-containing 1 mutations are associated with infantile-onset inflammatory bowel disease. J Biol Chem. 2017;292:7904–20.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Giannelou A, Wang H, Zhou Q, et al. Aberrant tRNA processing causes an autoinflammatory syndrome responsive to TNF inhibitors. Ann Rheum Dis. 2018;77(4):612–9.

    Article  CAS  PubMed  Google Scholar 

  140. Wedatilake Y, Niazi R, Fassone E, et al. TRNT1 deficiency: clinical, biochemical and molecular genetic features. Orphanet J Rare Dis. 2016;11:90.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Hazzan D, Seward S, Stock H, et al. Crohn’s-like colitis, enterocolitis and perianal disease in Hermansky-Pudlak syndrome. Colorect Dis. 2006;8:539–43.

    Article  CAS  Google Scholar 

  142. Erzin Y, Cosgun S, Dobrucali A, Tasyurekli M, Erdamar S, Tuncer M. Complicated granulomatous colitis in a patient with Hermansky-Pudlak syndrome, successfully treated with infliximab. Acta Gastroenterol Belg. 2006;69:213–6.

    PubMed  Google Scholar 

  143. Anderson PD, Huizing M, Claassen DA, White J, Gahl WA. Hermansky-Pudlak syndrome type 4 (HPS-4): clinical and molecular characteristics. Hum Genet. 2003;113:10–7.

    CAS  PubMed  Google Scholar 

  144. Hussain N, Quezado M, Huizing M, et al. Intestinal disease in Hermansky-Pudlak syndrome: occurrence of colitis and relation to genotype. Clin Gastroenterol Hepatol. 2006;4:73–80.

    Article  PubMed  Google Scholar 

  145. Mora AJ, Wolfsohn DM. The management of gastrointestinal disease in Hermansky-Pudlak syndrome. J Clin Gastroenterol. 2011;45:700–2.

    Article  PubMed  Google Scholar 

  146. Egritas O, Dalgic B. Infantile colitis as a novel presentation of familial Mediterranean fever responding to colchicine therapy. J Pediatr Gastroenterol Nutr. 2011;53:102–5.

    Article  PubMed  Google Scholar 

  147. Sari S, Egritas O, Dalgic B. The familial Mediterranean fever (MEFV) gene may be a modifier factor of inflammatory bowel disease in infancy. Eur J Pediatr. 2008;167:391–3.

    Article  CAS  PubMed  Google Scholar 

  148. Cardinale CJ, Kelsen JR, Baldassano RN, Hakonarson H. Impact of exome sequencing in inflammatory bowel disease. World J Gastroenterol. 2013;19:6721–9.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Bader-Meunier B, Florkin B, Sibilia J, et al. Mevalonate kinase deficiency: a survey of 50 patients. Pediatrics. 2011;128:e152–9.

    Article  PubMed  Google Scholar 

  150. Galeotti C, Meinzer U, Quartier P, et al. Efficacy of interleukin-1-targeting drugs in mevalonate kinase deficiency. Rheumatology (Oxford). 2012;51:1855–9.

    Article  CAS  Google Scholar 

  151. Zhou Q, Lee GS, Brady J, et al. A hypermorphic missense mutation in PLCG2, encoding phospholipase Cgamma2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am J Hum Genet. 2012;91:713–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Meeths M, Entesarian M, Al-Herz W, et al. Spectrum of clinical presentations in familial hemophagocytic lymphohistiocytosis type 5 patients with mutations in STXBP2. Blood. 2010;116:2635–43.

    Article  CAS  PubMed  Google Scholar 

  153. Zhou Q, Wang H, Schwartz DM, et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet. 2016;48:67–73.

    Article  CAS  PubMed  Google Scholar 

  154. Takahashi S, Andreoletti G, Chen R, et al. De novo and rare mutations in the HSPA1L heat shock gene associated with inflammatory bowel disease. Genome Med. 2017;9:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Umeno J, Hisamatsu T, Esaki M, et al. A hereditary enteropathy caused by mutations in the SLCO2A1 gene, encoding a prostaglandin transporter. PLoS Genet. 2015;11:e1005581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Uchida K, Nakajima A, Ushijima K, et al. Pediatric-onset chronic nonspecific multiple ulcers of small intestine: a nationwide survey and genetic study in Japan. J Pediatr Gastroenterol Nutr. 2017;64:565–8.

    Article  PubMed  Google Scholar 

  157. Fabre A, Charroux B, Martinez-Vinson C, et al. SKIV2L mutations cause syndromic diarrhea, or trichohepatoenteric syndrome. Am J Hum Genet. 2012;90:689–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Egritas O, Dalgic B, Onder M. Tricho-hepato-enteric syndrome presenting with mild colitis. Eur J Pediatr. 2009;168:933–5.

    Article  PubMed  Google Scholar 

  159. Conrad MA, Dawany N, Sullivan KE, Devoto M, Kelsen JR. Novel ZBTB24 mutation associated with immunodeficiency, centromere instability, and facial anomalies type-2 syndrome identified in a patient with very early onset inflammatory bowel disease. Inflamm Bowel Dis. 2017;23:2252–5.

    Article  PubMed  Google Scholar 

  160. Stengaard-Pedersen K, Thiel S, Gadjeva M, et al. Inherited deficiency of mannan-binding lectin-associated serine protease 2. N Engl J Med. 2003;349:554–60.

    Article  CAS  PubMed  Google Scholar 

  161. Jaeckle Santos LJ, Xing C, Barnes RB, et al. Refined mapping of X-linked reticulate pigmentary disorder and sequencing of candidate genes. Hum Genet. 2008;123:469–76.

    Article  CAS  PubMed  Google Scholar 

  162. Starokadomskyy P, Gemelli T, Rios JJ, et al. DNA polymerase-alpha regulates the activation of type I interferons through cytosolic RNA: DNA synthesis. Nat Immunol. 2016;17:495–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Okou DT, Mondal K, Faubion WA, et al. Exome sequencing identifies a novel FOXP3 mutation in a 2-generation family with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2014;58:561–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ashton JJ, Andreoletti G, Coelho T, et al. Identification of variants in genes associated with single-gene inflammatory bowel disease by whole-exome sequencing. Inflamm Bowel Dis. 2016;22:2317–27.

    Article  PubMed  Google Scholar 

  165. Lo B, Zhang K, Lu W, et al. AUTOIMMUNE DISEASE. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science. 2015;349:436–40.

    Article  CAS  PubMed  Google Scholar 

  166. Duan Z, Gao B, Xu W, Xiong S. Identification of TRIM22 as a RING finger E3 ubiquitin ligase. Biochem Biophys Res Commun. 2008;374:502–6.

    Article  CAS  PubMed  Google Scholar 

  167. Sawyer SL, Emerman M, Malik HS. Discordant evolution of the adjacent antiretroviral genes TRIM22 and TRIM5 in mammals. PLoS Pathogens. 2007;3:e197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Yu S, Gao B, Duan Z, Xu W, Xiong S. Identification of tripartite motif-containing 22 (TRIM22) as a novel NF-kappaB activator. Biochem Biophys Res Commun. 2011;410:247–51.

    Article  CAS  PubMed  Google Scholar 

  169. Obad S, Olofsson T, Mechti N, Gullberg U, Drott K. Expression of the IFN-inducible p53-target gene TRIM22 is down-regulated during erythroid differentiation of human bone marrow. Leukemia Res. 2007;31:995–1001.

    Article  CAS  Google Scholar 

  170. Barr SD, Smiley JR, Bushman FD. The interferon response inhibits HIV particle production by induction of TRIM22. PLoS Pathogens. 2008;4:e1000007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Eldin P, Papon L, Oteiza A, Brocchi E, Lawson TG, Mechti N. TRIM22 E3 ubiquitin ligase activity is required to mediate antiviral activity against encephalomyocarditis virus. J Gen Virol. 2009;90:536–45.

    Article  CAS  PubMed  Google Scholar 

  172. Di Pietro A, Kajaste-Rudnitski A, Oteiza A, et al. TRIM22 inhibits influenza A virus infection by targeting the viral nucleoprotein for degradation. J Virol. 2013;87:4523–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Kotlarz D, Beier R, Murugan D, et al. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology. 2012;143:347–55.

    Article  CAS  PubMed  Google Scholar 

  174. Glocker EO, Kotlarz D, Klein C, Shah N, Grimbacher B. IL-10 and IL-10 receptor defects in humans. Ann N Y Acad Sci. 2011;1246:102–7.

    Article  CAS  PubMed  Google Scholar 

  175. Engelhardt KR, Shah N, Faizura-Yeop I, et al. Clinical outcome in IL-10- and IL-10 receptor-deficient patients with or without hematopoietic stem cell transplantation. J Allergy Clin Immunol. 2013;131:825–30 e9.

    Article  CAS  PubMed  Google Scholar 

  176. Neven B, Mamessier E, Bruneau J, et al. A Mendelian predisposition to B-cell lymphoma caused by IL-10R deficiency. Blood. 2013;122:3713–22.

    Article  CAS  PubMed  Google Scholar 

  177. Shouval DS, Ebens CL, Murchie R, et al. Large B-cell lymphoma in an adolescent patient with interleukin-10 receptor deficiency and history of infantile inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2016;63:e15–7.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Marlow GJ, van Gent D, Ferguson LR. Why interleukin-10 supplementation does not work in Crohn’s disease patients. World J Gastroenterol. 2013;19:3931–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Nauseef WM. Biological roles for the NOX family NADPH oxidases. J Biol Chem. 2008;283:16961–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Heyworth PG, Cross AR, Curnutte JT. Chronic granulomatous disease. Curr Opin Immunol. 2003;15:578–84.

    Article  CAS  PubMed  Google Scholar 

  181. Werlin SL, Chusid MJ, Caya J, Oechler HW. Colitis in chronic granulomatous disease. Gastroenterology. 1982;82:328–31.

    CAS  PubMed  Google Scholar 

  182. Samuels ME, Majewski J, Alirezaie N, et al. Exome sequencing identifies mutations in the gene TTC7A in French-Canadian cases with hereditary multiple intestinal atresia. J Med Genet. 2013;50:324–9.

    Article  CAS  PubMed  Google Scholar 

  183. Bigorgne AE, Farin HF, Lemoine R, et al. TTC7A mutations disrupt intestinal epithelial apicobasal polarity. J Clin Invest. 2014;124:328–37.

    Article  CAS  PubMed  Google Scholar 

  184. Chen R, Giliani S, Lanzi G, et al. Whole-exome sequencing identifies tetratricopeptide repeat domain 7A (TTC7A) mutations for combined immunodeficiency with intestinal atresias. J Allergy Clin Immunol. 2013;132:656–64 e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lawless D, Mistry A, Wood PM, et al. Bialellic mutations in tetratricopeptide repeat domain 7A (TTC7A) cause common variable immunodeficiency-like phenotype with enteropathy. J Clin Immunol. 2017;37:617–22.

    Article  CAS  PubMed  Google Scholar 

  186. Woutsas S, Aytekin C, Salzer E, et al. Hypomorphic mutation in TTC7A causes combined immunodeficiency with mild structural intestinal defects. Blood. 2015;125:1674–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yang W, Lee PP, Thong MK, et al. Compound heterozygous mutations in TTC7A cause familial multiple intestinal atresias and severe combined immunodeficiency. Clin Genet. 2015;88:542–9.

    Article  CAS  PubMed  Google Scholar 

  188. Notarangelo LD. Multiple intestinal atresia with combined immune deficiency. Curr Opin Pediatr. 2014;26:690–6.

    Article  CAS  PubMed  Google Scholar 

  189. Goley ED, Welch MD. The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol. 2006;7:713–26.

    Article  CAS  PubMed  Google Scholar 

  190. Pollard TD. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct. 2007;36:451–77.

    Article  CAS  PubMed  Google Scholar 

  191. Rotty JD, Wu C, Bear JE. New insights into the regulation and cellular functions of the ARP2/3 complex. Nat Rev Mol Cell Biol. 2013;14:7–12.

    Article  CAS  PubMed  Google Scholar 

  192. Romberg N, Al Moussawi K, Nelson-Williams C, et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet. 2014;46:1135–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Canna SW, de Jesus AA, Gouni S, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014;46:1140–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Thiagarajah JR, Kamin DS, Acra S, et al. Advances in evaluation of chronic diarrhea in infants. Gastroenterology. 2018;154(8):2045–2059.e6.

    Article  PubMed  Google Scholar 

  195. Arnold DE, Heimall JR. A review of chronic granulomatous disease. Adv Ther. 2017;34:2543–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Slatter MA, Gennery AR. Hematopoietic cell transplantation in primary immunodeficiency—conventional and emerging indications. Expert Rev Clin Immunol. 2018;14:103–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleixo M. Muise .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muise, A.M. (2019). Very Early Onset Inflammatory Bowel Disease (VEOIBD). In: Hashkes, P., Laxer, R., Simon, A. (eds) Textbook of Autoinflammation. Springer, Cham. https://doi.org/10.1007/978-3-319-98605-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98605-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98604-3

  • Online ISBN: 978-3-319-98605-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics