Skip to main content

Advertisement

Log in

X-linked Inhibitor of Apoptosis Protein Deficiency: More than an X-linked Lymphoproliferative Syndrome

  • CME Review
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

X-linked inhibitor of apoptosis (XIAP) deficiency (also known as X-linked lymphoproliferative syndrome type 2, XLP-2) is a rare primary immunodeficiency. Since the disease was first described in 2006, more than 70 patients suffering from XIAP-deficiency have been reported, thus extending the clinical presentations of the disease. The main clinical features of XLP-2 are (i) elevated susceptibility to hemophagocytic lymphohistiocytosis (HLH, frequently in response to infection with Epstein-Barr virus (EBV)), (ii) recurrent splenomegaly and (iii) inflammatory bowel disease (IBD) with the characteristics of Crohn’s disease. XIAP deficiency is now considered to be one of the genetic causes of IBD in infancy. Although XIAP is an anti-apoptotic molecule, it is also involved in many other pathways, including the regulation of innate immunity and inflammation. XIAP is required for signaling through the Nod-like receptors NOD1 and 2, which are intracellular sensors of bacterial infection. XIAP-deficient T cells (including innate natural killer T cells and mucosal-associated invariant T cells) are overly sensitive to apoptosis. NOD2 function is impaired in XIAP-deficient monocytes. However, the physiopathological mechanisms underlying the clinical phenotypes in XIAP deficiency, notably the HLH and the EBV susceptibility, are not well understood. Here, we review the clinical aspects, molecular etiology and physiopathology of XIAP deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Purtilo DT, Cassel C, Yang JP. Letter: fatal infectious mononucleosis in familial lymphohistiocytosis. N Engl J Med. 1974;291(14):736.

    CAS  PubMed  Google Scholar 

  2. Purtilo DT, Cassel CK, Yang JP, Harper R. X-linked recessive progressive combined variable immunodeficiency (Duncan’s disease). Lancet. 1975;1(7913):935–40.

    Article  CAS  PubMed  Google Scholar 

  3. Tangye SG. XLP: clinical features and molecular etiology due to mutations in SH2D1A encoding SAP. J Clin Immunol. 2014;34(7):772–9.

    Article  CAS  PubMed  Google Scholar 

  4. Coffey AJ, Brooksbank RA, Brandau O, Oohashi T, Howell GR, Bye JM, et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet. 1998;20(2):129–35.

    Article  CAS  PubMed  Google Scholar 

  5. Sayos J, Wu C, Morra M, Wang N, Zhang X, Allen D, et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature. 1998;395(6701):462–9.

    Article  CAS  PubMed  Google Scholar 

  6. Nichols KE, Harkin DP, Levitz S, Krainer M, Kolquist KA, Genovese C, et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc Natl Acad Sci U S A. 1998;95(23):13765–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Rigaud S, Fondaneche MC, Lambert N, Pasquier B, Mateo V, Soulas P, et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature. 2006;444(7115):110–4.

    Article  CAS  PubMed  Google Scholar 

  8. Pachlopnik Schmid J, Canioni D, Moshous D, Touzot F, Mahlaoui N, Hauck F, et al. Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency). Blood. 2011;117(5):1522–9.

    Article  PubMed  Google Scholar 

  9. Aguilar C, Lenoir C, Lambert N, Begue B, Brousse N, Canioni D, et al. Characterization of Crohn disease in X-linked inhibitor of apoptosis-deficient male patients and female symptomatic carriers. J Allergy Clin Immunol. 2014. doi:10.1016/j.jaci.2014.04.031.

    PubMed  Google Scholar 

  10. Zeissig Y, Petersen BS, Milutinovic S, Bosse E, Mayr G, Peuker K, et al. XIAP variants in male Crohn’s disease. Gut. 2014. doi:10.1136/gutjnl-2013-306520.

    Google Scholar 

  11. Worthey EA, Mayer AN, Syverson GD, Helbling D, Bonacci BB, Decker B, et al. Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med. 2011;13(3):255–62.

    Article  PubMed  Google Scholar 

  12. Speckmann C, Ehl S. XIAP deficiency is a mendelian cause of late-onset IBD. Gut. 2013. doi:10.1136/gutjnl-2013-306474.

    PubMed  Google Scholar 

  13. Eckelman BP, Salvesen GS, Scott FL. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep. 2006;7(10):988–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Obexer P, Ausserlechner MJ. X-linked inhibitor of apoptosis protein—a critical death resistance regulator and therapeutic target for personalized cancer therapy. Front Oncol. 2014;4:197.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Huang Y, Park YC, Rich RL, Segal D, Myszka DG, Wu H. Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell. 2001;104(5):781–90.

    CAS  PubMed  Google Scholar 

  16. Galban S, Duckett CS. XIAP as a ubiquitin ligase in cellular signaling. Cell Death Differ. 2009;17(1):54–60.

    Article  Google Scholar 

  17. Lu M, Lin SC, Huang Y, Kang YJ, Rich R, Lo YC, et al. XIAP induces NF-kappaB activation via the BIR1/TAB1 interaction and BIR1 dimerization. Mol Cell. 2007;26(5):689–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Birkey Reffey S, Wurthner JU, Parks WT, Roberts AB, Duckett CS. X-linked inhibitor of apoptosis protein functions as a cofactor in transforming growth factor-beta signaling. J Biol Chem. 2001;276(28):26542–9.

    Article  CAS  PubMed  Google Scholar 

  19. Sanna MG, Duckett CS, Richter BW, Thompson CB, Ulevitch RJ. Selective activation of JNK1 is necessary for the anti-apoptotic activity of hILP. Proc Natl Acad Sci U S A. 1998;95(11):6015–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Burstein E, Ganesh L, Dick RD, van De Sluis B, Wilkinson JC, Klomp LW, et al. A novel role for XIAP in copper homeostasis through regulation of MURR1. Embo J. 2004;23(1):244–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Huang X, Wu Z, Mei Y, Wu M. XIAP inhibits autophagy via XIAP-Mdm2-p53 signalling. Embo J. 2012;32(16):2204–16.

    Article  Google Scholar 

  22. Krieg A, Correa RG, Garrison JB, Le Negrate G, Welsh K, Huang Z, et al. XIAP mediates NOD signaling via interaction with RIP2. Proc Natl Acad Sci U S A. 2009;106(34):14524–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Vince JE, Wong WW, Gentle I, Lawlor KE, Allam R, O’Reilly L, et al. Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity. 2012;36(2):215–27.

    Article  CAS  PubMed  Google Scholar 

  24. Wong WW, Vince JE, Lalaoui N, Lawlor KE, Chau D, Bankovacki A, et al. cIAPs and XIAP regulate myelopoiesis through cytokine production in an RIPK1- and RIPK3-dependent manner. Blood. 2014;123(16):2562–72.

    Article  CAS  PubMed  Google Scholar 

  25. Yabal M, Muller N, Adler H, Knies N, Gross CJ, Damgaard RB, et al. XIAP restricts TNF- and RIP3-dependent cell death and inflammasome activation. Cell Rep. 2014;7(6):1796–808.

    Article  CAS  PubMed  Google Scholar 

  26. Marsh RA, Madden L, Kitchen BJ, Mody R, McClimon B, Jordan MB, et al. XIAP deficiency: a unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood. 2010;7(116):1079–82.

    Article  Google Scholar 

  27. Yang X, Kanegane H, Nishida N, Imamura T, Hamamoto K, Miyashita R, et al. Clinical and genetic characteristics of XIAP deficiency in Japan. J Clin Immunol. 2012;32(3):411–20.

    Article  CAS  PubMed  Google Scholar 

  28. Horn PC, Belohradsky BH, Urban C, Weber-Mzell D, Meindl A, Schuster V. Two new families with X-linked inhibitor of apoptosis deficiency and a review of all 26 published cases. J Allergy Clin Immunol. 2011;127(2):544–6.

    Article  PubMed  Google Scholar 

  29. Speckmann C, Lehmberg K, Albert MH, Damgaard RB, Fritsch M, Gyrd-Hansen M, et al. X-linked inhibitor of apoptosis (XIAP) deficiency: the spectrum of presenting manifestations beyond hemophagocytic lymphohistiocytosis. Clin Immunol. 2013;149(1):133–41.

    Article  CAS  PubMed  Google Scholar 

  30. Damgaard RB, Fiil BK, Speckmann C, Yabal M, Stadt UZ, Bekker-Jensen S, et al. Disease-causing mutations in the XIAP BIR2 domain impair NOD2-dependent immune signalling. EMBO Mol Med. 2013.

  31. Filipovich AH, Zhang K, Snow AL, Marsh RA. X-linked lymphoproliferative syndromes: brothers or distant cousins? Blood. 2011;116(18):3398–408.

    Article  Google Scholar 

  32. Paulsen M, Ussat S, Jakob M, Scherer G, Lepenies I, Schutze S, et al. Interaction with XIAP prevents full caspase-3/-7 activation in proliferating human T lymphocytes. Eur J Immunol. 2008;38(7):1979–87.

    Article  CAS  PubMed  Google Scholar 

  33. Gerart S, Siberil S, Martin E, Lenoir C, Aguilar C, Picard C, et al. Human iNKT and MAIT cells exhibit a PLZF-dependent proapoptotic propensity that is counterbalanced by XIAP. Blood. 2013;121(4):614–23.

    Article  CAS  PubMed  Google Scholar 

  34. Marsh RA, Villanueva J, Kim MO, Zhang K, Marmer D, Risma KA, et al. Patients with X-linked lymphoproliferative disease due to BIRC4 mutation have normal invariant natural killer T-cell populations. Clin Immunol. 2009;132(1):116–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Chung BK, Tsai K, Allan LL, Zheng DJ, Nie JC, Biggs CM, et al. Innate immune control of EBV-infected B cells by invariant natural killer T cells. Blood. 2013;122(15):2600–8.

    Article  CAS  PubMed  Google Scholar 

  36. Veillette A, Perez-Quintero LA, Latour S. X-linked lymphoproliferative syndromes and related autosomal recessive disorders. Curr Opin Allergy Clin Immunol. 2013;13(6):614–22.

    Article  CAS  PubMed  Google Scholar 

  37. Bai L, Smith DC, Wang S. Small-molecule SMAC mimetics as new cancer therapeutics. Pharmacol Ther. 2014;144(1):82–95.

    Article  CAS  PubMed  Google Scholar 

  38. Huang Y, Lu M, Wu H. Antagonizing XIAP-mediated caspase-3 inhibition. Achilles’ heel of cancers? Cancer Cell. 2004;5(1):1–2.

    Article  CAS  PubMed  Google Scholar 

  39. Strober W, Murray PJ, Kitani A, Watanabe T. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol. 2006;6(1):9–20.

    Article  CAS  PubMed  Google Scholar 

  40. Damgaard RB, Nachbur U, Yabal M, Wong WW, Fiil BK, Kastirr M, et al. The Ubiquitin Ligase XIAP Recruits LUBAC for NOD2 Signaling in Inflammation and Innate Immunity. Mol Cell. 2012;46:1–13.

    Article  Google Scholar 

  41. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411(6837):599–603.

    Article  CAS  PubMed  Google Scholar 

  42. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411(6837):603–6.

    Article  CAS  PubMed  Google Scholar 

  44. Strober W, Kitani A, Fuss I, Asano N, Watanabe T. The molecular basis of NOD2 susceptibility mutations in Crohn’s disease. Mucosal Immunol. 2008;1 Suppl 1:S5–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Strober W, Watanabe T. NOD2, an intracellular innate immune sensor involved in host defense and Crohn’s disease. Mucosal Immunol. 2011;4(5):484–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Glocker EO, Kotlarz D, Klein C, Shah N, Grimbacher B. IL-10 and IL-10 receptor defects in humans. Ann N Y Acad Sci. 2011;1246:102–7.

    Article  CAS  PubMed  Google Scholar 

  47. Marks DJ, Harbord MW, MacAllister R, Rahman FZ, Young J, Al-Lazikani B, et al. Defective acute inflammation in Crohn’s disease: a clinical investigation. Lancet. 2006;367(9511):668–78.

    Article  CAS  PubMed  Google Scholar 

  48. Smith AM, Rahman FZ, Hayee B, Graham SJ, Marks DJ, Sewell GW, et al. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn’s disease. J Exp Med. 2009;206(9):1883–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Casanova JL, Abel L. Revisiting Crohn’s disease as a primary immunodeficiency of macrophages. J Exp Med. 2009;206(9):1839–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Marks DJ, Miyagi K, Rahman FZ, Novelli M, Bloom SL, Segal AW. Inflammatory bowel disease in CGD reproduces the clinicopathological features of Crohn’s disease. Am J Gastroenterol. 2009;104(1):117–24.

    Article  CAS  PubMed  Google Scholar 

  51. An D, Oh SF, Olszak T, Neves JF, Avci FY, Erturk-Hasdemir D, et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell. 2014;156(1–2):123–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Olszak T, Neves JF, Dowds CM, Baker K, Glickman J, Davidson NO, et al. Protective mucosal immunity mediated by epithelial CD1d and IL-10. Nature. 2014;509(7501):497–502.

    Article  CAS  PubMed  Google Scholar 

  53. Marsh RA, Bleesing JJ, Filipovich AH. Using flow cytometry to screen patients for X-linked lymphoproliferative disease due to SAP deficiency and XIAP deficiency. J Immunol Methods. 2010;362(1–2):1–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Astrakhan A, Ochs HD, Rawlings DJ. Wiskott-Aldrich syndrome protein is required for homeostasis and function of invariant NKT cells. J Immunol. 2009;182(12):7370–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Rohr J, Beutel K, Maul-Pavicic A, Vraetz T, Thiel J, Warnatz K, et al. Atypical familial hemophagocytic lymphohistiocytosis due to mutations in UNC13D and STXBP2 overlaps with primary immunodeficiency diseases. Haematologica. 2010;95(12):2080–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Ammann S, Elling R, Gyrd-Hansen M, Duckers G, Bredius R, Burns SO, et al. A new functional assay for the diagnosis of X-linked inhibitor of apoptosis (XIAP) deficiency. Clin Exp Immunol. 2014. doi:10.1111/cei.12306.

    PubMed  Google Scholar 

  57. Henter JI, Horne A, Arico M, Egeler RM, Filipovich AH, Imashuku S, et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48(2):124–31.

    Article  PubMed  Google Scholar 

  58. Marsh RA, Rao K, Satwani P, Lehmberg K, Muller I, Li D, et al. Allogeneic hematopoietic cell transplantation for XIAP deficiency: an international survey reveals poor outcomes. Blood. 2013;121(6):877–83.

    Article  CAS  PubMed  Google Scholar 

  59. Worth AJ, Nikolajeva O, Chiesa R, Rao K, Veys P, Amrolia PJ. Successful stem cell transplant with antibody-based conditioning for XIAP deficiency with refractory hemophagocytic lymphohistiocytosis. Blood. 2013;121(24):4966–8.

    Article  CAS  PubMed  Google Scholar 

  60. Varghese AS, Lee H, Bonney D, Hughes S, Wynn R. Complications of reduced intensity conditioning HSCT for XIAP deficiency (Alloimmune Cytopenias and HLH) successfully managed with donor lymphocyte infusion. J Pediatr Hematol Oncol. 2014.

  61. Tsuma Y, Imamura T, Ichise E, Sakamoto K, Ouchi K, Osone S, et al. Successful treatment of idiopathic colitis related to XIAP deficiency with allo-HSCT using reduced-intensity conditioning. Pediatr Transplant. 2014.

Download references

Acknowledgments

We thank our collaborators for sharing their clinical observations.

S.L. is a senior scientist at the Centre National de la Recherche Scientifique (France) and C.A. received a fellowship from the Fondation ARC pour la Recherche sur le Cancer (France).

This work was funded by grants from INSERM, the Agence Nationale de la Recherche (ANR) (ANR-08-MIEN-012-01, ANR-2010-MIDI-005-02 and ANR-10-IAHU-01), the Fondation ARC pour la Recherche sur le Cancer (France), the European Research Council (ERC-2009-AdG_20090506 n°FP7-249816), the Rare Diseases Foundation (France) and the François Aupetit Association (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Latour.

Additional information

Up to 1.0 AMA PRA Category 1 Credit™ of Continuing Medical Education Credit can now be obtained by reading this review article and completing all activity components by visiting the Clinical Immunology Society web site at http://www.clinimmsoc.org/education/continuing-medical-education/e-learning-tools/journal-cme

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar, C., Latour, S. X-linked Inhibitor of Apoptosis Protein Deficiency: More than an X-linked Lymphoproliferative Syndrome. J Clin Immunol 35, 331–338 (2015). https://doi.org/10.1007/s10875-015-0141-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-015-0141-9

Keywords

Navigation