Skip to main content
Log in

Surfaced-modified TiO2 Nanofibers with Enhanced Photodegradation Under Visible Light

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Asynchronized surface modification method based on coaxial electrospinning was developed to fabricate high-efficiency photodegradative nanofiber for water purification. TiO2 nanoparticles assembled uniformly on the surface of polycaprolactone(PCL) nanofibers to form composite nanofibers through one step process. The maximal content of Ti element was 25.6%(mass fraction) in the PCL/TiO2 composite nanofibrous membrane, which exhibited hydrophilicity and excellent photodegradation under visible light in water. The Rhodamine B dye degraded 96.17% in 120 min under visible light by the PCL/TiO2 composite membrane. The adsorption behavior fitted Langmuir model well and indicated chemical related adsorption. This PCL/TiO2 composite nanofibrous membrane has super degradation properties and displays great application potential to environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kant R., Natural Science, 2012, 4(1), 22

    Article  CAS  Google Scholar 

  2. Gupta V. K., Suhas, Journal of Environmental Management, 2009, 90(8), 2313

    Article  CAS  PubMed  Google Scholar 

  3. Pourreza N., Rastegarzadeh S., Larki A., Talanta, 2008, 77(2), 733

    Article  CAS  Google Scholar 

  4. Binnie C., Kimber M., Smethurst G., Basic Water Treatment, Royal Society of Chemistry, Cambridge, 2002

    Google Scholar 

  5. Faust S. D., Aly O. M., Chemistry of Water Treatment, CRC Press, Boca Raton, 2018

    Google Scholar 

  6. Hendricks D., Fundamentals of Water Treatment Unit Processes: Physical, Chemical, Biological, CRC Press, Boca Raton, 2016

    Book  Google Scholar 

  7. Ali I., Gupta V., Nature Protocols, 2006, 1(6), 2661

    Article  CAS  PubMed  Google Scholar 

  8. Lee A., Elam J. W., Darling S. B., Environmental Science: Water Research & Technology, 2016, 2(1), 17

    CAS  Google Scholar 

  9. Bucs S. S., Farhat N., Kruithof J. C., Picioreanu C., van Loosdrecht M. C. M., Vrouwenvelder J. S., Desalination, 2018, 434, 189

    Article  CAS  Google Scholar 

  10. Ademola Bode-Aluko C., Pereao O., Kyaw H. H., Al-Naamani L., Al-Abri M. Z., Tay Zar Myint M., Rossouw A., Fatoba O., Petrik L., Dobretsov S., Materials Science and Engineering: B, 2021, 264, 114913

    Article  CAS  Google Scholar 

  11. Picos-Corrales L. A., Sarmiento-Sánchez J. I., Ruelas-Leyva J. P., Crini G. G., Hermosillo-Ochoa E., Gutierrez-Montes J. A., ACS Omega, 2020, 5(8), 3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Heck K. N., Garcia-Segura S., Westerhoff P., Wong M. S., Accounts of Chemical Research, 2019, 52(4), 906

    Article  CAS  PubMed  Google Scholar 

  13. Gitis V., Hankins N., Journal of Water Process Engineering, 2018, 25, 34

    Article  Google Scholar 

  14. Malini M., Thirumavalavan M., Yang W. Y., Lee J. F., Annadurai G., International Journal of Biological Macromolecules, 2015, 80, 121

    Article  CAS  PubMed  Google Scholar 

  15. Fujishima A., Rao T. N., Tryk D. A., Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1(1), 1

    Article  CAS  Google Scholar 

  16. Zhang M., Chen C., Ma W., Zhao J., Angewandte Chemie International Edtion, 2008, 47(50), 9730

    Article  CAS  Google Scholar 

  17. Zhang P., Shao C., Zhang Z., Zhang M., Mu J., Guo Z., Liu Y., Nanoscale, 2011, 3(7), 2943

    Article  CAS  PubMed  Google Scholar 

  18. Ghafuri H., Dehghani M., Rashidizadeh A., Rabbani M., Optik, 2019, 179, 646

    Article  CAS  Google Scholar 

  19. Wang F., Min S., Han Y., Feng L., Superlattices and Microstructures, 2010, 48(2), 170

    Article  CAS  Google Scholar 

  20. Li W., Li D., Lin Y., Wang P., Chen W., Fu X., Shao Y., The Journal of Physical Chemistry C, 2012, 116(5), 3552

    Article  CAS  Google Scholar 

  21. Karagoz S., Kiremitler N. B., Sakir M., Salem S., Onses M. S., Sahmetlioglu E., Ceylan A., Yilmaz E., Ecotoxicology and Environmental Safety, 2020, 188, 109856

    Article  CAS  PubMed  Google Scholar 

  22. Pahasup-Anan T., Suwannahong K., Dechapanya W., Rangkupan R., Journal of Environmental Sciences-China, 2018, 72, 13

    Article  CAS  PubMed  Google Scholar 

  23. Cozzoli P. D., Fanizza E., Comparelli R., Curri M. L., Agostiano A., Laub D., The Journal of Physical Chemistry B, 2004, 108(28), 9623

    Article  CAS  Google Scholar 

  24. Tryba B., Morawski A. W., Inagaki M., Toyoda M., Applied Catalysis B: Environmental, 2006, 63(3/4), 215

    Article  CAS  Google Scholar 

  25. Wang H., You T., Shi W., Li J., Guo L., The Journal of Physical Chemistry C, 2012, 116(10), 6490

    Article  CAS  Google Scholar 

  26. Ming H., Ma Z., Huang H., Lian S., Li H., He X., Yu H., Pan K., Liu Y., Kang Z., Chem Commun(Camb), 2011, 47(28), 8025

    Article  CAS  PubMed  Google Scholar 

  27. Zheng G., Peng H., Jiang J., Kang G., Liu J., Zheng J., Liu Y., Chem. Res. Chinese Universities, 2021, 37(3), 571

    Article  CAS  Google Scholar 

  28. Zhu S., Nie L., Journal of Industrial and Engineering Chemistry, 2021, 93, 28

    Article  CAS  Google Scholar 

  29. Scaffaro R., Lopresti F., Maio A., Botta L., Rigogliuso S., Ghersi G., Composites Part A: Applied Science and Manufacturing, 2017, 92, 97

    Article  CAS  Google Scholar 

  30. S N., Joseph S., Journal of Water Process Engineering, 2018, 21, 61

    Article  Google Scholar 

  31. Thamaphat K., Limsuwan P., Ngotawornchai B., Agriculture and Natural Resources, 2008, 42(5), 357

    Google Scholar 

  32. Pais V., Navarro M., Guise C., Martins R., Fangueiro R., Textile Research Journal, 2021, DOI: https://doi.org/10.1177/00405175211010669

  33. Baranowska-Korczyc A., Warowicka A., Jasiurkowska-Delaporte M., Grześkowiak B., Jarek M., Maciejewska B. M., Jurga-Stopa J., Jurga S., RSC Advances, 2016, 6(24), 19647

    Article  CAS  Google Scholar 

  34. Tu H., Li D., Yi Y., Liu R., Wu Y., Dong X., Shi X., Deng H., Composites Communications, 2019, 15, 58

    Article  Google Scholar 

  35. Saricam C., Okur N., Göcek İ., Journal of Industrial Textiles, 2019, 50(3), 398

    Article  Google Scholar 

  36. Pan L., Zou J. J., Zhang X., Wang L., Journal of the American Chemical Society, 2011, 133(26), 10000

    Article  CAS  PubMed  Google Scholar 

  37. Chen X., Mao S. S., Chemical Reviews, 2007, 107(7), 2891

    Article  CAS  PubMed  Google Scholar 

  38. Deskins N. A., Rousseau R., Dupuis M., The Journal of Physical Chemistry C, 2009, 113(13), 14583

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.51805460), the Science and Technology Planning Project of Fujian Province, China(Nos.2020H6003, 2021J011196), and the Fund of Fujian Innovation Center of Additive Manufacturing, China(No.ZCZZ202-31).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaofeng Zheng.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Jiang, J., Liu, Y. et al. Surfaced-modified TiO2 Nanofibers with Enhanced Photodegradation Under Visible Light. Chem. Res. Chin. Univ. 38, 1475–1481 (2022). https://doi.org/10.1007/s40242-022-2056-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-022-2056-3

Keywords

Navigation