Skip to main content
Log in

Dendritic Growth, Eutectic Features and Their Effects on Hardness of a Ternary Sn–Zn–Cu Solder Alloy

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The present investigation is based on the results of a directionally solidified (DS) Sn–9 wt%Zn–2 wt%Cu alloy, including primary/secondary/tertiary dendrite arm spacings of the Sn-rich matrix, the morphologies of the eutectic mixture and the corresponding interphase spacing, the nature and proportion of the Cu–Zn intermetallic compound (IMC). The main purpose is to establish interrelations of these microstructure features with experimental solidification thermal parameters, such as cooling rates and growth rates (v), macrosegregation and hardness. Such interrelations are interesting for both industry and academy since they represent a tool permitting the preprogramming of final properties based on the design of the microstructure. In the case of Sn–Zn–Cu alloys, hardly anything is known about the combined effects of the length scale of the microstructure and fraction and distribution of the primary IMC on hardness. The alloy microstructure is composed of a β-Sn dendritic region, surrounded by a eutectic mixture of α-Zn and β-Sn phases and the γ-Cu5Zn8 IMC. The eutectic interphase spacing varies in the range 1.2–3.6 μm, with the α-Zn phase having a globular morphology for v > 0.5 mm/s and a needle-like morphology for v < 0.3 mm/s. A modified Hall–Petch-type experimental expression relating hardness to the interphase spacing is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Slupska, P. Ozga, Electroch. Acta 141, 149 (2014)

    Article  Google Scholar 

  2. X. Wang, Y. Wang, F. Wang, N. Liu, J. Wang, Acta Metall. Sin. (Engl. Lett.) 27, 1159 (2014)

    Article  Google Scholar 

  3. J.E. Spinelli, A. Garcia, J. Mater. Sci. Mater. Electron. 25, 478 (2014)

    Article  Google Scholar 

  4. F.X. Che, W.H. Zhu, E.S.W. Poh, X.W. Zhang, X.R. Zhang, J. Alloys Compd. 507, 215 (2010)

    Article  Google Scholar 

  5. W.R. Osório, L.C. Peixoto, L.R. Garcia, N. Mangelinck-Noël, A. Garcia, J. Alloys Compd. 572, 97 (2013)

    Article  Google Scholar 

  6. C. Chou, S. Chen, Acta Mater. 54, 2393 (2006)

    Article  Google Scholar 

  7. N. Zhao, H. Ma, H. Xie, L. Wang, J. Mater. Sci. Technol. 25, 410 (2009)

    Google Scholar 

  8. M. Yang, X.Z. Liu, X.H. Liu, in The 11th International Conference on Electronic Packaging Technology and High Density Packaging (Xi’an, China, 2010), p. 748

  9. M. Grobelny, N. Sobczak, J. Mater. Eng. Perform. 21, 614 (2012)

    Article  Google Scholar 

  10. K. Suganuma, K. Niihara, J. Mater. Res. 13, 2859 (1998)

    Article  Google Scholar 

  11. T. Gancarz, P. Bobrowski, J. Pstruś, S. Pawlak, J. Alloys Compd. 679, 442 (2016)

    Article  Google Scholar 

  12. K.L. Lin, C.L. Shih, J. Electron. Mater. 32, 1496 (2003)

    Article  Google Scholar 

  13. J.M. Song, G. Lan, T.S. Lui, L.H. Chen, Scr. Mater. 48, 1047 (2003)

    Article  Google Scholar 

  14. L.R. Garcia, W.R. Osório, L.C. Peixoto, A. Garcia, Mater. Charact. 61, 212 (2010)

    Article  Google Scholar 

  15. A.A. El-Daly, A.E. Hammad, Mater. Sci. Eng. A 527, 5212 (2010)

    Article  Google Scholar 

  16. M. Rahman, A. Sharif, M. Ahmed, in Proceedings of the International Conference on Mechanical Engineering (Dhaka, Bangladesh, 2009), p. 26

  17. J. Lee, K. Kim, M. Inoue, J. Jiang, K. Suganuma, J. Alloys Compd. 454, 310 (2008)

    Article  Google Scholar 

  18. S. Liu, S. Xue, P. Xue, D. Luo, J. Mater. Sci. Mater. Electron. 26, 4389 (2015)

    Article  Google Scholar 

  19. J.E. Spinelli, A. Garcia, Mater. Sci. Eng. A 568, 195 (2013)

    Article  Google Scholar 

  20. B.L. Silva, N. Cheung, A. Garcia, J.E. Spinelli, J. Electron. Mater. 42, 179 (2013)

    Article  Google Scholar 

  21. W.R. Osório, D.R. Leiva, L.C. Peixoto, L.R. Garcia, A. Garcia, J. Alloys Compd. 562, 194 (2013)

    Article  Google Scholar 

  22. U. Böyük, N. Maraşli, Mater. Chem. Phys. 119, 442 (2010)

    Article  Google Scholar 

  23. H. Kaya, E. Çadırlı, M. Gunduz, J. Mater. Eng. Perform. 12, 456 (2003)

    Article  Google Scholar 

  24. M. Gunduz, E. Çadirli, Mater. Sci. Eng., A 327, 167 (2002)

    Article  Google Scholar 

  25. S. Farahany, A. Ourdjini, Mater. Manufact. Proc. 28, 657 (2013)

    Google Scholar 

  26. F. Sá, O.L. Rocha, C.A. Siqueira, A. Garcia, Mater. Sci. Eng. A 373, 131 (2004)

    Article  Google Scholar 

  27. O.L. Rocha, C.A. Siqueira, A. Garcia, Mater. Sci. Eng. A 361, 111 (2003)

    Article  Google Scholar 

  28. J.E. Spinelli, B.L. Silva, A. Garcia, J. Electron. Mater. 43, 1347 (2014)

    Article  Google Scholar 

  29. K.A. Jackson, J.D. Hunt, T. Metall, Soc. AIME 236, 1129 (1966)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by FAPESP (São Paulo Research Foundation, Brazil: Grants 2013/08259-3 and 2015/11863-5) and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Eduardo Spinelli.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, B.L., Reyes, R.V., Garcia, A. et al. Dendritic Growth, Eutectic Features and Their Effects on Hardness of a Ternary Sn–Zn–Cu Solder Alloy. Acta Metall. Sin. (Engl. Lett.) 30, 528–540 (2017). https://doi.org/10.1007/s40195-017-0572-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0572-9

Keywords

Navigation