Skip to main content
Log in

From Prognostication to Personalized Medicine: Classification of Tumors of the Central Nervous System (CNS) Using Chromosomal Microarrays

  • Cytogenetics (CL Martin and E Williams, Section Editors)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Genomic profiling has led to a transformation in our understanding, and clinical management, of many tumors of the central nervous system (CNS). This has led to a paradigm shift in diagnostic evaluation of these tumors and necessitated an integrative approach that requires evaluation of both histological and molecular characteristics. Herein, we review the utility of chromosomal microarrays (CMAs) as a tool for improving diagnosis and prognosis in CNS tumors.

Recent Findings

Clinical laboratories around North America perform CMA analysis as part of routine diagnostic evaluation. By example this includes the detection of broad copy number aberrations, such as 1p/19q whole-arm co-deletion in oligodendroglioma, or complex patterns of imbalances including chromothriptic rearrangement of chromosome 11 in ependymomas with RELA fusions. Recent studies that have led to improvements in tumor diagnosis, prognostication, or directed therapeutic management are highlighted.

Summary

While the copy number-driven nature of CNS tumors has been long appreciated, only in recent years has this translated into clinical diagnostic applications. CMA represents an effective diagnostic tool for the molecular characterization of many CNS tumor entities, whose use will continue to expand our understanding of drivers of tumor biology and identify novel therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rouse C, Gittleman H, Ostrom QT, Kruchko C, Barnholtz-Sloan JS. Years of potential life lost for brain and CNS tumors relative to other cancers in adults in the United States, 2010. Neuro-Oncology. 2016;18:70–7.

    Article  PubMed  Google Scholar 

  2. Miranda-Filho A, Piñeros M, Soerjomataram I, Deltour I, Bray F. Cancers of the brain and CNS: global patterns and trends in incidence. Neuro-Oncology. 2016;19:1–10.

    Google Scholar 

  3. Gittleman H, Kromer C, Ostrom QT, Blanda R, Russell J, Kruchko C, et al. Is mortality due to primary malignant brain and other central nervous system tumors decreasing? J Neurooncol, [Internet] Springer US. 2017;0:0. Available from: http://link.springer.com/10.1007/s11060-017-2449-1.

  4. Ramkissoon SH, Bandopadhayay P, Hwang J, Ramkissoon LA, Greenwald NF, Schumacher SE, et al. Clinical targeted exome-based sequencing in combination with genome-wide copy number profiling: precision medicine analysis of 203 pediatric brain tumors. Neuro Oncol, [Internet]. 2017; now294. Available from: https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/now294.

  5. Bavle AA, Lin FY, Parsons DW. Applications of genomic sequencing in pediatric CNS tumors. Oncology (Williston Park). 2016;30(5):411–23.

  6. •• Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20. This paper from the WHO describes the paradigm shift in the diagnostic evaluation of CNS tumors. Springer Berlin Heidelberg.

    Article  PubMed  Google Scholar 

  7. Northcott PA, Rutka JT, Taylor MD. Genomics of medulloblastoma: from Giemsa-banding to next-generation sequencing in 20 years. Neurosurg Focus. 2010;28:E6.

    Article  PubMed  Google Scholar 

  8. Gresham D, Dunham MJ, Botstein D. Comparing whole genomes using DNA microarrays. Nat Rev Genet. 2008;9:291–302.

    Article  CAS  PubMed  Google Scholar 

  9. Jung HS, Lefferts JA, Tsongalis GJ. Utilization of the oncoscan microarray assay in cancer diagnostics. Appl Cancer Res. 2017;37:1. Available from: http://appliedcr.biomedcentral.com/articles/10.1186/s41241-016-0007-3.

    Article  Google Scholar 

  10. • Suzuki H, Aoki K, Chiba K, Sato Y, Shiozawa Y, Shiraishi Y, et al. Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet. 2015;47:458–68. This study comprehensively evalutes the copy number and mutational landscape of gliomas.

    Article  CAS  PubMed  Google Scholar 

  11. Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med. 2015;372:2499–508. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa1407279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. • Buckner J, Giannini C, Eckel-Passow J, Lachance D, Parney I, Laack N, et al. Management of diffuse low-grade gliomas in adults—use of molecular diagnostics. Nat Rev Neurol, [Internet] Nature Publishing Group. 2017;13. Available from: http://www.nature.com/doifinder/10.1038/nrneurol.2017.54. This review articles summarizes the important updates in molecular classification of low-grade gliomas.

  13. Karsy M, Guan J, Cohen AL, Jensen RL, Colman H. New molecular considerations for glioma: IDH, ATRX, BRAF, TERT, H3 K27M. Curr Neurol Neurosci Rep. 2017;17(2):19. doi: 10.1007/s11910-017-0722-5.

  14. Horbinski C. Something old and something new about molecular diagnostics in gliomas. Surg Pathol Clin. 2012;5(4):919–39.

  15. • Gliomas L. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015;372:2481–98. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa1402121 . This multi-institutional study comprehensively evalutes and describes the genomic and epigenomic features of gliomas.

    Article  Google Scholar 

  16. Jones DTW, Hutter B, Jäger N, Korshunov A, Kool M, Warnatz H-J, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet. 2013;45:927–32. Available from: http://www.nature.com/doifinder/10.1038/ng.2682. Nature Publishing Group.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Collins VP, Jones DTW, Giannini C. Pilocytic astrocytoma: pathology, molecular mechanisms and markers. Acta Neuropathol. 2015;129:775–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Spence T, Sin-Chan P, Picard D, Barszczyk M, Hoss K, Lu M, et al. CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity. Acta Neuropathol. 2014;128:291–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. • Kleinman CL, Gerges N, Papillon-Cavanagh S, Sin-Chan P, Pramatarova A, Quang D-AK, et al. Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR. Nat Genet. 2013;46:39–44. This study describes the importance and mechanisms driving C19MC overexppression in ETMR.

    Article  PubMed  Google Scholar 

  20. Korshunov A, Sturm D, Ryzhova M, Hovestadt V, Gessi M, Jones DTW, et al. Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathol. 2014;128:279–89.

    Article  PubMed  Google Scholar 

  21. Korshunov A, Ryzhova M, Jones DTW, Northcott PA, Van Sluis P, Volckmann R, et al. LIN28A immunoreactivity is a potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR). Acta Neuropathol. 2012;124:875–81.

    Article  PubMed  PubMed Central  Google Scholar 

  22. • Bandopadhayay P, Ramkissoon LA, Jain P, Bergthold G, Wala J, Zeid R, et al. MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet. 2016;48:273–82. This study identifies the molecular basis and pathognomonic driver event in angiocentric gliomas. Nature Publishing Group.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qaddoumi I, Orisme W, Wen J, Santiago T, Gupta K, Dalton JD, et al. Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol, Springer Berlin Heidelberg. 2016;131:833–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramkissoon SH, Bi WL, Schumacher SE, Ramkissoon LA, Haidar S, Knoff D, et al. Clinical implementation of integrated whole-genome copy number and mutation profiling for glioblastoma. Neuro-Oncology. 2015;17:1344–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sturm D, Bender S, Jones DTW, Lichter P, Grill J, Becher O, et al. Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat Rev Cancer. 2014;14:92–107. Nature Publishing Group

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Korshunov A, Schrimpf D, Ryzhova M, Sturm D, Chavez L, Hovestadt V, et al. H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinctsubtypes with associated oncogenic drivers. Acta Neuropathol. 2017 Apr 11. doi: 10.1007/s00401-017-1710-1.

  27. • Bi WL, Abedalthagafi M, Horowitz P, Agarwalla PK, Mei Y, Aizer AA, et al. Genomic landscape of intracranial meningiomas. J Neurosurg. 2016;125:525–35. This review article summarizes our current understanding of the (cyto)genomic aberrations in meningiomas and its association with clinical features.

    Article  PubMed  Google Scholar 

  28. Aizer AA, Abedalthagafi M, Linda Bi W, Horvath MC, Arvold ND, Al-Mefty O, et al. A prognostic cytogenetic scoring system to guide the adjuvant management of patients with atypical meningioma. Neuro-Oncology. 2016;18:269–74.

    Article  PubMed  Google Scholar 

  29. Gan HK, Kaye AH, Luwor RB. The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009;16:748–54.

    Article  CAS  PubMed  Google Scholar 

  30. Padfield E, Ellis HP, Kurian KM. Current therapeutic advances targeting EGFR and EGFRvIII in glioblastoma. Front Oncol. 2015;5:1–8.

    Article  Google Scholar 

  31. Francis JM, Zhang CZ, Maire CL, Jung J, Manzo VE, Adalsteinsson VA, et al. EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing. Cancer Discov. 2014;4:956–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Das A, Cheng RR, Hilbert MLT, Dixon-Moh YN, Decandio M, Vandergrift WA III, et al. Synergistic effects of crizotinib and temozolomide in experimental FIG-ROS1 fusion-positive glioblastoma. Cancer Growth Metastasis. 2015;8:51–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kiehna EN, Arnush MR, Tamrazi B, Cotter JA, Hawes D, Robison NJ, et al. Novel GOPC(FIG)-ROS1 fusion in a pediatric high-grade glioma survivor. J Neurosurg Pediatr. 2017;20(1):51–5. doi:10.3171/2017.2.PEDS16679. Epub 2017 Apr 7.

  34. Bender S, Gronych J, Warnatz H-J, Hutter B, Gröbner S, Ryzhova M, et al. Recurrent MET fusion genes represent a drug target in pediatric glioblastoma. Nat Med. 2016;22:1314–20.

    Article  CAS  Google Scholar 

  35. Gajjar A, Pfister SM, Taylor MD, Gilbertson RJ. Molecular insights into pediatric brain tumors have the potential to transform therapy. Clin Cancer Res. 2014;20:5630–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. •• Northcott PA, Shih DJH, Peacock J, Garzia L, Sorana Morrissy A, Zichner T, et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature. 2012;488:49–56. This study represents the largest copy number analysis of medulloblastoma performed to date, highlighting the molecular characterstics of medulloblastoma subgroups. Nature Publishing Group.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shih DJH, Northcott PA, Remke M, Korshunov A, Ramaswamy V, Kool M, et al. Cytogenetic prognostication within medulloblastoma subgroups. J Clin Oncol. 2014;32:886–96.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kool M, Jones DTW, Jager N, Northcott PA, Pugh TJ, Hovestadt V, et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell. 2014;25:393–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ellison DW, Kocak M, Figarella-Branger D, Felice G, Catherine G, Pietsch T, et al. Histopathological grading of pediatric ependymoma: reproducibility and clinical relevance in European trial cohorts. J Negat Results Biomed. 2011;10:7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Korshunov A, Witt H, Hielscher T, Benner A, Remke M, Ryzhova M, et al. Molecular staging of intracranial ependymoma in children and adults. J Clin Oncol. 2010;28:3182–90.

    Article  PubMed  Google Scholar 

  41. Witt H, Mack SC, Ryzhova M, Bender S, Sill M, Isserlin R, et al. Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell. 2011;20:143–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mack SC, Witt H, Piro RM, Gu L, Zuyderduyn S, Stütz AM, et al. Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature. 2014;506:445–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pajtler KW, Mack SC, Ramaswamy V, Smith CA, Witt H, Smith A, et al. The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathol Springer Berlin Heidelberg. 2017;133:5–12.

    Article  CAS  PubMed  Google Scholar 

  44. Parker M, Mohankumar KM, Punchihewa C, Weinlich R, Dalton JD, Li Y, et al. C11orf95–RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature. 2014;506:451–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. •• Pajtler KW, Witt H, Sill M, Jones DTW, Hovestadt V, Kratochwil F, et al. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell. 2015;27:728–43. This study represents the largest genomic profiling effort of ependymoma performed to date, further delineating relevant molecular subgroups.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cooley LD, Lebo M, Li MM, Slovak ML, Wolff DJ. American College of Medical Genetics and Genomics technical standards and guidelines: microarray analysis for chromosome abnormalities in neoplastic disorders. Genet Med. 2013;15:484–94.

    Article  CAS  PubMed  Google Scholar 

  47. Cooley LD, Morton CC, Sanger WG, Saxe DF, Mikhail FM. Section E6.5–6.8 of the ACMG technical standards and guidelines: chromosome studies of lymph node and solid tumor-acquired chromosomal abnormalities. Genet Med. 2016;18:643–8.

    Article  CAS  PubMed  Google Scholar 

  48. Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagnostics. 2017;19:4–23.

    Article  CAS  Google Scholar 

  49. •• Sturm D, Orr BA, Toprak UH, Hovestadt V, Jones DTW, Capper D, et al. New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell. 2016;164:1060–72. This study uses DNA methylation to identify novel molecular subgroups of CNS tumors associated with specific genomic and clinical features.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin CY, Erkek S, Tong Y, Yin L, Federation AJ, Zapatka M, et al. Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature. 2016;530:57–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nagaraja S, Vitanza NA, Woo PJ, Taylor KR, Liu F, Zhang L, et al. Transcriptional dependencies in diffuse intrinsic pontine glioma. Cancer Cell. 2017;31:635–652.e6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azra H. Ligon.

Ethics declarations

Conflict of Interest

Both authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cytogenetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubuc, A.M., Ligon, A.H. From Prognostication to Personalized Medicine: Classification of Tumors of the Central Nervous System (CNS) Using Chromosomal Microarrays. Curr Genet Med Rep 5, 117–124 (2017). https://doi.org/10.1007/s40142-017-0127-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-017-0127-4

Keywords

Navigation