Skip to main content

Advertisement

Log in

Next-Generation Techniques for Determination of Protein-Protein Interactions: Beyond the Crystal Structure

  • Update on Technological Innovations for Cancer Detection and Treatment (T Dickherber, Section Editor)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

We discuss recent advancements in structural biology methods for investigating sites of protein-protein interactions. We will inform readers outside the field of structural biology about techniques beyond crystallography and how these different technologies can be utilized for drug development.

Recent Findings

Advancements in cryo-electron microscopy (cryoEM) and micro-electron diffraction (microED) may change how we view atomic resolution structural biology, such that well-ordered macrocrystals of protein complexes are not required for interface identification. However, some drug discovery applications, such as lead peptide compound generation, may not require atomic resolution; mass spectrometry techniques can provide an expedited path to a generation of lead compounds. New cross-linking compounds, more user-friendly data analysis, and novel protocols such as protein painting can advance drug discovery programs, even in the absence of atomic resolution structural data. Finally, artificial intelligence and machine learning methods, while never truly replacing experimental methods, may provide rational ways to stratify potential druggable regions identified with mass spectrometry into higher and lower priority candidates.

Summary

Electron diffraction of nanocrystals combines the benefits of both x-ray diffraction and cryoEM, and may prove to be the next generation of atomic resolution protein-protein interface identification. However, in situations such as peptide drug discovery, mass spectrometry techniques supported by advancements in computational methods will likely prove sufficient to support drug discovery efforts. In addition, these methods can be significantly faster than any crystallographic or cryoEM methods for the identification of interacting regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ivanov AA, Khuri FR, Fu H. Targeting protein-protein interactions as an anticancer strategy. Trends Pharmacol Sci. 2013;34:393–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adams JM, Cory S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ. 2018;25:27–36.

    Article  CAS  PubMed  Google Scholar 

  3. Geng Q, Jiao P, Jin P, Su G, Dong J, Yan B. PD-1/PD-L1 inhibitors for immuno-oncology: from antibodies to small molecules. Curr Pharm Des. 2018;23:6033–41.

    Article  CAS  PubMed  Google Scholar 

  4. Xu Y, Vakoc CR. Targeting cancer cells with BET bromodomain inhibitors. Cold Spring Harb Perspect Med [Internet]. 2017; [cited 2018 Dec 11];7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5495050/.

  5. Wang Q, Li Y, Xu J, Wang Y, Leung ELH, Liu L, et al. Selective inhibition mechanism of RVX-208 to the second bromodomain of bromo and extraterminal proteins: insight from microsecond molecular dynamics simulations. Sci Rep. 2017;7:8857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tisato V, Voltan R, Gonelli A, Secchiero P, Zauli G. MDM2/X inhibitors under clinical evaluation: perspectives for the management of hematological malignancies and pediatric cancer. J Hematol Oncol. 2017;10:133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bai L, Smith DC, Wang S. Small-molecule SMAC mimetics as new cancer therapeutics. Pharmacol Ther. 2014;144:82–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. •• Bruzzoni-Giovanelli H, Alezra V, Wolff N, et al. Interfering peptides targeting protein–protein interactions: the next generation of drugs? Drug Discov Today. 2018;23:272–85. This paper is a key reference discussing the difficulty in targeting protein-protein interactions, and why the use of interfering peptides for this purpose may allow for additional opportunities in the field.

    Article  CAS  PubMed  Google Scholar 

  9. Bakail M, Ochsenbein F. Targeting protein–protein interactions, a wide open field for drug design. C R Chimie. 2016;19:19–27.

    Article  CAS  Google Scholar 

  10. Cunningham AD, Qvit N, Mochly-Rosen D. Peptides and peptidomimetics as regulators of protein–protein interactions. Curr Opin Struct Biol. 2017;44:59–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Corbi-Verge C, Kim PM. Motif mediated protein-protein interactions as drug targets. Cell Commun Signal. 2016;14:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kalafatovic D, Giralt E. Cell-penetrating peptides: design strategies beyond primary structure and amphipathicity. Molecules [internet]. 2017; [cited 2019 Mar 17];22. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150340/.

  13. Peraro L, Kritzer JA. Emerging methods and design principles for cell-penetrant peptides. Angew Chem Int Ed. 2018;57:11868–81.

    Article  CAS  Google Scholar 

  14. White AM, Craik DJ. Discovery and optimization of peptide macrocycles. Expert Opin Drug Discovery. 2016;11:1151–63.

    Article  CAS  Google Scholar 

  15. White CJ, Yudin AK. Contemporary strategies for peptide macrocyclization. Nat Chem. 2011;3:509–24.

    Article  CAS  PubMed  Google Scholar 

  16. Weinstock MT, Francis JN, Redman JS, Kay MS. Protease-resistant peptide design – empowering nature’s fragile warriors against HIV. Biopolymers. 2012;98:431–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rubin SJS, Qvit N. Backbone-cyclized peptides: a critical review. Curr Top Med Chem. 2018;18:526–55.

    Article  CAS  PubMed  Google Scholar 

  18. Qvit N, Rubin SJS, Urban TJ, Mochly-Rosen D, Gross ER. Peptidomimetic therapeutics: scientific approaches and opportunities. Drug Discov Today. 2017;22:454–62.

    Article  CAS  PubMed  Google Scholar 

  19. Dunham WH, Mullin M, Gingras A-C. Affinity-purification coupled to mass spectrometry: basic principles and strategies. PROTEOMICS. 2012;12:1576–90.

    Article  CAS  PubMed  Google Scholar 

  20. Gavin A-C, Maeda K, Kühner S. Recent advances in charting protein–protein interaction: mass spectrometry-based approaches. Curr Opin Biotechnol. 2011;22:42–9.

    Article  CAS  PubMed  Google Scholar 

  21. Sutandy FR, Qian J, Chen C-S, et al. Overview of protein microarrays. Curr Protoc Protein Sci. 2013;72:27–1.

    Article  Google Scholar 

  22. Miersch S, LaBaer J. Nucleic acid programmable protein arrays: versatile tools for array-based functional protein studies. Curr Protoc Protein Sci. 2011;64:27.2.1–27.2.26.

    Article  Google Scholar 

  23. McPherson A, Gavira JA. Introduction to protein crystallization. Acta Crystallogr F Struct Biol Commun. 2013;70:2–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. •• McPherson A. Protein crystallization. Methods Mol Biol. 2017;1607:17–50. This excellent overview of protein crystallography includes descriptions of methods utilized to grow protein crystals and the most significant constraints on these methods. Also included are photographs of protein crystals to show diversity of form.

    Article  CAS  PubMed  Google Scholar 

  25. Deller MC, Kong L, Rupp B. Protein stability: a crystallographer’s perspective. Acta Crystallogr F Struct Biol Commun. 2016;72:72–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moraes I, Evans G, Sanchez-Weatherby J, Newstead S, Stewart PDS. Membrane protein structure determination — the next generation. Biochim Biophys Acta. 2014;1838:78–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kumar V, Mahato S, Munshi A, Kulharia M. PPInS: a repository of protein-protein interaction sitesbase. Sci Rep. 2018;8:12453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. The Nobel Prize in Chemistry 2017 [Internet]. NobelPrize.org. [cited 2019 Mar 18]. Available from: https://www.nobelprize.org/prizes/chemistry/2017/advanced-information/.

  29. National Cryo-Electron Microscopy Facility - National Cancer Institute [Internet]. [cited 2019 Jun 10]. Available from: https://www.cancer.gov/research/resources/cryoem.

  30. Bai X, McMullan G, Scheres SHW. How cryo-EM is revolutionizing structural biology. Trends Biochem Sci. 2015;40:49–57.

    Article  CAS  PubMed  Google Scholar 

  31. Murata K, Wolf M. Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochim Biophys Acta Gen Subj. 2018;1862:324–34.

    Article  CAS  PubMed  Google Scholar 

  32. Cheng Y. Single-particle cryo-EM at crystallographic resolution. Cell. 2015;161:450–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. •• Lyumkis D. Challenges and opportunities in cryo-EM single particle analysis. J Biol Chem. 2019;294(13):5181–97. https://doi.org/10.1074/jbc.REV118.005602. This article describes a basic cryoEM workflow, including sample preparation and introductory data analysis. A description of the difficulties in generating final models and the issue of resolution and B-factors in these maps is discussed.

  34. Qi X, Schmiege P, Coutavas E, Li X. Two Patched molecules engage distinct sites on Hedgehog yielding a signaling-competent complex. Science. 2018;362:eaas8843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. •• Nannenga BL, Gonen T. MicroED: a versatile cryoEM method for structure determination. Emerg Top Life Sci. 2018;2:1–8. The inventors of microED share a primer on the technique, including a discussion on sample requirements and how these differ from conventional crystallography.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nannenga BL, Gonen T. MicroED opens a new era for biological structure determination. Curr Opin Struct Biol. 2016;40:128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. • Wlodawer A, Li M, Dauter Z. High-resolution cryo-EM maps and models: a crystallographer’s perspective. Structure. 2017;25:1589–1597.e1. A crystallographic group reviews several high-resolution cryoEM maps and points out inconsistencies or errors in the map generation that result from incomplete definition of resolution and B-factors in the context of cryoEM datasets. Included are recommendations for how data analysis must be standardized in the field to avoid misleading map generation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yonekura K, Kato K, Ogasawara M, Tomita M, Toyoshima C. Electron crystallography of ultrathin 3D protein crystals: atomic model with charges. Proc Natl Acad Sci U S A. 2015;112:3368–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. de la Cruz MJ, Hattne J, Shi D, Seidler P, Rodriguez J, Reyes FE, et al. Atomic resolution structures from fragmented protein crystals by the cryoEM method MicroED. Nat Methods. 2017;14:399–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Syed V. TGF-β signaling in cancer. J Cell Biochem. 2016;117:1279–87.

    Article  CAS  PubMed  Google Scholar 

  41. Young MM, Tang N, Hempel JC, Oshiro CM, Taylor EW, Kuntz ID, et al. High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry. PNAS. 2000;97:5802–6.

    Article  CAS  PubMed  Google Scholar 

  42. Rappsilber J, Siniossoglou S, Hurt EC, Mann M. A generic strategy to analyze the spatial organization of multi-protein complexes by cross-linking and mass spectrometry. Anal Chem. 2000;72:267–75.

    Article  CAS  PubMed  Google Scholar 

  43. Rinner O, Seebacher J, Walzthoeni T, Mueller LN, Beck M, Schmidt A, et al. Identification of cross-linked peptides from large sequence databases. Nat Methods. 2008;5:315–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pham ND, Parker RB, Kohler JJ. Photocrosslinking approaches to interactome mapping. Curr Opin Chem Biol. 2013;17:90–101.

    Article  CAS  PubMed  Google Scholar 

  45. Scalabrin M, Dixit SM, Makshood MM, Krzemien CE, Fabris D. Bifunctional cross-linking approaches for mass spectrometry-based investigation of nucleic acids and protein-nucleic acid assemblies. Methods. 2018;144:64–78.

    Article  CAS  PubMed  Google Scholar 

  46. Kahraman A, Herzog F, Leitner A, Rosenberger G, Aebersold R, Malmström L. Cross-link guided molecular modeling with ROSETTA. PLoS One. 2013;8:e73411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schweppe DK, Zheng C, Chavez JD, Navare AT, Wu X, Eng JK, et al. XLinkDB 2.0: integrated, large-scale structural analysis of protein crosslinking data. Bioinformatics. 2016;32:2716–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Vries SJ, van Dijk M, Bonvin AMJJ. The HADDOCK web server for data-driven biomolecular docking. Nat Protoc. 2010;5:883–97.

    Article  CAS  PubMed  Google Scholar 

  49. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: protein structure and function prediction. Nat Methods. 2015;12:7–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. •• Barysz HM, Malmström J. Development of large-scale cross-linking mass spectrometry | molecular & cellular proteomics. Mol Cell Proteomics. 2017;17:1055–66. This reference is a modern guide to chemical cross-linking with particular attention paid to the bottlenecks encountered in data processing.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Erzberger JP, Stengel F, Pellarin R, Zhang S, Schaefer T, Aylett CHS, et al. Molecular architecture of the 40S·eIF1·eIF3 translation initiation complex. Cell. 2014;158:1123–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yin Y, Long J, Sun Y, Li H, Jiang E, Zeng C, et al. The function and clinical significance of eIF3 in cancer. Gene. 2018;673:130–3.

    Article  CAS  PubMed  Google Scholar 

  53. •• Oganesyan I, Lento C, Wilson DJ. Contemporary hydrogen deuterium exchange mass spectrometry. Methods. 2018;144:27–42. This review covers the history, methodology, and data analysis of hydrogen deuterium exchange experiments. Included is a discussion of available software packages to process HDX datasets.

    Article  CAS  PubMed  Google Scholar 

  54. Masson GR, Jenkins ML, Burke JE. An overview of hydrogen deuterium exchange mass spectrometry (HDX-MS) in drug discovery. Expert Opin Drug Discovery. 2017;12:981–94.

    Article  CAS  Google Scholar 

  55. Hao G, Wesolowski JS, Jiang X, Lauder S, Sood VD. Epitope characterization of an anti-PD-L1 antibody using orthogonal approaches. J Mol Recognit. 2015;28:269–76.

    Article  CAS  PubMed  Google Scholar 

  56. Lau AMC, Ahdash Z, Martens C, Politis A. Deuteros: software for rapid analysis and visualization of data from differential hydrogen deuterium exchange-mass spectrometry. Bioinformatics [Internet]. [cited 2019 Mar 19]; Available from: https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btz022/5288775.

  57. •• Luchini A, Espina V, Liotta LA. Protein painting reveals solvent-excluded drug targets hidden within native protein-protein interfaces. Nat Commun. 2014;5:4413. This experimental paper details the invention of protein painting methodology and its application to protein-protein interaction elucidation. A case study of the IL-1RAcP/IL-1B/IL-1R1 ternary complex is used to compare data collected via protein painting with crystallography, hydrogen deuterium exchange, chemical cross-linking, and Robetta prediction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Haymond A, Dey D, Carter R, Dailing A, Nara V, Nara P, et al. Protein painting, an optimized MS-based technique, reveals functionally relevant interfaces of the PD-1/PD-L1 complex and the YAP2/ZO-1 complex. J Biol Chem [Internet]. 2019; [cited 2019 Jun 10]; Available from: http://www.jbc.org/content/early/2019/06/05/jbc.RA118.007310.abstract.

  59. Günther S, Deredge D, Bowers AL, Luchini A, Bonsor DA, Beadenkopf R, et al. IL-1 family cytokines use distinct molecular mechanisms to signal through their shared co-receptor. Immunity. 2017;47:510–523.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hong J, Kim S, Lin PC. Interleukin-33 and ST2 signaling in tumor microenvironment. J Interf Cytokine Res. 2018;39:61–71.

    Article  CAS  Google Scholar 

  61. Xiao P, Wan X, Cui B, et al. Interleukin 33 in tumor microenvironment is crucial for the accumulation and function of myeloid-derived suppressor cells. Oncoimmunology [Internet]. 2015; cited 2019 Mar 21];5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4760338/.

  62. Ofran Y, Rost B. Protein–protein interaction hotspots carved into sequences. PLoS Comput Biol [Internet]. 2007; [cited 2018 Dec 7];3. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914369/.

  63. •• Keskin O, Tuncbag N, Gursoy A. Predicting protein–protein interactions from the molecular to the proteome level. Chem Rev. 2016;116:4884–909. This article is an excellent overview of the types of protein-protein interactions and their biochemical properties that allow for computational or algorithmic prediction. Included are resources available for these predictions.

    Article  CAS  PubMed  Google Scholar 

  64. Wang J, Liang J, Zheng W, et al. Protein complex detection algorithm based on multiple topological characteristics in PPI networks. Info Sci [Internet]. 2019; [cited 2019 Mar 17]; Available from: http://www.sciencedirect.com/science/article/pii/S002002551930204X.

  65. Pang C, Gu Y, Ding Y, et al. Several genes involved in the JAK-STAT pathway may act as prognostic markers in pancreatic cancer identified by microarray data analysis. Med Int. 2018; [cited 2019 Mar 17];97. Available from: insights.ovid.com.

  66. Kuo T-H, Li K-B. Predicting protein–protein interaction sites using sequence descriptors and site propensity of neighboring amino acids. Int J Mol Sci [Internet]. 2016; [cited 2018 Dec 12];17. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133789/.

  67. Esmaielbeiki R, Krawczyk K, Knapp B, Nebel JC, Deane CM. Progress and challenges in predicting protein interfaces. Brief Bioinform. 2016;17:117–31.

    Article  CAS  PubMed  Google Scholar 

  68. Sun T, Zhou B, Lai L, et al. Sequence-based prediction of protein protein interaction using a deep-learning algorithm. BMC Bioinformatics. 2017;18:277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lensink MF, Velankar S, Kryshtafovych A, Huang SY, Schneidman-Duhovny D, Sali A, et al. Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: a CASP-CAPRI experiment. Proteins. 2016;84:323–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yan Y, Zhang D, Zhou P, Li B, Huang SY. HDOCK: a web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res. 2017;45:W365–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jiménez-García B, Roel-Touris J, Romero-Durana M, Vidal M, Jiménez-González D, Fernández-Recio J. LightDock: a new multi-scale approach to protein–protein docking. Bioinformatics. 2018;34:49–55.

    Article  CAS  PubMed  Google Scholar 

  72. Morrow JK, Zhang S. Computational prediction of protein hot spot residues. Curr Pharm Des. 2012;18:1255–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004;32:W526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web server: an online force field. Nucleic Acids Res. 2005;33:W382–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. NIH funds three national cryo-EM service centers and training for new microscopists [Internet]. National Institutes of Health (NIH) 2018 [cited 2019 Mar 19]. Available from: https://www.nih.gov/news-events/news-releases/nih-funds-three-national-cryo-em-service-centers-training-new-microscopists.

  76. Transformative high resolution cryo-electron microscopy - CryoEM service centers & training | NIH Common Fund [Internet]. [cited 2019 Mar 19]. Available from: https://commonfund.nih.gov/cryoem/sites.

  77. Alewijnse B, Ashton AW, Chambers MG, Chen S, Cheng A, Ebrahim M, et al. Best practices for managing large cryoEM facilities. J Struct Biol. 2017;199:225–36.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Morgan B. How much money has poured into AI and customer experience? [Internet]. Forbes. [cited 2019 Mar 19]. Available from: https://www.forbes.com/sites/blakemorgan/2018/06/06/how-much-money-has-poured-into-ai-and-customer-experience/.

  79. Chen L, Morrow JK, Tran HT, et al. From laptop to benchtop to bedside: structure-based drug design on protein targets. Curr Pharm Des. 2012;18:1217–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Barril X. Computer-aided drug design: time to play with novel chemical matter. Expert Opin Drug Discovery. 2017;12:977–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the NCI’s Innovative Molecular Analysis Technology (IMAT) program, under which protein painting was developed.

Funding

The work of RC, AL, LL, and AH is supported in part by NIH through NIH NIAMS RO1AR068436, NIH NCI R33CA206937, and the Center for Innovative Technology Award MF18-007-LS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Haymond.

Ethics declarations

Conflict of Interest

Rachel Carter, Alessandra Luchini, Lance Liotta, and Amanda Haymond declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Update on Technological Innovations for Cancer Detection and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carter, R., Luchini, A., Liotta, L. et al. Next-Generation Techniques for Determination of Protein-Protein Interactions: Beyond the Crystal Structure. Curr Pathobiol Rep 7, 61–71 (2019). https://doi.org/10.1007/s40139-019-00198-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-019-00198-2

Keywords

Navigation