Skip to main content

Methods for Detecting Protein Binding Interfaces

  • Protocol
  • First Online:
Computer-Aided Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1274 Accesses

Abstract

Protein molecules often come together in complexes in order to achieve their biological functions in the living cell. Since the three-dimensional structure and the functionality of proteins are closely related to each other, characterizing the structural and dynamical properties of protein complexes through experiments or computational modeling is important for understanding their roles in the basic biology of organisms. Certain specific regions of a protein may play a critical role in its structural, dynamical, and functional properties. A protein molecule binds to another protein or to a drug molecule through a specific site on its surface, which is commonly known as the binding interface. Prediction of binding interfaces can assist in drug design, protein engineering, protein function elucidation, molecular docking, and analyzing the networks of protein-protein interactions. Experimental detection of binding interfaces can provide a wealth of information, but is time consuming and sometimes inaccurate. Computational methods can validate and complement experimental studies in a cost-efficient way. In this chapter we present a short survey of computational methods that have been suggested over the past two decades for the detection of protein-protein and protein-drug binding interfaces, focusing on methods that use specific amino acids as determinants of binding interfaces. Later, we describe our work in using evolutionary conservation and structural features to detect binding interfaces in proteins and guide protein-protein docking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodsell DS, Olson AJ (2000) Structural symmetry and protein function. Annu Rev Biophys Biomol Struct 29(1):105–153

    Article  CAS  PubMed  Google Scholar 

  2. Braun P, Gingras A-C (2012) History of protein-protein interactions: from egg-white to complex networks. Proteomics 12(10):1478–1498

    Article  CAS  PubMed  Google Scholar 

  3. Jones S, Thornton JM (1995) Protein-protein interactions: a review of protein dimer structures. Prog Biophys Mol Biol 63(1):31–65

    Article  CAS  PubMed  Google Scholar 

  4. Young L, Jernigan RL, Covell DG (1994) A role for surface hydrophobicity in protein-protein recognition. Protein Sci 3(5):717–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moreira IS, Fernandes PA, Ramos MJ (2007) Hot spots – a review of the protein-protein interface determinant amino-acid residues. Protein Struct Funct Bioinform 68(4):803–812

    Article  CAS  Google Scholar 

  6. Andrew A (1998) Bogan and Kurt S Thorn. Anatomy of hot spots in protein interfaces. J Mol Biol 280(1):1–9

    Article  Google Scholar 

  7. Hu Z, Ma B, Wolfson H, Nussinov R (2000) Conservation of polar residues as hot spots at protein interfaces. Protein Struct Funct Bioinform 39(4):331–342

    Article  CAS  Google Scholar 

  8. Brückner A, Polge C, Lentze N, Auerbach D, Schlattner U (2009) Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 10(6):2763–2788

    Article  PubMed  PubMed Central  Google Scholar 

  9. Srinivasa Rao V, Srinivas K, Sujini GN, Sunand Kumar GN (2014) Protein-protein interaction detection: methods and analysis. Int J Proteom 12:2014

    Google Scholar 

  10. Engin Cukuroglu H, Engin HB, Gursoy A, Gursoy O (2014) Hot spots in protein-protein interfaces: towards drug discovery. Prog Biophys Mol Biol 116:165–173

    Article  PubMed  Google Scholar 

  11. Ofran Y, Rost B (2003) Predicted protein-protein interaction sites from local sequence information. FEBS Lett 544(1-3):236–239

    Article  CAS  PubMed  Google Scholar 

  12. Assi SA, Tanaka T, Rabbitts TH, Fernandez-Fuentes N (2010) Pcrpi: presaging critical residues in protein interfaces, a new computational tool to chart hot spots in protein interfaces. Nucleic Acids Res 38(6):e86

    Article  PubMed  Google Scholar 

  13. Lichtarge O, Bourne HR, Cohen FE (1996) An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol 257(2):342–358

    Article  CAS  PubMed  Google Scholar 

  14. Wilkins AD, Bachman BJ, Erdin S, Lichtarge O (2012) The use of evolutionary patterns in protein annotation. Curr Opin Struct Biol 22(3):316–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Halperin I, Wolfson H, Nussinov R (2003) Sitelight: binding-site prediction using phage display libraries. Protein Sci 12(7):1344–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Engelen S, Ladislas AT, Sacquin-More S, Lavery R, Carbone A (2009) Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling. PLoS Comp Bio 5(1):e1000267

    Article  Google Scholar 

  17. Halperin I, Ma B, Wolfson H, Nussinov R (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Protein Struct Funct Bioinform 47(4):409–443

    Article  CAS  Google Scholar 

  18. Huang S-Y (2014) Search strategies and evaluation in protein–protein docking: principles, advances and challenges. Drug Discov Today 19(8):1081–1096

    Article  CAS  PubMed  Google Scholar 

  19. Camacho CJ, Vajda S (2005) Protein-protein association kinetics and protein docking. Curr Opin Struct Biol 12(1):36–40

    Article  Google Scholar 

  20. Kozakov D, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR, Vajda S (2013) How good is automated protein docking? Protein Struct Funct Bioinform 81(12):2159–2166

    Article  CAS  Google Scholar 

  21. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and autodocktools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fernandez-Recio J (2011) Prediction of protein binding sites and hot spots. Wiley Interdiscip Rev Comput Mol Sci 1(5):680–698

    Article  CAS  Google Scholar 

  23. Tress M, de Juan D, Graña O, Gomez MJ, Gomez-Puertas P, Gonzalez JM, Lopez G, Valencia A (2005) Scoring docking models with evolutionary information. Protein Struct Funct Bioinform 60(2):275–280

    Article  CAS  Google Scholar 

  24. Kanamori E, Murakami Y, Tsuchiya Y, Standley D, Nakamura H, Kinoshita K (2007) Docking of protein molecular surfaces with evolutionary trace analysis. Protein Struct Funct Bioinform 69(4):832–838

    Article  CAS  Google Scholar 

  25. Hashmi I, Akbal-Delibas B, Haspel N, Shehu A (2012) Guiding protein docking with geometric and evolutionary information. J Bioinform Comput Biol 10(3):1242008

    Article  PubMed  Google Scholar 

  26. Akbal-Delibas B, Hashmi I, Shehu A, Haspel N (2012) An evolutionary conservation based method for refining and re-ranking protein complex structures. J Bioinform Comput Biol 10(3):1242002

    Article  PubMed  Google Scholar 

  27. Connolly ML (1983) Analytical molecular surface calculation. J Appl Cryst 16(5):548–558

    Article  CAS  Google Scholar 

  28. Norel R, Lin SL, Wolfson HJ, Nussinov R (1999) Examination of shape complementarity in docking of unbound proteins. Protein Struct Funct Genet 36(3):307–317

    Article  CAS  Google Scholar 

  29. Dominguez C, Boelens R, Bonvin A (2003) Haddock: a protein-protein docking approach based on biochemical orbiophysical information. J Am Chem Soc 125(1):1731–1737

    Article  CAS  PubMed  Google Scholar 

  30. Fischer D, Lin SL, Wolfson HL, Nussinov R (2005) A geometry-based suite of molecular docking processes. J Mol Biol 248(2):459–477

    Google Scholar 

  31. Wolfson H, Rigoutsos I (1997) Geometric hashing: an overview. IEEE Comp Sci and Eng 4(4):10–21

    Article  Google Scholar 

  32. Akbal-Delibas B, Haspel N (2013) A conservation and biophysics guided stochastic approach to refining docked multimeric proteins. BMC Struct Biol 13(Suppl 1):S7

    Article  PubMed  PubMed Central  Google Scholar 

  33. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Craig JJ (1989) Introduction to robotics. Mechanics and control, Electrical and computer engineering: control engineering. Addison Wesley, Reading, MA

    Google Scholar 

  35. Akbal-Delibas B, Hashmi I, Shehu A, Haspel N (2011) Refinement of docked protein complex structures using evolutionary traces. In: 2011 I.E. international conference on bioinformatics and biomedicine workshops (BIBMW). IEEE, Washington, DC, pp 400–404

    Chapter  Google Scholar 

  36. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24(16):1999–2012

    Article  CAS  PubMed  Google Scholar 

  37. Wilkins A, Erdin S, Lua R, Lichtarge O (2012) Evolutionary trace for prediction and redesign of protein functional sites. Methods Mol Biol 819:29–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Akbal-Delibas B, Jagodzinski F, Haspel N (2013) A conservation and rigidity based method for detecting critical protein residues. BMC Struct Biol 13(Suppl 1):S6

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jagodzinski F, Akbal-Delibas B, Haspel N (2013) An evolutionary conservation & rigidity analysis machine learning approach for detecting critical protein residues. In: CSBW (Computational Structural Bioinformatics Workshop), in proc of ACM-BCB (ACM International conference on Bioinformatics and Computational Biology). ACM, New York, NY, pp 780–786

    Google Scholar 

  40. Jagodzinski F, Hardy J, Streinu I (2012) Using rigidity analysis to probe mutation-induced structural changes in proteins. J Bioinform Comput Biol 10(3):1242010

    Article  PubMed  Google Scholar 

  41. Jacobs DJ, Rader AJ, Thorpe MF, Kuhn LA (2001) Protein flexibility predictions using graph theory. Proteins 44:150–165

    Article  CAS  PubMed  Google Scholar 

  42. Jacobs DJ, Thorpe MF (1995) Generic rigidity percolation: the pebble game. Phys Rev Lett 75:4051–4054

    Article  CAS  PubMed  Google Scholar 

  43. Lee A, Streinu I (2008) Pebble game algorithms and sparse graphs. Discret Math 308(8):1425–1437

    Article  Google Scholar 

  44. Jacobs DJ, Hendrickson B (1997) An algorithm for two-dimensional rigidity percolation: the pebble game. J Comput Phys 137:346–365

    Article  Google Scholar 

  45. Fox N, Jagodzinski F, Li Y, Streinu I (2011) KINARI-Web: a server for protein rigidity analysis. Nucleic Acids Res 39(Web Server Issue):W177–W183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kumar MD, Bava KA, Gromiha MM, Prabakaran P, Kitajima K, Uedaira H, Sarai A (2005) Protherm and pronit: thermodynamic databases for proteins and protein–nucleic acid interactions. Nucleic Acids Res 34(suppl 1):D204–D206

    PubMed Central  Google Scholar 

  47. Higurashi M, Ishida T, Kinoshita K (2009) PiSite: a database of protein interaction sites using multiple binding states in the PDB. Nucleic Acids Res 37(suppl 1):D360–D364

    Article  CAS  PubMed  Google Scholar 

  48. Chih C. Chang, Chih J. Lin. 2011. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–27

    Google Scholar 

  49. Cheng J, Randall A, Baldi P (2006) Prediction of protein stability changes for single-site mutations using support vector machines. Protein Struct Funct Bioinform 62:1125–1132

    Article  CAS  Google Scholar 

  50. Lise S, Buchan D, Pontil M, Jones DT (2011) Predictions of hot spot residues at protein-protein interfaces using support vector machines. PLoS One 6(2):e16774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Worth CL, Preissner R, Blundell L (2011) SDM-a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res 39(Web Server Issue):W215–W222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xavier Suresh M, Michael Gromiha M, Suwa M (2015) Development of a machine learning method to predict membrane protein-ligand binding residues using basic sequence information. Adv Bioinform 2015:7

    Google Scholar 

  53. Akbal-Delibas B, Pomplun M, Haspel N (2014) AccuRMSD: a machine learning approach to predicting structure similarity of docked protein complexes. In: Proceedings of ACM-BCB (5th ACM International conference on Bioinformatics and Computational Biology). ACM, New York, NY, pp 289–296

    Google Scholar 

  54. Akbal-Delibas B, Pomplun M, Haspel N. AccuRefiner: a machine learning guided refinement method for protein-protein docking. In: Proc of BICoB (7th international conference on Bioinformatics and Computational Biology), Honolulu, Hawaii, March 2015

    Google Scholar 

Download references

Acknowledgements

The work described here was partially funded by NSF grant CCF-1116060. The author thanks Dr. Bahar Akbal-Delibas, Dr. Filip Jagodzinski, Dr. Amarda Shehu, and Irina Hashmi for their collaboration. The computations were carried out in part using the UMB research cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurit Haspel .

Editor information

Editors and Affiliations

Glossary

AI

Artificial intelligence

lRMSD

Least root mean square deviation

PDB

Protein Data Bank

SVM

Support vector machine

VdW

van der Waals

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Haspel, N. (2015). Methods for Detecting Protein Binding Interfaces. In: Zhang, W. (eds) Computer-Aided Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2015_48

Download citation

  • DOI: https://doi.org/10.1007/7653_2015_48

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3519-2

  • Online ISBN: 978-1-4939-3521-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics