Skip to main content
Log in

Imaging of the Ageing Spine

  • Geriatrics (G Guglielmi, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review was to desccribe the main processes related to the ageing spine, studied through different imaging methods.

Recent Findings

Degenerative changes in the spine represent a progressive and irreversible involutionary process. They are constantly growing in relation to the increase in the average age of the population; therefore, they constitute an important health problem with enormous socio-economic significance.

Summary

The role of the radiologist is fundamental in the evaluation of degenerative processes affecting the bone and intervertebral discs and in the diagnosis of complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

Recently published papers of particular interest have been highlighted as: • Of importance •• Of major importance

  1. Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976). 2006;31(18):2151–61. https://doi.org/10.1097/01.brs.0000231761.73859.2c.

    Article  Google Scholar 

  2. • Clarençon F, Law-Ye B, Bienvenot P, Cormier É, Chiras J. The degenerative spine. Magn Reson Imaging Clin N Am. 2016;24(3):495–513. https://doi.org/10.1016/j.mric.2016.04.008. This paper is important for the description of the imaging tecniques for the evaluations of the spine in the eldery.

    Article  PubMed  Google Scholar 

  3. Maus T. Imaging the back pain patient. Phys Med Rehabil Clin N Am. 2010;21(4):725–66. https://doi.org/10.1016/j.pmr.2010.07.004.

    Article  PubMed  Google Scholar 

  4. Gallucci M, Limbucci N, Paonessa A, Splendiani A. Degenerative disease of the spine. Neuroimaging Clin N Am. 2007;17(1):87–103. https://doi.org/10.1016/j.nic.2007.01.002.

    Article  PubMed  Google Scholar 

  5. Pretorius ES, Fishman EK. Helical (spiral) CT of the musculoskeletal system. Radiol Clin North Am. 1995;33:949–79.

    Article  CAS  PubMed  Google Scholar 

  6. Williams AL. CT diagnosis of degenerative disc disease. The bulging annulus. Radiol Clin North Am. 1983;21:289–300.

    Article  CAS  PubMed  Google Scholar 

  7. Malhotra A, Kalra VB, Wu X, Grant R, Bronen RA, Abbed KM. Imaging of lumbar spinal surgery complications. Insights Imaging. 2015;6(6):579–90. https://doi.org/10.1007/s13244-015-0435-8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen CF, Chang MC, Liu CL, Chen TH. Acute noncontiguous multiple-level thoracic disc herniations with myelopathy: a case report. Spine (Phila Pa 1976). 2004;29(8):E157–60. https://doi.org/10.1097/00007632-200404150-00024.

    Article  Google Scholar 

  9. •• Taylor JA, Bussières A. Diagnostic imaging for spinal disorders in the elderly: a narrative review. Chiropr Man Therap. 2012;20(1):16. https://doi.org/10.1186/2045-709X-20-16. This paper is fundamental because they allow to recongnize the degenerative radiological changes in the ageing spine.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Endean A, Palmer KT, Coggon D. Potential of magnetic resonance imaging findings to refine case definition for mechanical low back pain in epidemiological studies: a systematic review. Spine (Phila Pa 1976). 2011;36(2):160–9. https://doi.org/10.1097/BRS.0b013e3181cd9adb.

    Article  Google Scholar 

  11. Kalichman L, Kim DH, Li L, Guermazi A, Hunter DJ. Computed tomography-evaluated features of spinal degeneration: prevalence, intercorrelation, and association with self-reported low back pain. Spine J. 2010;10(3):200–8. https://doi.org/10.1016/j.spinee.2009.10.018.

    Article  PubMed  Google Scholar 

  12. Wang Y, Owoc JS, Boyd SK, et al. Regional variations in trabecular architecture of the lumbar vertebra: associations with age, disc degeneration and disc space narrowing. Bone. 2013;56(2):249–54.

    Article  PubMed  Google Scholar 

  13. Miller TT. Imaging of disk disease and degenerative spondylosis of the lumbar spine. Semin Ultrasound CT MR. 2004;25(6):506–22. https://doi.org/10.1053/j.sult.2004.09.006.

    Article  PubMed  Google Scholar 

  14. Kelsey JL, Githens PB, White AA, et al. An epidemiologic study of lifting and twisting on the job and risk for acute prolapsed lumbar intervertebral disc. J Orthop Res. 1984;2:61–6.

    Article  CAS  PubMed  Google Scholar 

  15. Luoma K, Riihimaki H, Luukkonen R, et al. Low back pain in relation to lumbar disc degeneration. Spine. 2000;25:487–92.

    Article  CAS  PubMed  Google Scholar 

  16. Kelsey JL, Githens PB, O’Conner T, et al. Acute prolapsed lumbar intervertebral disc: an epidemiologic study with special reference to driving automobiles and cigarette smoking. Spine. 1984;9:608–13.

    Article  CAS  PubMed  Google Scholar 

  17. Iwahashi M, Matsuzaki H, Tokuhashi Y, et al. Mechanism of intervertebral disc degeneration caused by nicotine in rabbits to explicate intervertebral disc disorders caused by smoking. Spine. 2002;27:1396–401.

    Article  PubMed  Google Scholar 

  18. Kauppila LI, Penttila A, Karhunen PJ, et al. Lumbar disc degeneration and atherosclerosis of the abdominal aorta. Spine. 1994;19:923–9.

    Article  CAS  PubMed  Google Scholar 

  19. Kauppila LI, McAlindon T, Evans S, et al. Disc degeneration/back pain and calcification of the abdominal aorta: a 25-year follow-up study in Framingham. Spine. 1997;22:1642–7.

    Article  CAS  PubMed  Google Scholar 

  20. Kurunlahti M, Kerttula L, Jauhianien J, et al. Correlation of diffusion in lumbar intervertebral discs with occlusion of lumbar arteries: a study in adult volunteers. Radiology. 2001;221:779–86.

    Article  CAS  PubMed  Google Scholar 

  21. Thompson JP, et al. Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine (Phila Pa 1976). 1990. https://doi.org/10.1097/00007632-199005000-00012.

    Article  Google Scholar 

  22. • Parizel PM, Van Hoyweghen AJ, Bali A, Van Goethem J, Van Den Hauwe L. The degenerative spine: pattern recognition and guidelines to image interpretation. Handb Clin Neurol. 2016;136:787–808. https://doi.org/10.1016/B978-0-444-53486-6.00039-9. This paper is important for the description of the imaging tecniques for the evaluations of the spine in the eldery.

    Article  CAS  PubMed  Google Scholar 

  23. Pfirrmann CW, Metzdorf A, Zanetti M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976). 2001;26:1873–8.

    Article  CAS  Google Scholar 

  24. Griffith JF, Wang YX, Antonio GE, et al. Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine. 2007;32:E708–12.

    Article  PubMed  Google Scholar 

  25. Frobin W, Brinckmann P, Kramer M, et al. Height of lumbar discs measured from radiographs compared with degeneration and height classified from MR images. Eur Radiol. 2001;11(2):263–9.

    Article  CAS  PubMed  Google Scholar 

  26. Videman T, Battie MC, Gibbons LE, et al. Associations between back pain history and lumbar MRI findings. Spine. 2003;28(6):582–8.

    Article  PubMed  Google Scholar 

  27. Videman T, Nummi P, Battie MC, et al. Digital assessment of MRI for lumbar disc desiccation. A comparison of digital versus subjective assessments and digital intensity profiles versus discogram and macroanatomic findings. Spine (Phila Pa 1976). 1994;19:192–8.

    Article  CAS  Google Scholar 

  28. Knutsson F. The vacuum phenomenon in the intervertebral discs. Acta Radiol. 1942;23:173–9.

    Article  Google Scholar 

  29. Iguchi T, et al. Intimate relationship between instability and degenerative signs at L4/5 segment examined by flexion–extension radiography. Eur Spine J. 2011;20(8):1349–54.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Leone A, et al. Lumbar intervertebral instability: a review. Radiology. 2007;245(1):62–7717.

    Article  PubMed  Google Scholar 

  31. Tallroth K. Plain CT of the degenerative lumbar spine. Eur J Radiol. 1998;27(3):206–13. https://doi.org/10.1016/s0720-048x(97)00168-x.

    Article  CAS  PubMed  Google Scholar 

  32. Hjarbaek J, Kristensen PW, Hauge P. Spinal gas collection demonstrated at CT. Acta Radiol. 1992;33:93–6.

    Article  CAS  PubMed  Google Scholar 

  33. Chanchairujira K, Chung CB, Kim Young J, et al. Intervertebral disk calcification of the spine in an elderly population: radiographic prevalence, location, and distribution and correlation with spinal degeneration. Radiol. 2004;230:499–503.

    Article  Google Scholar 

  34. Ruiz Santiago F, Láinez Ramos-Bossini AJ, Wáng YXJ, López ZD. The role of radiography in the study of spinal disorders. Quant Imaging Med Surg. 2020;10(12):2322–55. https://doi.org/10.21037/qims-20-1014.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Malfair D, Beall DP. Imaging the degenerative diseases of the lumbar spine. Magn Reson Imaging Clin N Am. 2007;15(2):221–38. https://doi.org/10.1016/j.mric.2007.04.001.

    Article  PubMed  Google Scholar 

  36. Boutin RD, Steinbach LS, Finnesey K. MR imaging of degenerative diseases in the cervical spine. Magn Reson Imaging Clin N Am. 2000;8(3):471–90.

    Article  CAS  PubMed  Google Scholar 

  37. •• Kushchayev SV, Glushko T, Jarraya M, Schuleri KH, Preul MC, Brooks ML, Teytelboym OM. ABCs of the degenerative spine. Insights Imaging. 2018;9(2):253–74. https://doi.org/10.1007/s13244-017-0584-z. This paper is fundamental because they allow to recongnize the degenerative radiological changes in the ageing spine.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yu SW, Haughton VM, Sether LA, et al. Comparison of MR and diskography in detecting radial tears of the annulus: a postmortem study. AJNR Am J Neuroradiol. 1989;10:1077–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Munter FM, et al. Serial MR imaging of annular tears in lumbar Intervertebral disks. AJNR Am J Neuroradiol. 2002;23(7):1105–9.

    PubMed  PubMed Central  Google Scholar 

  40. Fardon DF, Williams AL, Dohring EJ, Murtagh FR, Gabriel Rothman SL, Sze GK. Lumbar disc nomenclature: version 2.0. Recommendations of the combined task forces of the North American spine society, the American society of spine radiology and the American society of neuroradiology. Spine J. 2014;14:2525–45.

    Article  PubMed  Google Scholar 

  41. Dudli S, Fields AJ, Samartzis D, Karppinen J, Lotz JC. Pathobiology of Modic changes. Eur Spine J. 2016;25(11):3723–34.

    Article  PubMed  Google Scholar 

  42. Jensen MC, Kjaer P, Jensen TS, et al. Magnetic resonance imaging of the lumbar spine in people without back pain. N Engl J Med. 1994;331(2):69–73.

    Article  CAS  PubMed  Google Scholar 

  43. Borenstein DG, O’Mara JW Jr, Boden SD, et al. The value of magnetic resonance imaging of the lumbar spine to predict low-back pain in asymptomatic subjects: a seven-year follow-up study. J Bone Joint Surg Am. 2001;83(9):1306–11.

    Article  CAS  PubMed  Google Scholar 

  44. .Videman T, Nurminen M. The occurrence of anular tears and their relation to lifetime back pain history: a cadaveric study using barium. Spine (Phila Pa 1976). 2004;29(23):2668–76.

    Article  Google Scholar 

  45. Balzano RF, Guglielmi G. Imaging of spine pain. In: Cova M, Stacul F, editors. Pain imaging. Cham: Springer; 2019.

    Chapter  Google Scholar 

  46. Peng B, Hou S, Wu W, et al. The pathogenesis and clinical significance of a high-intensity zone (HIZ) of lumbar intervertebral disc on MR imaging in the patient with discogenic low back pain. Eur Spine J. 2006;15(5):583–7.

    Article  PubMed  Google Scholar 

  47. Pande KC, Khurjekar K, Kanikdaley V. Correlation of low back pain to a high-intensity zone of the lumbar disc in Indian patients. J Orthop Surg (Hong Kong). 2009;17(2):190–3.

    Article  Google Scholar 

  48. Kluner C, Kivelitz D, Rogalla P, et al. Percutaneous discography: comparison of low-dose CT, fluoroscopy and MRI in the diagnosis of lumbar disc disruption. Eur Spine J. 2006;15(5):620–6.

    Article  PubMed  Google Scholar 

  49. Carragee EJ, Tanner CM, Yang B, Brito JL, Truong T. False-positive findings on lumbar discography. Reliability of subjective concordance assessment. Spine (Phila Pa 1976). 1999; 24(23):2542–7.https://doi.org/10.1097/00007632-199912010-00017.

    Article  CAS  Google Scholar 

  50. Arana E, Royuela A, Kovacs FM, et al. Lumbar spine: agreement in the interpretation of 1.5-T MR images by using the Nordic Modic Consensus Group classification form. Radiology. 2010;254:809–17.

    Article  PubMed  Google Scholar 

  51. Bogduk N. Functional anatomy of the disc and lumbar spine. In: Karin Büttner-Janz SHH, McAfee PC, editors. The artificial disc. Berlin: Springer-Verlag; 2003.

    Google Scholar 

  52. Schmid G, Witteler A, Willburger R, et al. Lumbar disk herniation: correlation of histologic findings with marrow signal intensity changes in vertebral endplates at MR imaging. Radiology. 2004;231:352–8.

    Article  PubMed  Google Scholar 

  53. Qaseem A, et al. Noninvasive treatments for acute, subacute, and chronic low back pain: a clinical practice guideline from the American College of Physicians. Ann Intern Med. 2017;166(7):514–30.

    Article  PubMed  Google Scholar 

  54. Izzo R, et al. Spinal pain. Eur J Radiol. 2015;84(5):746–56.

    Article  CAS  PubMed  Google Scholar 

  55. Tandon PN, Ramamurthi R. Textbook of neurosurgery, third edition, three volume set. New Delhi: Jaypee Brothers, Medical Publishers Pvt. Limited; 2012.

    Google Scholar 

  56. Pfirrmann CW, Resnick D. Schmorl nodes of the thoracic and lumbar spine: radiographic-pathologic study of prevalence, characterization, and correlation with degenerative changes of 1,650 spinal levels in 100 cadavers. Radiology. 2001;219(2):368–74. https://doi.org/10.1148/radiology.219.2.r01ma21368.

    Article  CAS  PubMed  Google Scholar 

  57. Grivé E, Rovira A, Capellades J, Rivas A, Pedraza S. Radiologic findings in two cases of acute Schmörl’s nodes. AJNR Am J Neuroradiol. 1999;20(9):1717–21.

    PubMed  PubMed Central  Google Scholar 

  58. Weishaupt D, Zanetti M, Hodler J, et al. MR imaging of the lumbar spine: prevalence of intervertebral disk extrusion and sequestration, nerve root compression, end plate abnormalities, and osteoarthritis of the facet joints in asymptomatic volunteers. Radiology. 1998;209(3):661–6.

    Article  CAS  PubMed  Google Scholar 

  59. Jarvik JG, Hollingworth W, Heagerty PJ, et al. Three-year incidence of low back pain in an initially asymptomatic cohort: clinical and imaging risk factors. Spine. 2005;30(13):1541–8.

    Article  PubMed  Google Scholar 

  60. Chung CB, Vande Berg BC, Tavernier T, et al. End plate marrow changes in the asymptomatic lumbosacral spine: frequency, distribution and correlation with age and degenerative changes. Skeletal Radiol. 2004;33(7):399–404.

    Article  PubMed  Google Scholar 

  61. Carragee EJ, Han MY, Suen PW, et al. Clinical outcomes after lumbar discectomy for sciatica: the effects of fragment type and annular competence. J Bone Joint Surg Am. 2003;85(1):102–8.

    Article  PubMed  Google Scholar 

  62. Fandino J, Botana C, Viladrich A, et al. Reoperation after lumbar disc surgery: results in 130 cases. Acta Neurochir (Wien). 1993;122(1–2):102–4.

    Article  CAS  Google Scholar 

  63. Dora C, Schmid MR, Elfering A, et al. Lumbar disk herniation: do MR imaging findings predict recurrence after surgical diskectomy? Radiology. 2005;235(2):562–7.

    Article  PubMed  Google Scholar 

  64. Bibby SR, Jones DA, Lee RB, et al. The pathophysiology of the intervertebral disc. Joint Bone Spine. 2001;68:537–42.

    Article  CAS  PubMed  Google Scholar 

  65. Ahn Y, Lee SH, Lee SC, et al. Factors predicting excellent outcome of percutaneous cervical discectomy: analysis of 111 consecutive cases. Neuroradiology. 2004;46(5):378–84.

    Article  CAS  PubMed  Google Scholar 

  66. Ross JS, Modic MT, Masaryk TJ, et al. Assessment of extradural degenerative disease with Gd-DTPAenhanced MR imaging: correlation with surgical and pathologic findings. AJNR Am J Neuroradiol. 1989;10:1243–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Godersky JC, Erickson DL, Seljeskog EL. Extreme lateral disc herniation: diagnosis by computed tomographic scanning. Neurosurgery. 1984;14:549–52.

    Article  CAS  PubMed  Google Scholar 

  68. Coste J, Judet O, Barre O, Siaud J-R, de Lara AC, Paolaggi J-B. Inter- and intraobserver variability in the interpretation of computed tomography of the lumbar spine. J Clin Epidemiol. 1994;47:375–81.

    Article  CAS  PubMed  Google Scholar 

  69. Firooznia H, Benjamin V, Kricheff II, Rafii M, Golimbu C. CT of lumbar spine disk herniation: correlation with surgical findings. Am J Neurol Res. 1984;5:91–6.

    Google Scholar 

  70. Schipper J, Kardaun JWPF, Braakman R, van Dongen KJ, Blaauw G. Degenerative diseases of the spine. The role of myelography and myelo-CT. Radiology. 1987;165:227–31.

    Article  CAS  PubMed  Google Scholar 

  71. Itoh R, Murata K, Kamata M, et al. Lumbosacral nerve root enhancement with disk herniation on contrast-enhanced MR. AJNR Am J Neuroradiol. 1996;17:1619–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Koc RK, et al. Intradural lumbar disc herniation: report of two cases. Neurosurg Rev. 2001;24(1):44–7.

    Article  CAS  PubMed  Google Scholar 

  73. Klaassen Z, Tubbs RS, Apaydin N, Hage R, Jordan R, Loukas M. Vertebral spinal osteophytes. Anat Sci Int. 2011;86(1):1–9. https://doi.org/10.1007/s12565-010-0080-8.

    Article  PubMed  Google Scholar 

  74. Kasai Y, Kawakita E, Sakakibara T, Akeda K, Uchida A. Direction of the formation of anterior lumbar vertebral osteophytes. BMC Musculoskelet Disord. 2009;10:4. https://doi.org/10.1186/1471-2474-10-4.

    Article  PubMed  PubMed Central  Google Scholar 

  75. de Roos A, Kressel H, Spritzer C, Dalinka M. MR imaging of marrow changes adjacent to end plates in degenerative lumbar disk disease. AJR Am J Roentgenol. 1987;149(3):531–4. https://doi.org/10.2214/ajr.149.3.531.

    Article  PubMed  Google Scholar 

  76. Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology. 1988;166(1 Pt 1):193–9. https://doi.org/10.1148/radiology.166.1.3336678.

    Article  CAS  PubMed  Google Scholar 

  77. Mitra D, Cassar-Pullicino VN, McCall IW. Longitudinal study of high intensity zones on MR of lumbar intervertebral discs. Clin Radiol. 2004;59(11):1002–8. https://doi.org/10.1016/j.crad.2004.06.001.

    Article  CAS  PubMed  Google Scholar 

  78. Toyone T, Takahashi K, Kitahara H, Yamagata M, Murakami M, Moriya H. Vertebral bone-marrow changes in degenerative lumbar disc disease. An MRI study of 74 patients with low back pain. J Bone Joint Surg Br. 1994;76(5):757–64.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang YH, Zhao CQ, Jiang LS, Chen XD, Dai LY. Modic changes: a systematic review of the literature. Eur Spine J. 2008;17(10):1289–99. https://doi.org/10.1007/s00586-008-0758-y.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Winegar BA, Kay MD, Taljanovic M. Magnetic resonance imaging of the spine. Pol J Radiol. 2020;85:e550–74. https://doi.org/10.5114/pjr.2020.99887.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kalichman L, Hunter DJ. Lumbar facet joint osteoarthritis: a review. Semin Arthritis Rheum. 2007;37(2):69–80. https://doi.org/10.1016/j.semarthrit.2007.01.007.

    Article  PubMed  Google Scholar 

  82. Beresford ZM, Kendall RW, Willick SE. Lumbar facet syndromes. Curr Sports Med Rep. 2010;9(1):50–6. https://doi.org/10.1249/JSR.0b013e3181caba05.

    Article  PubMed  Google Scholar 

  83. Varlotta GP, Lefkowitz TR, Schweitzer M, Errico TJ, Spivak J, Bendo JA, Rybak L. The lumbar facet joint: a review of current knowledge: part 1: anatomy, biomechanics, and grading. Skeletal Radiol. 2011;40(1):13–23. https://doi.org/10.1007/s00256-010-0983-4.E.

    Article  PubMed  Google Scholar 

  84. Czervionke LF, Fenton DS. Fat-saturated MR imaging in the detection of inflammatory facet arthropathy (facet synovitis) in the lumbar spine. Pain Med. 2008;9(4):400–6. https://doi.org/10.1111/j.1526-4637.2007.00313.x.

    Article  PubMed  Google Scholar 

  85. Altinkaya N, Yildirim T, Demir S, Alkan O, Sarica FB. Factors associated with the thickness of the ligamentum flavum: is ligamentum flavum thickening due to hypertrophy or buckling? Spine (Phila Pa 1976). 2011;36(16):E1093–7. https://doi.org/10.1097/BRS.0b013e318203e2b5.

    Article  Google Scholar 

  86. Yilmazlar S, Kocaeli H, Uz A, et al. Clinical importance of ligamentous and osseous structures in the cervical uncovertebral foraminal region. Clin Anat. 2003;16(5):404–10.

    Article  PubMed  Google Scholar 

  87. Doyle AJ, Merrilees M. Synovial cysts of the lumbar facet joints in a symptomatic population: prevalence on magnetic resonance imaging. Spine (Phila Pa 1976). 2004;29(8):874–8. https://doi.org/10.1097/00007632-200404150-00010.

    Article  Google Scholar 

  88. Apostolaki E, Davies AM, Evans N, Cassar-Pullicino VN. MR imaging of lumbar facet joint synovial cysts. Eur Radiol. 2000;10(4):615–23. https://doi.org/10.1007/s003300050973.

    Article  CAS  PubMed  Google Scholar 

  89. Woiciechowsky C, Thomale UW, Kroppenstedt SN. Degenerative spondylolisthesis of the cervical spine–symptoms and surgical strategies depending on disease progress. Eur Spine J. 2004;13(8):680–4. https://doi.org/10.1007/s00586-004-0673-9.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wang YXJ, Káplár Z, Deng M, Leung JCS. Lumbar degenerative spondylolisthesis epidemiology: A systematic review with a focus on gender-specific and age-specific prevalence. J Orthop Translat. 2016;11:39–52.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Don AS, Robertson PA. Facet joint orientation in spondylolysis and isthmic spondylolisthesis. J Spinal Disord Tech. 2008;21(2):112–5. https://doi.org/10.1097/BSD.0b013e3180600902.

    Article  PubMed  Google Scholar 

  92. Niggemann P, Kuchta J, Beyer HK, Grosskurth D, Schulze T, Delank KS. Spondylolysis and spondylolisthesis: prevalence of different forms of instability and clinical implications. Spine (Phila Pa 1976). 2011;36(22):E1463–8. https://doi.org/10.1097/BRS.0b013e3181d47a0e.

    Article  Google Scholar 

  93. Aebi M. The adult scoliosis. Eur Spine J. 2005;14(10):925–48. https://doi.org/10.1007/s00586-005-1053-9.

    Article  PubMed  Google Scholar 

  94. Le Huec JC, Thompson W, Mohsinaly Y, Barrey C, Faundez A. Sagittal balance of the spine. Eur Spine J. 2019;28(9):1889–905. https://doi.org/10.1007/s00586-019-06083-1.

    Article  PubMed  Google Scholar 

  95. Sud A, Tsirikos AI. Current concepts and controversies on adolescent idiopathic scoliosis: part I. Indian J Orthop. 2013;47(2):117–28. https://doi.org/10.4103/0019-5413.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Boyle JJ, Milne N, Singer KP. Influence of age on cervicothoracic spinal curvature: an ex vivo radiographic survey. Clin Biomech (Bristol, Avon). 2002;17(5):361–7. https://doi.org/10.1016/s0268-0033(02)00030-x.

    Article  Google Scholar 

  97. Kado DM, Prenovost K, Crandall C. Narrative review: hyperkyphosis in older persons. Ann Intern Med. 2007;147(5):330–8. https://doi.org/10.7326/0003-4819-147-5-200709040-00008.

    Article  PubMed  Google Scholar 

  98. Ohrt-Nissen S, Cheung JPY, Hallager DW, Gehrchen M, Kwan K, Dahl B, Cheung KMC, Samartzis D. Reproducibility of thoracic kyphosis measurements in patients with adolescent idiopathic scoliosis. Scoliosis Spinal Disord. 2017;12:4. https://doi.org/10.1186/s13013-017-0112-4.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Jiang SD, Jiang LS, Dai LY. Degenerative cervical spondylolisthesis: a systematic review. Int Orthop. 2011;35(6):869–75. https://doi.org/10.1007/s00264-010-1203-5.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sampath P, Bendebba M, Davis JD, Ducker TB. Outcome of patients treated for cervical myelopathy. A prospective, multicenter study with independent clinical review. Spine (Phila Pa 1976). 2000;25(6):670–6. https://doi.org/10.1097/00007632-200003150-00004.

    Article  CAS  Google Scholar 

  101. Malghem J, Willems X, Vande Berg B, Robert A, Cosnard G, Lecouvet F. Comparaison des mesures du canal lombaire en IRM et TDM [Comparison of lumbar spinal canal measurements on MRI and CT]. J Radiol. 2009;90(4):493–7. https://doi.org/10.1016/s0221-0363(09)74009-0.

    Article  CAS  PubMed  Google Scholar 

  102. Jinkins JR, Dworkin JS, Damadian RV. Upright, weight-bearing, dynamic-kinetic MRI of the spine: initial results. Eur Radiol. 2005;15(9):1815–25. https://doi.org/10.1007/s00330-005-2666-4.

    Article  PubMed  Google Scholar 

  103. Kang Y, Lee JW, Koh YH, Hur S, Kim SJ, Chai JW, Kang HS. New MRI grading system for the cervical canal stenosis. AJR Am J Roentgenol. 2011;197(1):W134–40. https://doi.org/10.2214/AJR.10.5560.

    Article  PubMed  Google Scholar 

  104. Park HJ, Kim SS, Lee SY, Park NH, Chung EC, Rho MH, Kwon HJ, Kook SH. A practical MRI grading system for cervical foraminal stenosis based on oblique sagittal images. Br J Radiol. 2013;86(1025):20120515. https://doi.org/10.1259/bjr.20120515.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Lee MJ, Cassinelli EH, Riew KD. Prevalence of cervical spine stenosis. Anatomic study in cadavers. J Bone Joint Surg Am. 2007;89(2):376–80. https://doi.org/10.2106/JBJS.F.00437.

    Article  PubMed  Google Scholar 

  106. Morishita Y, Naito M, Hymanson H, Miyazaki M, Wu G, Wang JC. The relationship between the cervical spinal canal diameter and the pathological changes in the cervical spine. Eur Spine J. 2009;18(6):877–83. https://doi.org/10.1007/s00586-009-0968-y.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lee SY, Kim TH, Oh JK, Lee SJ, Park MS. Lumbar stenosis: a recent update by review of literature. Asian Spine J. 2015;9(5):818–28. https://doi.org/10.4184/asj.2015.9.5.818.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Pierro A, Cilla S, Maselli G, Cucci E, Ciuffreda M, Sallustio G. Sagittal normal limits of lumbosacral spine in a large adult population: a quantitative magnetic resonance imaging analysis. J Clin Imaging Sci. 2017;7:35. https://doi.org/10.4103/jcis.JCIS_24_17.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lee GY, Lee JW, Choi HS, Oh KJ, Kang HS. A new grading system of lumbar central canal stenosis on MRI: an easy and reliable method. Skeletal Radiol. 2011;40(8):1033–9. https://doi.org/10.1007/s00256-011-1102-x.

    Article  PubMed  Google Scholar 

  110. Park HJ, Kim SS, Lee YJ, Lee SY, Park NH, Choi YJ, Chung EC, Rho MH. Clinical correlation of a new practical MRI method for assessing central lumbar spinal stenosis. Br J Radiol. 2013;86(1025):20120180. https://doi.org/10.1259/bjr.20120180.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

No acknowledgements.

Funding

The authors received no financial sponsors or other funding for this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the writing of the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Giuseppe Guglielmi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Geriatrics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellitti, R., Testini, V., Piccarreta, R. et al. Imaging of the Ageing Spine. Curr Radiol Rep 9, 14 (2021). https://doi.org/10.1007/s40134-021-00388-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40134-021-00388-0

Keywords

Navigation