Skip to main content
Log in

A Combination of Surgical and Chemical Induction in a Rabbit Model for Osteoarthritis of the Knee

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Appropriate animal models of osteoarthritis (OA) are essential to develop new treatment modalities for OA. A combination of surgical and chemical induction could be appropriate for OA models.

Methods:

Rabbit knee OA models developed by surgical induction (anterior cruciate ligament transection [ACLT]), chemical induction (monosodium iodoacetate [MIA] injection), and a combination of both were compared to assess compositional and structural destruction of the knee joint. Twenty-one New Zealand white rabbits were randomly divided into 3 groups to induce OA (group 1: ACLT, n = 3; group 2: MIA [3, 6, 9 mg] injection, n = 9; group 3: ACLT + MIA [3, 6, 9 mg] injection, n = 9).

Results:

In all groups, the Modified Mankin score was significantly higher in the osteoarthritis-induced knee than in the control. Modified Mankin scores were compared by category. The ACLT group was observed to score high in cartilage structure. In the MIA group, chondrocytes and matrix staining showed higher scores, and the ACLT+MIA group scored higher in all categories for cartilage structure, chondrocytes, matrix staining, and tidemark integrity. The ACLT + 3 mg MIA showed definite OA characteristics such as cartilage surface destruction and degeneration of cartilage layers, and the ACLT + 6 mg MIA and ACLT + 9 mg MIA showed more prominent OA characteristics such as cartilage surface destruction, matrix disorganization, and osteophyte formation.

Conclusion:

The combination of MIA injection and ACLT could be an appropriate method for OA induction in rabbit models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cucchiarini M, de Girolamo L, Filardo G, Oliveira JM, Orth P, Pape D, et al. Basic science of osteoarthritis. J Exp Orthop. 2016;3:22.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ayhan E, Kesmezacar H, Akgun I. Intraarticular injections (corticosteroid, hyaluronic acid, platelet rich plasma) for the knee osteoarthritis. World J Orthop. 2014;5:351–61.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Piovan G, Farinelli L, Screpis D, Iacono V, Povegliano L, Bonomo M, et al. Distal femoral osteotomy versus lateral unicompartmental arthroplasty for isolated lateral tibiofemoral osteoarthritis with intra-articular and extra-articular deformity: a propensity score-matched analysis. Knee Surg Relat Res. 2022;34:34.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Roseti L, Desando G, Cavallo C, Petretta M, Grigolo B. Articular cartilage regeneration in osteoarthritis. Cells. 2019;8:1305.

    Article  CAS  PubMed Central  Google Scholar 

  5. Malfait AM, Little CB. On the predictive utility of animal models of osteoarthritis. Arthritis Res Ther. 2015;17:225.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cope PJ, Ourradi K, Li Y, Sharif M. Models of osteoarthritis: the good, the bad and the promising. Osteoarthritis Cartilage. 2019;27:230–9.

    Article  CAS  Google Scholar 

  7. Kim JE, Song DH, Kim SH, Jung Y, Kim SJ. Development and characterization of various osteoarthritis models for tissue engineering. PLoS One. 2018;13:e0194288.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Samvelyan HJ, Hughes D, Stevens C, Staines KA. Models of osteoarthritis: relevance and new insights. Calcif Tissue Int. 2021;109:243–56.

    Article  CAS  PubMed  Google Scholar 

  9. Liu Z, Hu X, Man Z, Zhang J, Jiang Y, Ao Y. A novel rabbit model of early osteoarthritis exhibits gradual cartilage degeneration after medial collateral ligament transection outside the joint capsule. Sci Rep. 2016;6:34423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Glasson SS, Blanchet TJ, Morris EA. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthritis Cartilage. 2007;15:1061–9.

    Article  CAS  Google Scholar 

  11. Guzman RE, Evans MG, Bove S, Morenko B, Kilgore K. Mono-iodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: an animal model of osteoarthritis. Toxicol Pathol. 2003;31:619–24.

    Article  CAS  PubMed  Google Scholar 

  12. Kwon DR, Park GY, Lee SU. The effects of intra-articular platelet-rich plasma injection according to the severity of collagenase-induced knee osteoarthritis in a rabbit model. Ann Rehabil Med. 2012;36:458–65.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Siebelt M, Groen HC, Koelewijn SJ, de Blois E, Sandker M, Waarsing JH, et al. Increased physical activity severely induces osteoarthritic changes in knee joints with papain induced sulfate-glycosaminoglycan depleted cartilage. Arthritis Res Ther. 2014;16:R32.

    Article  PubMed  PubMed Central  Google Scholar 

  14. McCoy AM. Animal models of osteoarthritis: comparisons and key considerations. Vet Pathol. 2015;52:803–18.

    Article  CAS  PubMed  Google Scholar 

  15. Thysen S, Luyten FP, Lories RJ. Targets, models and challenges in osteoarthritis research. Dis Model Mech. 2015;8:17–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mainil-Varlet P, Schiavinato A, Ganster MM. Efficacy Evaluation of a new hyaluronan derivative HYADD® 4-G to maintain cartilage integrity in a rabbit model of osteoarthritis. Cartilage. 2013;4:28–41.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Narez GE, Fischenich KM, Donahue TLH. Experimental animal models of post-traumatic osteoarthritis of the knee. Orthop Rev (Pavia). 2020;12:8448.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kuroki K, Cook CR, Cook JL. Subchondral bone changes in three different canine models of osteoarthritis. Osteoarthritis Cartilage. 2011;19:1142–9.

    Article  CAS  Google Scholar 

  19. Hayami T, Pickarski M, Zhuo Y, Wesolowski GA, Rodan GA, Duong LT. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone. 2006;38:234–43.

    Article  PubMed  Google Scholar 

  20. Makiev KG, Vasios IS, Georgoulas P, Tilkeridis K, Drosos G, Ververidis A. Clinical significance and management of meniscal extrusion in different knee pathologies: a comprehensive review of the literature and treatment algorithm. Knee Surg Relat Res. 2022;34:35.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gregory MH, Capito N, Kuroki K, Stoker AM, Cook JL, Sherman SL. A review of translational animal models for knee osteoarthritis. Arthritis. 2012;2012:764621.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Boulocher C, Duclos ME, Arnault F, Roualdes O, Fau D, Hartmann DJ, et al. Knee joint ultrasonography of the ACLT rabbit experimental model of osteoarthritis: relevance and effectiveness in detecting meniscal lesions. Osteoarthritis Cartilage. 2008;16:470–9.

    Article  CAS  Google Scholar 

  23. Takahashi I, Matsuzaki T, Kuroki H, Hoso M. Induction of osteoarthritis by injecting monosodium iodoacetate into the patellofemoral joint of an experimental rat model. PLoS One. 2018;13:e0196625.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Combe R, Bramwell S, Field MJ. The monosodium iodoacetate model of osteoarthritis: a model of chronic nociceptive pain in rats? Neurosci Lett. 2004;370:236–40.

    Article  CAS  PubMed  Google Scholar 

  25. Ängeby Möller K, Klein S, Seeliger F, Finn A, Stenfors C, Svensson CI. Monosodium iodoacetate-induced monoarthritis develops differently in knee versus ankle joint in rats. Neurobiol Pain. 2019;6:100036.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vinod E, Boopalan PRJVC, Arumugam S, Sathishkumar S. Creation of monosodium iodoacetate-induced model of osteoarthritis in rabbit knee joint. Indian J Med Res. 2018;147:312–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kobayashi K, Imaizumi R, Sumichika H, Tanaka H, Goda M, Fukunari A, et al. Sodium iodoacetate-induced experimental osteoarthritis and associated pain model in rats. J Vet Med Sci. 2003;65:1195–9.

    Article  PubMed  Google Scholar 

  28. Grigolo B, Lisignoli G, Desando G, Cavallo C, Marconi E, Tschon M, et al. Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit. Tissue Eng Part C Methods. 2009;15:647–58.

    Article  CAS  PubMed  Google Scholar 

  29. Veronesi F, Fini M, Martini L, Berardinelli P, Russo V, Filardo G, et al. In vivo model of osteoarthritis to compare allogenic amniotic epithelial stem cells and autologous adipose derived cells. Biology (Basel). 2022;11:681.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bryk M, Chwastek J, Mlost J, Kostrzewa M, Starowicz K. Sodium monoiodoacetate dose-dependent changes in matrix metalloproteinases and inflammatory components as prognostic factors for the progression of osteoarthritis. Front Pharmacol. 2021;12:643605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu-Bryan R. Inflammation and intracellular metabolism: new targets in OA. Osteoarthritis Cartilage. 2015;23:1835–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study received no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok Jung Kim.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical statement

The animal studies were performed after receiving approval of the Institutional Animal Care and Use Committee (IACUC) (Approval No. UJA2019-10A).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Go, E.J., Kim, S.A., Cho, ML. et al. A Combination of Surgical and Chemical Induction in a Rabbit Model for Osteoarthritis of the Knee. Tissue Eng Regen Med 19, 1377–1388 (2022). https://doi.org/10.1007/s13770-022-00488-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-022-00488-8

Keywords

Navigation