Skip to main content

Advertisement

Log in

Section of the anterior cruciate ligament in the rabbit as animal model for osteoarthritis progression

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to determine whether instability of knee is a risk factor in the progression of osteoarthritis (OA).

Methods

Twenty-four mature New Zealand White rabbits were randomly divided into four groups. The control group received 0.3 ml saline in the first, fourth and seventh days in the right knee, while the other three groups received the same dosage 4 % papain and its activator 0.03 M L-cystein. The P3w group knees were harvested at three weeks after the last papain injection, the P6w group knees received a sham surgery at three weeks and were harvested at six weeks after the last papain injection, while the P+ACLT group knees received ACL transection at three weeks and were harvested at six weeks after the last papain injection. Cartilage degradation of femoral condyles and tibial plateaus were evaluated by X-rays, macroscopy, light microscopic and transmission electron microscopy (TEM).

Results

According to X-rays grade scale, macroscopic grade scale, light microscopic modified Mankin scale and TEM, in the P3w knees, cartilage degeneration of femoral condyles and tibial plateaus were significantly severe compared to those of the control group (P < 0.05), but the differences were not apparent in comparison with the P6w knees (P > 0.05). However, in P+ACLT knees, cartilage degeneration of femoral condyles and tibial plateaus appeared more severe in comparison with P6w knees, and the difference was significant (P < 0.05).

Conclusions

Instability of knee plays a significant role in increasing the severity of cartilage degradation in rabbit knees and should be considered as a risk factor in OA knee progression. Our data may suggest that reconstruction of knee stability may prevent or delay the progression of OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Blalock D, Miller A, Tilley M, Wang J (2015) Joint instability and osteoarthritis. Clin Med Insights Arthritis Musculoskelet Disord 8:15–23

    PubMed Central  PubMed  Google Scholar 

  2. Burstein AH, Wright TM (1994) Fundamentals of orthopaedic biomechanics. Williams & Wilkins, Baltimore

    Google Scholar 

  3. Tochigi Y, Vaseenon T, Heiner AD et al (2011) Instability dependency of osteoarthritis development in a rabbit model of graded anterior cruciate ligament transection. J Bone Joint Surg Am 93(7):640–647

    Article  PubMed Central  PubMed  Google Scholar 

  4. Peat G, McCarney R, Croft P (2001) Knee pain and osteoarthritis in older adults: a review of community burden and current use of primary health care. Ann Rheum Dis 60:91–97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Blagojevic M, Jinks C, Jeffery A, Jordan KP (2010) Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage 18:24–33

    Article  CAS  PubMed  Google Scholar 

  6. Anderson DD, Chubinskaya S, Guilak F et al (2011) Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J Orthop Res 29:802–809

    Article  PubMed Central  PubMed  Google Scholar 

  7. Magnusson K, Haugen IK, Osterås N et al (2014) The validity of self-reported body mass index in a population-based osteoarthritis study. BMC Musculoskelet Disord 15(1):442

    Article  PubMed Central  PubMed  Google Scholar 

  8. Fransen M, Simic M, Harmer AR (2014) Determinants of MSK health and disability: Lifestyle determinants of symptomatic osteoarthritis. Best Pract Res Clin Rheumatol 28(3):435–460

    Article  PubMed  Google Scholar 

  9. Garner M, Alshameeri Z, Khanduja V (2013) Osteoarthritis: genes, nature-nurture interaction and the role of leptin. Int Orthop 37:2499–2505

    Article  PubMed Central  PubMed  Google Scholar 

  10. Cooper C, Snow S, McAlindon TE et al (2000) Risk factors for the incidence and progression of radiographic knee osteoarthritis. Arthritis Rheum 43:995–1000

    Article  CAS  PubMed  Google Scholar 

  11. Hochberg MC (2004) Do risk factors for incident hip osteoarthritis (OA) differ from those for progression of hip OA? J Rheumatol Suppl 70:6–9

    PubMed  Google Scholar 

  12. Litwic A, Edwards MH, Dennison EM et al (2013) Epidemiology and burden of osteoarthritis. Br Med Bull 105:185–199

    Article  PubMed Central  PubMed  Google Scholar 

  13. Sharma L, Kapoor D, Issa S et al (2006) Epidemiology of osteoarthritis: an update. Curr Opin Rheumatol 18:147–156

    Article  PubMed  Google Scholar 

  14. Palmieri-Smith RM, Thomas AC, Karvonen-Gutierrez C et al (2010) Isometric quadriceps strength in women with mild, moderate, and severe knee osteoarthritis. Am J Phys Med Rehabil 89(7):541–548

    Article  PubMed Central  PubMed  Google Scholar 

  15. Roos EM, Herzog W, Block JA et al (2011) Muscle weakness, afferent sensory dysfunction and exercise in knee osteoarthritis. Nat Rev Rheumatol 7:57–63

    Article  PubMed  Google Scholar 

  16. Poonpet T, Honsawek S (2014) Adipokines: Biomarkers for osteoarthritis? World J Orthop 5(3):319–327

    Article  PubMed Central  PubMed  Google Scholar 

  17. Harvey WF, Yang M, Cooke TD et al (2010) Association of leg-length inequality with knee osteoarthritis: a cohort study. Ann Intern Med 152:287–295

    Article  PubMed Central  PubMed  Google Scholar 

  18. Zhang Y, Hannan MT, Chaisson CE et al (2000) Bone mineral density and risk of incident and progressive radiographic knee osteoarthritis in women: the Framingham Study. J Rheumatol 27:1032–1037

    CAS  PubMed  Google Scholar 

  19. Hart DJ, Cronin C, Daniels M et al (2002) The relationship of bone density and fracture to incident and progressive radiographic osteoarthritis of the knee: the Chingford Study. Arthritis Rheum 46:92–99

    Article  PubMed  Google Scholar 

  20. Belo JN, Berger MY, Reijman M et al (2007) Prognostic factors of progression of osteoarthritis of the knee: a systematic review of observational studies. Arthritis Rheum 57:13–26

    Article  CAS  PubMed  Google Scholar 

  21. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteoarthrosis. Ann Rheum Dis 16(4):494–502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Pelletier JP, Jovanovic D, Fernandes JC, Manning P, Connor JR, Currie MG et al (1998) Reduced progression of experimental osteoarthritis in vivo by selective inhibition of inducible nitric oxide synthase. Arthritis Rheum 41:1275–1286

    Article  CAS  PubMed  Google Scholar 

  23. Mankin HJ, Dorfman H, Lippiello L et al (1971) Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg 53:523–537

    CAS  PubMed  Google Scholar 

  24. Byers PD, Contepomi CA, Farkas TA (1970) A post-mortem study of the hip joint. Including the prevalence of the features of the right side. Ann Rheum Dis 29:15–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ritter SY, Collins J, Krastins B et al (2014) Mass spectrometry assays of plasma biomarkers to predict radiographic progression of knee osteoarthritis. Arthritis Res Ther 16:456

    Article  PubMed Central  PubMed  Google Scholar 

  26. Spector TD, Dacre JE, Harris PA, Huskisson EC (1992) Radiological progression of osteoarthritis: an 11-year follow-up study of the knee. Ann Rheum Dis 51:1107–1110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Felson DT, Zhang Y, Hannan MT et al (1995) The incidence and natural history of knee osteoarthritis in the elderly: the Framingham Osteoarthritis Study. Arthritis Rheum 38:1500–1505

    Article  CAS  PubMed  Google Scholar 

  28. Dahabreh IJ, Kent DM (2011) Index event bias as an explanation for the paradoxes of recurrence risk research. JAMA 305(8):822–823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Felson DT (2014) Priorities for osteoarthritis research: much to be done. Nat Rev Rheumatol 10(8):447–448

    Article  PubMed  Google Scholar 

  30. Fuchs S, Thorwesten L, Niewerth S (1999) Proprioceptive function in knees with and without total knee arthroplasty. Am J Phys Med Rehabil 78:39–45

    Article  CAS  PubMed  Google Scholar 

  31. Matsumoto T, Muratsu H, Kawakami Y et al (2014) Soft-tissue balancing in total knee arthroplasty: cruciate-retaining versus posterior-stabilised, and measured -resection versus gap technique. Int Orthop 38(3):531–537

    Article  PubMed Central  PubMed  Google Scholar 

  32. Farkas T, Bihari-Varga M, Biro T et al (1976) Thermoanalytical and histological study of intra-articular papain-induced degradation and repair of rabbit cartilage. II. Mature animals. Ann Rheum Dis 35:23–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Murat N, Karadam B, Ozkal S et al (2007) Quantification of papain-induced rat osteoarthritis in relation to time with the Mankin score. Acta Orthop Traumatol Turc 41(3):233–237

    PubMed  Google Scholar 

  34. Inoue S, Glimcher MJ (1982) The reaction of cartilage and osteophyte formation after the intraarticular injection of papain. J Jpn Orthop Assoc 56:415–430

    CAS  Google Scholar 

  35. Miyauchi S, Machida A, Onaya J et al (1993) Alterations of proteoglycan synthesis in rabbit articular cartilage induced by intra-articular injection of papain. Osteoarthr Cartil 1:253–262

    Article  CAS  PubMed  Google Scholar 

  36. Hayami T, Zhuo Y, Wesolowski GA et al (2012) Inhibition of cathepsin K reduces cartilage degeneration in the anterior cruciate ligament transection rabbit and murine models of osteoarthritis. Bone 50:1250–1259

    Article  CAS  PubMed  Google Scholar 

  37. Kopp S, Mejersji C, Clemensson E (1983) Induction of osteoarthrosis in the guinea pig knee by papain. Oral Surg 55(3):259–266

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the National Natural Science Foundation of China (No. 81371943).

Competing interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusheng Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Yin, Z., Wu, H. et al. Section of the anterior cruciate ligament in the rabbit as animal model for osteoarthritis progression. International Orthopaedics (SICOT) 40, 407–416 (2016). https://doi.org/10.1007/s00264-015-2854-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-2854-z

Keywords

Navigation