Skip to main content

Advertisement

Log in

Specific and Non-specific Aspects and Future Challenges of ICU Care Among COVID-19 Patients with Obesity: A Narrative Review

  • REVIEW
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Since the end of 2019, the coronavirus disease 2019 (COVID-19) pandemic has infected nearly 800 million people and caused almost seven million deaths. Obesity was quickly identified as a risk factor for severe COVID-19, ICU admission, acute respiratory distress syndrome, organ support including mechanical ventilation and prolonged length of stay. The relationship among obesity; COVID-19; and respiratory, thrombotic, and renal complications upon admission to the ICU is unclear.

Recent Findings

The predominant effect of a hyperinflammatory status or a cytokine storm has been suggested in patients with obesity, but more recent studies have challenged this hypothesis. Numerous studies have also shown increased mortality among critically ill patients with obesity and COVID-19, casting doubt on the obesity paradox, with survival advantages with overweight and mild obesity being reported in other ICU syndromes. Finally, it is now clear that the increase in the global prevalence of overweight and obesity is a major public health issue that must be accompanied by a transformation of our ICUs, both in terms of equipment and human resources. Research must also focus more on these patients to improve their care.

Summary

In this review, we focused on the central role of obesity in critically ill patients during this pandemic, highlighting its specificities during their stay in the ICU, identifying the lessons we have learned, and identifying areas for future research as well as the future challenges for ICU activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

ACE-2:

Angiotensin-converting enzyme 2

AKI:

Acute kidney injury

ARDS:

Acute respiratory distress syndrome

BMI:

Body mass index

BSI:

Bloodstream infection

COVID-19:

Coronavirus disease 2019

CPAP:

Continuous positive airway pressure

ECMO:

Extracorporeal membrane oxygenation

HAI:

Hospital-acquired infection

HFNO:

High-flow nasal oxygenation

HR:

Hazard ratio

ICU:

Intensive care unit

IL:

Interleukin

MV:

Mechanical ventilation

NIV:

Noninvasive ventilation

OR:

Odds ratio

PEEP:

Positive end-expiratory pressure

RRT:

Renal replacement therapy

VAP:

Ventilator-acquired pneumonia

SARS:

Severe acute respiratory syndrome

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus 2

References

  1. WHO Coronavirus (COVID-19) https://covid19.who.int

  2. •• O’Rourke RW, Lumeng CN. Pathways to severe COVID-19 for people with obesity. Obes Silver Spring Md avr. 2021;29(4):645–53. This review provides a broad overview of the intersection between COVID-19 and the physiology of obesity in order to highlight potential mechanisms by which COVID-19 disease severity is increased by obesity.

    Article  Google Scholar 

  3. Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature août. 2020;584(7821):430–6.

    Article  CAS  Google Scholar 

  4. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China Lancet Lond Engl. 2020;395(10223):497–506.

    Article  CAS  Google Scholar 

  5. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan. China JAMA Intern Med. 2020;180(7):934–43.

    Article  CAS  PubMed  Google Scholar 

  6. Matthay MA, Arabi Y, Arroliga AC, Bernard G, Bersten AD, Brochard LJ, et al. A new global definition of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2024;209(1):37–47.

    Article  PubMed  Google Scholar 

  7. Kristensen NM, Gribsholt SB, Andersen AL, Richelsen B, Bruun JM. Obesity augments the disease burden in COVID-19: updated data from an umbrella review. Clin Obes. 2022;12(3):e12508.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Raeisi T, Mozaffari H, Sepehri N, Darand M, Razi B, Garousi N, et al. The negative impact of obesity on the occurrence and prognosis of the 2019 novel coronavirus (COVID-19) disease: a systematic review and meta-analysis. Eat Weight Disord EWD avr. 2022;27(3):893–911.

    Article  Google Scholar 

  9. Huang Y, Lu Y, Huang YM, Wang M, Ling W, Sui Y, et al. Obesity in patients with COVID-19: a systematic review and meta-analysis. Metabolism déc. 2020;113:154378.

    Article  CAS  Google Scholar 

  10. Jayawardena R, Jeyakumar DT, Misra A, Hills AP, Ranasinghe P. Obesity: a potential risk factor for infection and mortality in the current COVID-19 epidemic. Diabetes Metab Syndr déc. 2020;14(6):2199–203.

    Article  Google Scholar 

  11. Zhou Y, Yang Q, Chi J, Dong B, Lv W, Shen L, et al. Comorbidities and the risk of severe or fatal outcomes associated with coronavirus disease 2019: a systematic review and meta-analysis. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2020;99:47–56.

    CAS  Google Scholar 

  12. Simonnet A, Chetboun M, Poissy J, Raverdy V, Noulette J, Duhamel A, et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity juill. 2020;28(7):1195–9.

    Article  CAS  Google Scholar 

  13. de Lusignan S, Dorward J, Correa A, Jones N, Akinyemi O, Amirthalingam G, et al. Risk factors for SARS-CoV-2 among patients in the Oxford Royal College of General Practitioners Research and Surveillance Centre primary care network: a cross-sectional study. Lancet Infect Dis sept. 2020;20(9):1034–42.

    Article  Google Scholar 

  14. Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ. 2020;369:m1985.

  15. •• Sudhakar M, Winfred SB, Meiyazhagan G, Venkatachalam DP. Mechanisms contributing to adverse outcomes of COVID-19 in obesity. Mol Cell Biochem. 2022;477(4):1155–93. This review has examined the available literature on the underlying mechanisms contributing to obesity being a risk for adverse outcome in COVID-19.

  16. Hendren NS, de Lemos JA, Ayers C, Das SR, Rao A, Carter S, et al. Association of body mass index and age with morbidity and mortality in patients hospitalized with COVID-19: results from the American Heart Association COVID-19 Cardiovascular Disease Registry. Circulation. 2021;143(2):135–44.

    Article  CAS  PubMed  Google Scholar 

  17. Popkin BM, Du S, Green WD, Beck MA, Algaith T, Herbst CH, et al. Individuals with obesity and COVID-19: a global perspective on the epidemiology and biological relationships. Obes Rev Off J Int Assoc Study Obes. 2020;21(11):e13128.

    Article  CAS  Google Scholar 

  18. Pedersen SF, Ho YC. SARS-CoV-2: a storm is raging. J Clin Invest. 2020;130(5):2202–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Behrens EM, Koretzky GA. Review: cytokine storm syndrome: looking toward the precision medicine era. Arthritis Rheumatol Hoboken NJ juin. 2017;69(6):1135–43.

    Article  Google Scholar 

  20. Kooistra EJ, de Nooijer AH, Claassen WJ, Grondman I, Janssen NAF, Netea MG, et al. A higher BMI is not associated with a different immune response and disease course in critically ill COVID-19 patients. Int J Obes 2021;45(3):687–94.

  21. Maurya R, Sebastian P, Namdeo M, Devender M, Gertler A. COVID-19 severity in obesity: leptin and inflammatory cytokine interplay in the link between high morbidity and mortality. Front Immunol. 2021;12:649359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Al-Benna S. Association of high level gene expression of ACE2 in adipose tissue with mortality of COVID-19 infection in obese patients. Obes Med sept. 2020;19:100283.

    Article  Google Scholar 

  24. Beloncle F, Studer A, Seegers V, Richard JC, Desprez C, Fage N, et al. Longitudinal changes in compliance, oxygenation and ventilatory ratio in COVID-19 versus non-COVID-19 pulmonary acute respiratory distress syndrome. Crit Care Lond Engl. 2021;25(1):248.

    Article  Google Scholar 

  25. Grieco DL, Bongiovanni F, Chen L, Menga LS, Cutuli SL, Pintaudi G, et al. Respiratory physiology of COVID-19-induced respiratory failure compared to ARDS of other etiologies. Crit Care Lond Engl. 2020;24(1):529.

    Article  Google Scholar 

  26. • Reddy MP, Subramaniam A, Chua C, Ling RR, Anstey C, Ramanathan K, et al. Respiratory system mechanics, gas exchange, and outcomes in mechanically ventilated patients with COVID-19-related acute respiratory distress syndrome: a systematic review and meta-analysis. Lancet Respir Med déc. 2022;10(12):1178–88. This article showed the absence of evidence of distinct phenotypes in patients with COVID-19-related ARDS.

    Article  Google Scholar 

  27. Fan E, Beitler JR, Brochard L, Calfee CS, Ferguson ND, Slutsky AS, et al. COVID-19-associated acute respiratory distress syndrome: is a different approach to management warranted? Lancet Respir Med août. 2020;8(8):816–21.

    Article  CAS  Google Scholar 

  28. Simonnet A, Chetboun M, Poissy J, Raverdy V, Noulette J, Duhamel A, et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obes Silver Spring Md juill. 2020;28(7):1195–9.

    Article  CAS  Google Scholar 

  29. Zdravković V, Stevanović Đ, Ćićarić N, Zdravković N, Čekerevac I, Poskurica M, et al. Anthropometric measurements and admission parameters as predictors of acute respiratory distress syndrome in hospitalized COVID-19 patients. Biomedicines. 2023;11(4):1199.

    Article  PubMed  PubMed Central  Google Scholar 

  30. • Li Y, Li C, Chang W, Liu L. High-flow nasal cannula reduces intubation rate in patients with COVID-19 with acute respiratory failure: a meta-analysis and systematic review. BMJ Open. 2023;13(3):e067879. This study showed that HFNC may reduce intubation rate and 28-day ICU mortality in patients with acute respiratory failure.

    Article  PubMed  Google Scholar 

  31. •• Thille AW, Coudroy R, Nay MA, Gacouin A, Decavèle M, Sonneville R, et al. Beneficial effects of noninvasive ventilation after extubation in obese or overweight patients: a post hoc analysis of a randomized clinical trial. Am J Respir Crit Care Med. 2022;205(4):440–9 This article showed the benefit of NIV in obese patients as a new strategy after extubation in obese patients.

    Article  PubMed  Google Scholar 

  32. Nahum J, Morichau-Beauchant T, Daviaud F, Echegut P, Fichet J, Maillet JM, et al. Venous thrombosis among critically ill patients with coronavirus disease 2019 (COVID-19). JAMA Netw Open. 2020;3(5):e2010478.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Porfidia A, Valeriani E, Pola R, Porreca E, Rutjes AWS, Di Nisio M. Venous thromboembolism in patients with COVID-19: systematic review and meta-analysis. Thromb Res déc. 2020;196:67–74.

    Article  CAS  Google Scholar 

  34. Silver SA, Beaubien-Souligny W, Shah PS, Harel S, Blum D, Kishibe T, et al. The prevalence of acute kidney injury in patients hospitalized with COVID-19 infection: a systematic review and meta-analysis. Kidney Med févr. 2021;3(1):83–98.e1.

    Article  Google Scholar 

  35. Moledina DG, Simonov M, Yamamoto Y, Alausa J, Arora T, Biswas A, et al. The association of COVID-19 with acute kidney injury independent of severity of illness: a multicenter cohort study. Am J Kidney Dis Off J Natl Kidney Found. 2021;77(4):490–499.e1.

    Article  CAS  Google Scholar 

  36. Huang HK, Bukhari K, Peng CCH, Hung DP, Shih MC, Chang RHE, et al. The J-shaped relationship between body mass index and mortality in patients with COVID-19: a dose-response meta-analysis. Diabetes Obes Metab juill. 2021;23(7):1701–9.

    Article  CAS  Google Scholar 

  37. Yang J, Ma Z, Lei Y. A meta-analysis of the association between obesity and COVID-19. Epidemiol Infect. 2020;149.

    Article  PubMed  Google Scholar 

  38. Zhao X, Gang X, He G, Li Z, Lv Y, Han Q, et al. Obesity increases the severity and mortality of influenza and COVID-19: a systematic review and meta-analysis. Front Endocrinol. 2020;11:595109.

    Article  Google Scholar 

  39. Tadayon Najafabadi B, Rayner DG, Shokraee K, Panahi P, Rastgou P, et al. Obesity as an independent risk factor for COVID-19 severity and mortality. Cochrane Database Syst Rev. 2023;5(5):CD015201.

    PubMed  Google Scholar 

  40. Ni YN, Luo J, Yu H, Wang YW, Hu YH, Liu D, et al. Can body mass index predict clinical outcomes for patients with acute lung injury/acute respiratory distress syndrome? A meta-analysis Crit Care. 2017;21:36.

    PubMed  Google Scholar 

  41. Zhi G, Xin W, Ying W, Guohong X, Shuying L. Obesity paradox in acute respiratory distress syndrome: a systematic review and meta-analysis. PLoS ONE. 2016;11(9):e0163677.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schetz M, De Jong A, Deane AM, Druml W, Hemelaar P, Pelosi P, et al. Obesity in the critically ill: a narrative review. Intensive Care Med. 2019;45(6):757–69.

    Article  PubMed  Google Scholar 

  43. •• Kooistra EJ, Brinkman S, van der Voort PHJ, de Keizer NF, Dongelmans DA, Kox M, et al. Body mass index and mortality in coronavirus disease 2019 and other diseases: a cohort study in 35,506 ICU patients. Crit Care Med janv. 2022;50(1):e1-10 This study showed the absence of an obesity paradox in ICU patients with COVID-19 in contrast to nonsevere acute respiratory syndrome coronavirus 2 viral and bacterial respiratory infections.

    Article  CAS  Google Scholar 

  44. NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet Lond Engl. 2016;387(10026):1377–96.

  45. GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, et al. Health effects of overweight and obesity in 195 countries over 25 years. Engl J Med. 2017;377(1):13–27.

    Article  Google Scholar 

  46. Obesity and overweight https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

  47. Pickkers P, de Keizer N, Dusseljee J, Weerheijm D, van der Hoeven JG, Peek N. Body mass index is associated with hospital mortality in critically ill patients: an observational cohort study. Crit Care Med août. 2013;41(8):1878–83.

    Article  Google Scholar 

  48. Sakr Y, Alhussami I, Nanchal R, Wunderink RG, Pellis T, Wittebole X, et al. Being overweight is associated with greater survival in ICU patients: results from the intensive care over nations audit*. Crit Care Med déc. 2015;43(12):2623–32.

    Article  Google Scholar 

  49. Decruyenaere A, Steen J, Colpaert K, Benoit DD, Decruyenaere J, Vansteelandt S. The obesity paradox in critically ill patients: a causal learning approach to a casual finding. Crit Care déc. 2020;24(1):485.

    Article  Google Scholar 

  50. Chetboun M, Raverdy V, Labreuche J, Simonnet A, Wallet F, Caussy C, et al. BMI and pneumonia outcomes in critically ill COVID-19 patients: an international multicenter study. Obesity sept. 2021;29(9):1477–86.

    Article  CAS  Google Scholar 

  51. Sjögren L, Stenberg E, Thuccani M, Martikainen J, Rylander C, Wallenius V, et al. Impact of obesity on intensive care outcomes in patients with COVID-19 in Sweden—a cohort study Zivkovic AR, éditeur. PLOS ONE. 2021;16(10).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ñamendys-Silva SA. Patients with coronavirus disease 2019 requiring invasive mechanical ventilation in Mexico in the first, second, and exponential growth phase of the third wave of the coronavirus disease 2019 pandemic. Crit Care Explor. 2021;3(10).

    Article  PubMed  PubMed Central  Google Scholar 

  53. COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. Intensive Care Med. 2021;47(1):60–73.

    Article  Google Scholar 

  54. Lighter J, Phillips M, Hochman S, Sterling S, Johnson D, Francois F, et al. Obesity in patients younger than 60 years is a risk factor for COVID-19 hospital admission. Clin Infect Dis Off Publ Infect Dis Soc Am. 2020;71(15):896–7.

    Article  CAS  Google Scholar 

  55. Pineda E, Sanchez-Romero LM, Brown M, Jaccard A, Jewell J, Galea G, et al. Forecasting future trends in obesity across Europe: the value of improving surveillance. Obes Facts. 2018;11(5):360–71.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tong L, Khani M, Lu Q, Taylor B, Osinski K, Luo J. Association between body-mass index, patient characteristics, and obesity-related comorbidities among COVID-19 patients: a prospective cohort study. Obes Res Clin Pract. 2023;17(1):47–57.

    Article  PubMed  Google Scholar 

  57. Palermo Dos Santos AC, Japur CC, Passos CR, Lunardi TCP, Lovato WJ, Penadas G. Nutritional risk, not obesity, is associated with mortality in critically ill COVID-19 patients. Obes Res Clin Pract. 2022;16(5):379–85.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zeng F, Huang Y, Guo Y, Yin M, Chen X, Xiao L, et al. Association of inflammatory markers with the severity of COVID-19: a meta-analysis. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2020;96:467–74.

    CAS  Google Scholar 

  59. Mahat RK, Panda S, Rathore V, Swain S, Yadav L, Sah SP. The dynamics of inflammatory markers in coronavirus disease-2019 (COVID-19) patients: a systematic review and meta-analysis. Clin Epidemiol Glob Health sept. 2021;11:100727.

    Article  CAS  Google Scholar 

  60. Hariyanto TI, Japar KV, Kwenandar F, Damay V, Siregar JI, Lugito NPH, et al. Inflammatory and hematologic markers as predictors of severe outcomes in COVID-19 infection: a systematic review and meta-analysis. Am J Emerg Med mars. 2021;41:110–9.

    Article  Google Scholar 

  61. Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev juin. 2020;53:13–24.

    Article  CAS  Google Scholar 

  62. Dorgham K, Quentric P, Gökkaya M, Marot S, Parizot C, Sauce D, et al. Distinct cytokine profiles associated with COVID-19 severity and mortality. J Allergy Clin Immunol juin. 2021;147(6):2098–107.

    Article  CAS  Google Scholar 

  63. Del Valle DM, Kim-Schulze S, Huang HH, Beckmann ND, Nirenberg S, Wang B, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020;26(10):1636–43.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Herold T, Jurinovic V, Arnreich C, Lipworth BJ, Hellmuth JC, von Bergwelt-Baildon M, et al. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J Allergy Clin Immunol juill. 2020;146(1):128–136.e4.

    Article  CAS  Google Scholar 

  65. Kox M, Waalders NJB, Kooistra EJ, Gerretsen J, Pickkers P. Cytokine levels in critically ill patients with COVID-19 and other conditions. JAMA. 2020;324(15):1565–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wilson JG, Simpson LJ, Ferreira AM, Rustagi A, Roque J, Asuni A, et al. Cytokine profile in plasma of severe COVID-19 does not differ from ARDS and sepsis. JCI Insight. 2020;5(17):140289.

    Article  PubMed  Google Scholar 

  67. Wu M, Zou ZY, Chen YH, Wang CL, Feng YW, Liu ZF. Severe COVID-19-associated sepsis is different from classical sepsis induced by pulmonary infection with carbapenem-resistant klebsiella pneumonia (CrKP). Chin J Traumatol Zhonghua Chuang Shang Za Zhi. 2022;25(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  68. Dong X, Wang C, Liu X, Gao W, Bai X, Li Z. Lessons learned comparing immune system alterations of bacterial sepsis and SARS-CoV-2 sepsis. Front Immunol. 2020;11:598404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Loftus TJ, Ungaro R, Dirain M, Efron PA, Mazer MB, Remy KE, et al. Overlapping but disparate inflammatory and immunosuppressive responses to SARS-CoV-2 and bacterial sepsis: an immunological time course analysis. Front Immunol. 2021;12:792448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Friedman AN, Guirguis J, Kapoor R, Gupta S, Leaf DE, Timsina LR, et al. Obesity, inflammatory and thrombotic markers, and major clinical outcomes in critically ill patients with COVID-19 in the US. Obes Silver Spring Md. 2021;29(10):1719–30.

    Article  CAS  Google Scholar 

  71. Wolf M, Alladina J, Navarrete-Welton A, Shoults B, Brait K, Ziehr D, et al. Obesity and critical illness in COVID-19: respiratory pathophysiology. Obes Silver Spring Md mai. 2021;29(5):870–8.

    Article  CAS  Google Scholar 

  72. Swoboda J, Wittschieber D, Sanft J, Kleemann S, Elschner S, Ihle H, et al. Bone marrow haemophagocytosis indicates severe infection with severe acute respiratory syndrome coronavirus 2. Histopathology avr. 2021;78(5):727–37.

    Article  Google Scholar 

  73. Kyriazopoulou E, Leventogiannis K, Norrby-Teglund A, Dimopoulos G, Pantazi A, Orfanos SE, et al. Macrophage activation-like syndrome: an immunological entity associated with rapid progression to death in sepsis. BMC Med. 2017;15(1):172.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Shakoory B, Carcillo JA, Chatham WW, Amdur RL, Zhao H, Dinarello CA, et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase III trial. Crit Care Med févr. 2016;44(2):275–81.

    Article  CAS  Google Scholar 

  75. Opal SM, Fisher CJ, Dhainaut JF, Vincent JL, Brase R, Lowry SF, et al. Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group. Crit Care Med. 1997;25(7):1115–24.

    Article  CAS  PubMed  Google Scholar 

  76. Jouan Y, Baranek T, Si-Tahar M, Paget C, Guillon A. Lung compartmentalization of inflammatory biomarkers in COVID-19-related ARDS. Crit Care Lond Engl. 2021;25(1):120.

    Article  Google Scholar 

  77. Bendib I, Beldi-Ferchiou A, Schlemmer F, Surenaud M, Maitre B, Plonquet A, et al. Alveolar compartmentalization of inflammatory and immune cell biomarkers in pneumonia-related ARDS. Crit Care Lond Engl. 2021;25(1):23.

    Article  Google Scholar 

  78. Muscogiuri G, Pugliese G, Laudisio D, Castellucci B, Barrea L, Savastano S, et al. The impact of obesity on immune response to infection: plausible mechanisms and outcomes. Obes Rev Off J Int Assoc Study Obes. 2021;22(6).

    Article  Google Scholar 

  79. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol févr. 2011;11(2):85–97.

    Article  CAS  Google Scholar 

  80. Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol. 2005;115(5):911–9 ; quiz 920.

    Article  CAS  PubMed  Google Scholar 

  81. McGuire TR, Brusnahan SK, Bilek LD, Jackson JD, Kessinger MA, Berger AM, et al. Inflammation associated with obesity: relationship with blood and bone marrow endothelial cells. Obes Silver Spring Md. 2011;19(11):2130–6.

    Article  CAS  Google Scholar 

  82. Huttunen R, Karppelin M, Syrjänen J. Obesity and nosocomial infections. J Hosp Infect sept. 2013;85(1):8–16.

    Article  CAS  Google Scholar 

  83. Serrano PE, Khuder SA, Fath JJ. Obesity as a risk factor for nosocomial infections in trauma patients. J Am Coll Surg juill. 2010;211(1):61–7.

    Article  Google Scholar 

  84. Wang X, Bao W, Liu J, Ouyang YY, Wang D, Rong S, et al. Inflammatory markers and risk of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care janv. 2013;36(1):166–75.

    Article  CAS  Google Scholar 

  85. Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract août. 2014;105(2):141–50.

    Article  CAS  Google Scholar 

  86. Steenblock C, Bechmann N, Beuschlein F, Wolfrum C, Bornstein SR. Do adipocytes serve as a reservoir for severe acute respiratory symptom coronavirus-2? J Endocrinol. 2023;258(2).

    Article  CAS  PubMed  Google Scholar 

  87. Zhu J, Wilding JPH, Hu J. Adipocytes in obesity: a perfect reservoir for SARS-CoV-2? Med Hypotheses févr. 2023;171:111020.

    Article  CAS  Google Scholar 

  88. RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. Dexamethasone in hospitalized patients with COVID-19. N Engl J Med. 2021;384(8):693–704.

    Article  Google Scholar 

  89. REMAP-CAP Investigators, Gordon AC, Mouncey PR, Al-Beidh F, Rowan KM, Nichol AD, et al. Interleukin-6 receptor antagonists in critically ill patients with COVID-19. N Engl J Med. 2021;384(16):1491–502.

    Article  Google Scholar 

  90. Jones SA, Hunter CA. Is IL-6 a key cytokine target for therapy in COVID-19? Nat Rev Immunol. 2021;21(6):337–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet Lond Engl. 2021;397(10285):1637–45.

    Article  Google Scholar 

  92. Sixt T, Moretto F, Esteve C, Duong M, Buisson M, Mahy S, et al. Healing treatments in COVID-19 patients: a narrative review. J Clin Med. 2023;12(14):4672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group, Shankar-Hari M, Vale CL, Godolphin PJ, Fisher D, Higgins JPT, et al. Association between administration of IL-6 antagonists and mortality among patients hospitalized for COVID-19: a meta-analysis. JAMA. 2021;326(6):499–518.

    Article  Google Scholar 

  94. Peng R, Yang T, Tong Y, Wang J, Zhou H, Yang M, et al. Efficacy and safety of interleukin-6 receptor antagonists in adult patients admitted to intensive care unit with COVID-19: a systematic review and meta-analysis of randomized controlled trials. Prev Med Rep août. 2023;34:102276.

    Article  Google Scholar 

  95. Sinha P, Furfaro D, Cummings MJ, Abrams D, Delucchi K, Maddali MV, et al. Latent class analysis reveals COVID-19-related acute respiratory distress syndrome subgroups with differential responses to corticosteroids. Am J Respir Crit Care Med. 2021;204(11):1274–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen H, Xie J, Su N, Wang J, Sun Q, Li S, et al. Corticosteroid therapy is associated with improved outcome in critically ill patients with COVID-19 with hyperinflammatory phenotype. Chest mai. 2021;159(5):1793–802.

    Article  CAS  Google Scholar 

  97. Galván-Román JM, Rodríguez-García SC, Roy-Vallejo E, Marcos-Jiménez A, Sánchez-Alonso S, Fernández-Díaz C, et al. IL-6 serum levels predict severity and response to tocilizumab in COVID-19: an observational study. J Allergy Clin Immunol janv. 2021;147(1):72–80.e8.

    Article  Google Scholar 

  98. Flikweer AW, Kobold ACM, van der Sar-van der Brugge S, Heeringa P, Rodenhuis-Zybert IA, Bijzet J, et al. Circulating adipokine levels and COVID-19 severity in hospitalized patients. Int J Obes. 2023;47(2):126–37.

    Article  Google Scholar 

  99. de Nooijer AH, Kooistra EJ, Grondman I, Janssen NAF, Joosten LAB, van de Veerdonk FL, et al. Adipocytokine plasma concentrations reflect influence of inflammation but not body mass index (BMI) on clinical outcomes of COVID-19 patients: a prospective observational study from the Netherlands. Clin Obes avr. 2023;13(2):e12568.

    Article  Google Scholar 

  100. Anderson MR, Geleris J, Anderson DR, Zucker J, Nobel YR, Freedberg D, et al. Body mass index and risk for intubation or death in SARS-CoV-2 infection : a retrospective cohort study. Ann Intern Med. 2020;173(10):782–90.

    Article  PubMed  Google Scholar 

  101. Denson JL, Gillet AS, Zu Y, Brown M, Pham T, Yoshida Y, et al. Metabolic syndrome and acute respiratory distress syndrome in hospitalized patients with COVID-19. JAMA Netw Open. 2021;4(12):e2140568.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hariri LP, North CM, Shih AR, Israel RA, Maley JH, Villalba JA, et al. Lung histopathology in coronavirus disease 2019 as compared with severe acute respiratory sydrome and H1N1 influenza: a systematic review. Chest janv. 2021;159(1):73–84.

    Article  CAS  Google Scholar 

  103. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N Engl J Med. 2020;383(2):120–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Van Den Berg J, Haslbauer JD, Stalder AK, Romanens A, Mertz KD, Studt JD, et al. Von Willebrand factor and the thrombophilia of severe COVID-19: in situ evidence from autopsies. Res Pract Thromb Haemost mai. 2023;7(4):100182.

    Article  Google Scholar 

  105. Grasselli G, Tonetti T, Protti A, Langer T, Girardis M, Bellani G, et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respir Med déc. 2020;8(12):1201–8.

    Article  CAS  Google Scholar 

  106. Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, Hernández M, Gea A, Arruti E, et al. Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Med déc. 2020;46(12):2200–11.

    Article  CAS  Google Scholar 

  107. De Jong A, Chanques G, Jaber S. Mechanical ventilation in obese ICU patients: from intubation to extubation. Crit Care Lond Engl. 2017;21(1):63.

    Article  Google Scholar 

  108. De Jong A, Wrigge H, Hedenstierna G, Gattinoni L, Chiumello D, Frat JP, et al. How to ventilate obese patients in the ICU. Intensive Care Med déc. 2020;46(12):2423–35.

    Article  Google Scholar 

  109. Garcia MA, Johnson SW, Sisson EK, Sheldrick CR, Kumar VK, Boman K, et al. Variation in use of high-flow nasal cannula and noninvasive ventilation among patients with COVID-19. Respir Care. 2022;67(8):929–38.

  110. Beran A, Srour O, Malhas SE, Mhanna M, Ayesh H, Sajdeya O, et al. High-flow nasal cannula versus noninvasive ventilation in patients with COVID-19. Respir Care sept. 2022;67(9):1177–89.

    Article  Google Scholar 

  111. Mellado-Artigas R, Ferreyro BL, Angriman F, Hernández-Sanz M, Arruti E, Torres A, et al. High-flow nasal oxygen in patients with COVID-19-associated acute respiratory failure. Crit Care Lond Engl. 2021;25(1):58.

    Article  Google Scholar 

  112. Bonnet N, Martin O, Boubaya M, Levy V, Ebstein N, Karoubi P, et al. High flow nasal oxygen therapy to avoid invasive mechanical ventilation in SARS-CoV-2 pneumonia: a retrospective study. Ann Intensive Care. 2021;11(1):37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Demoule A, Vieillard Baron A, Darmon M, Beurton A, Géri G, Voiriot G, et al. High-flow nasal cannula in critically iii patients with severe COVID-19. Am J Respir Crit Care Med. 2020;202(7):1039–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Perkins GD, Ji C, Connolly BA, Couper K, Lall R, Baillie JK, et al. Effect of noninvasive respiratory strategies on intubation or mortality among patients with acute hypoxemic respiratory failure and COVID-19: the RECOVERY-RS randomized clinical trial. JAMA. 2022;327(6):546–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Teran-Tinedo JR, Gonzalez-Rubio J, Najera A, Lorente-Gonzalez M, Cano-Sanz E, De La Calle-Gil I, et al. Effect of the early combination of continuous positive airway pressure and high-flow nasal cannula on mortality and intubation rates in patients with COVID-19 and acute respiratory distress syndrome. The DUOCOVID Study Arch Bronconeumol mai. 2023;59(5):288–94.

    Article  Google Scholar 

  116. Ehrmann S, Li J, Ibarra-Estrada M, Perez Y, Pavlov I, McNicholas B, et al. Awake prone positioning for COVID-19 acute hypoxaemic respiratory failure: a randomised, controlled, multinational, open-label meta-trial. Lancet Respir Med déc. 2021;9(12):1387–95.

    Article  CAS  Google Scholar 

  117. Cao W, He N, Luo Y, Zhang Z. Awake prone positioning for non-intubated patients with COVID-19-related acute hypoxic respiratory failure: a systematic review based on eight high-quality randomized controlled trials. BMC Infect Dis. 2023;23(1):415.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Chiumello D, Chiodaroli E, Coppola S, Cappio Borlino S, Granata C, Pitimada M, et al. Awake prone position reduces work of breathing in patients with COVID-19 ARDS supported by CPAP. Ann Intensive Care. 2021;11(1):179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Papoutsi E, Giannakoulis VG, Xourgia E, Routsi C, Kotanidou A, Siempos II. Effect of timing of intubation on clinical outcomes of critically ill patients with COVID-19: a systematic review and meta-analysis of non-randomized cohort studies. Crit Care Lond Engl. 2021;25(1):121.

    Article  Google Scholar 

  120. Kasarabada A, Barker K, Ganoe T, Clevenger L, Visco C, Gibson J, et al. How long is too long: a retrospective study evaluating the impact of the duration of noninvasive oxygenation support strategies (high flow nasal cannula & BiPAP) on mortality in invasive mechanically ventilated patients with COVID-19. PLoS ONE. 2023;18(2):e0281859.

    Article  PubMed  PubMed Central  Google Scholar 

  121. López-Ramírez VY, Sanabria-Rodríguez OO, Bottia-Córdoba S, Muñoz-Velandia OM. Delayed mechanical ventilation with prolonged high-flow nasal cannula exposure time as a risk factor for mortality in acute respiratory distress syndrome due to SARS-CoV-2. Intern Emerg Med mars. 2023;18(2):429–37.

    Article  Google Scholar 

  122. De Santis Santiago R, Teggia Droghi M, Fumagalli J, Marrazzo F, Florio G, Grassi LG, et al. High pleural pressure prevents alveolar overdistension and hemodynamic collapse in acute respiratory distress syndrome with class III obesity. A clinical trial. Am J Respir Crit Care Med. 2021;203(5):575–84.

  123. Mezidi M, Daviet F, Chabert P, Hraiech S, Bitker L, Forel JM, et al. Transpulmonary pressures in obese and non-obese COVID-19 ARDS. Ann Intensive Care. 2020;10(1):129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ashra F, Chen R, Kang XL, Chiang KJ, Pien LC, Jen HJ, et al. Effectiveness of prone position in acute respiratory distress syndrome and moderating factors of obesity class and treatment durations for COVID-19 patients: a meta-analysis. Intensive Crit Care Nurs. 2022;72:103257.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Langer T, Brioni M, Guzzardella A, Carlesso E, Cabrini L, Castelli G, et al. Prone position in intubated, mechanically ventilated patients with COVID-19: a multi-centric study of more than 1000 patients. Crit Care Lond Engl. 2021;25(1):128.

    Article  Google Scholar 

  126. De Jong A, Molinari N, Sebbane M, Prades A, Futier E, Jung B, et al. Feasibility and effectiveness of prone position in morbidly obese patients with ARDS: a case-control clinical study. Chest juin. 2013;143(6):1554–61.

    Article  Google Scholar 

  127. Schavemaker R, Schultz MJ, Lagrand WK, van Slobbe-Bijlsma ER, Serpa Neto A, Paulus F, et al. Associations of body mass index with ventilation management and clinical outcomes in invasively ventilated patients with ARDS related to COVID-19-insights from the PRoVENT-COVID study. J Clin Med. 2021;10(6):1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mongero LB, Stammers AH, Tesdahl EA, Petersen C, Patel K, Jacobs JP. The use of extracorporeal membrane oxygenation in COVID-19 patients with severe cardiorespiratory failure: the influence of obesity on outcomes. J Extra Corpor Technol déc. 2021;53(4):293–8.

    Article  Google Scholar 

  129. Schmidt M, Hajage D, Lebreton G, Monsel A, Voiriot G, Levy D, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome associated with COVID-19: a retrospective cohort study. Lancet Respir Med. 2020;8(11):1121–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nesseler N, Fadel G, Mansour A, Para M, Falcoz PE, Mongardon N, et al. Extracorporeal membrane oxygenation for respiratory failure related to COVID-19: a nationwide cohort study. Anesthesiology. 2022;136(5):732–48.

    Article  CAS  PubMed  Google Scholar 

  131. Wu SJ, Fan YF, Chien CY. Correlation between obesity, age and mortality for COVID-19 patients with acute respiratory distress syndrome supported by extracorporeal membrane oxygenation. Asian J Surg juill. 2023;46(7):2915–6.

    Article  Google Scholar 

  132. Daviet F, Guilloux P, Hraiech S, Tonon D, Velly L, Bourenne J, et al. Impact of obesity on survival in COVID-19 ARDS patients receiving ECMO: results from an ambispective observational cohort. Ann Intensive Care. 2021;11(1):157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Powell EK, Haase DJ, Lankford A, Boswell K, Esposito E, Hamera J, et al. Body mass index does not impact survival in COVID-19 patients requiring veno-venous extracorporeal membrane oxygenation. Perfusion. 2023;38(6):1174–81.

  134. Jacobs JP, Stammers AH, St Louis JD, Tesdahl EA, Hayanga JWA, Morris RJ, et al. Variation in survival in patients with coronavirus disease 2019 supported with extracorporeal membrane oxygenation: a multi-institutional analysis of 594 consecutive patients with Coronavirus Disease 2019 supported with extracorporeal membrane oxygenation at 49 hospitals within 21 states. J Thorac Cardiovasc Surg mai. 2023;165(5):1837–48.

    Article  Google Scholar 

  135. Honzawa H, Taniguchi H, Ogawa F, Oi Y, Abe T, Takeuchi I. Association of obesity paradox with prognosis of veno-venous-extracorporeal membrane oxygenation in patients with coronavirus disease 2019. Acute Med Surg. 2023;10(1):e871.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Rudym D, Pham T, Rackley CR, Grasselli G, Anderson M, Baldwin MR, et al. Mortality in patients with obesity and ARDS receiving ECMO: the multicenter ECMObesity study. Am J Respir Crit Care Med. 2023;208(6):685–94.

  137. Javidfar J, Zaaqoq AM, Labib A, Barnett AG, Hayanga JA, Eschun G, et al. Morbid obesity’s impact on COVID-19 patients requiring venovenous extracorporeal membrane oxygenation: the covid-19 critical care consortium database review. Perfusion 2023;2676591231156487.

  138. De Jong A, Bignon A, Stephan F, Godet T, Constantin JM, Asehnoune K, et al. Effect of non-invasive ventilation after extubation in critically ill patients with obesity in France: a multicentre, unblinded, pragmatic randomised clinical trial. Lancet Respir Med juin. 2023;11(6):530–9.

    Article  Google Scholar 

  139. Ferguson ND, Pham T, Gong MN. How severe COVID-19 infection is changing ARDS management. Intensive Care Med déc. 2020;46(12):2184–6.

    Article  CAS  Google Scholar 

  140. Yousefi P, Soltani S, Siri G, Rezayat SA, Gholami A, Zafarani A, et al. Coagulopathy and thromboembolic events a pathogenic mechanism of COVID-19 associated with mortality: an updated review. J Clin Lab Anal juin. 2023;37(11–12):e24941.

    Article  CAS  Google Scholar 

  141. Velissaris D, Michailides C, Karalis I, Paraskevas T, Koniari I, Pierrakos C, et al. A literature review of pathophysiology, clinical manifestations, medications and optimal dosage, outpatient, and post-hospitalization use of anticoagulation in COVID-19 patients. Anatol J Cardiol mai. 2023;27(5):232–9.

    Article  CAS  Google Scholar 

  142. Smadja DM, Mentzer SJ, Fontenay M, Laffan MA, Ackermann M, Helms J, et al. COVID-19 is a systemic vascular hemopathy: insight for mechanistic and clinical aspects. Angiogenesis. 2021;24(4):755–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Iba T, Helms J, Levi M, Levy JH. Thromboinflammation in acute injury: infections, heatstroke, and trauma. J Thromb Haemost JTH. 2023;S1538–7836(23):00583–4.

    Google Scholar 

  144. Mazzaccaro D, Giannetta M, Fancoli F, Milani V, Modafferi A, Malacrida G, et al. COVID and venous thrombosis: systematic review of literature. J Cardiovasc Surg (Torino). 2021;62(6):548–57.

    PubMed  Google Scholar 

  145. Lee HJ, Jang HJ, Choi WI, Joh J, Kim J, Park J, et al. Comparison of safety and efficacy between therapeutic or intermediate versus prophylactic anticoagulation for thrombosis in COVID-19 patients: a systematic review and meta-analysis. Acute Crit Care mai. 2023;38(2):160–71.

    Article  Google Scholar 

  146. Rachina S, Belkova Y, Shchendrygina A, Suvorov A, Bourgeois D, Karuk M, et al. Safety and efficacy of different anticoagulant doses for patients with COVID-19 in the ICU: a systematic review and meta-analysis. J Clin Med. 2023;12(6):2222.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Schulman S, Sholzberg M, Spyropoulos AC, Zarychanski R, Resnick HE, Bradbury CA, et al. ISTH guidelines for antithrombotic treatment in COVID-19. J Thromb Haemost JTH. 2022;20(10):2214–25.

    Article  CAS  PubMed  Google Scholar 

  148. Lansbury L, Lim B, Baskaran V, Lim WS. Co-infections in people with COVID-19: a systematic review and meta-analysis. J Infect août. 2020;81(2):266–75.

    Article  CAS  Google Scholar 

  149. Rouzé A, Martin-Loeches I, Povoa P, Metzelard M, Du Cheyron D, Lambiotte F, et al. Early bacterial identification among intubated patients with COVID-19 or influenza pneumonia: a european multicenter comparative clinical trial. Am J Respir Crit Care Med. 2021;204(5):546–56.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Maes M, Higginson E, Pereira-Dias J, Curran MD, Parmar S, Khokhar F, et al. Ventilator-associated pneumonia in critically ill patients with COVID-19. Crit Care Lond Engl. 2021;25(1):25.

    Article  Google Scholar 

  151. Pickens CO, Gao CA, Cuttica MJ, Smith SB, Pesce LL, Grant RA, et al. Bacterial superinfection pneumonia in patients mechanically ventilated for COVID-19 pneumonia. Am J Respir Crit Care Med. 2021;204(8):921–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rouzé A, Martin-Loeches I, Povoa P, Makris D, Artigas A, Bouchereau M, et al. Relationship between SARS-CoV-2 infection and the incidence of ventilator-associated lower respiratory tract infections: a European multicenter cohort study. Intensive Care Med févr. 2021;47(2):188–98.

    Article  Google Scholar 

  153. Buetti N, Tabah A, Loiodice A, Ruckly S, Aslan AT, Montrucchio G, et al. Different epidemiology of bloodstream infections in COVID-19 compared to non-COVID-19 critically ill patients: a descriptive analysis of the Eurobact II study. Crit Care Lond Engl. 2022;26(1):319.

    Article  Google Scholar 

  154. Grasselli G, Scaravilli V, Mangioni D, Scudeller L, Alagna L, Bartoletti M, et al. Hospital-acquired infections in critically ill patients with COVID-19. Chest août. 2021;160(2):454–65.

    Article  CAS  Google Scholar 

  155. Conway Morris A, Kohler K, De Corte T, Ercole A, De Grooth HJ, Elbers PWG, et al. Co-infection and ICU-acquired infection in COIVD-19 ICU patients: a secondary analysis of the UNITE-COVID data set. Crit Care Lond Engl. 2022;26(1):236.

    Article  Google Scholar 

  156. Piantoni A, Houard M, Piga G, Zebian G, Ruffier des Aimes S, Holik B, et al. Relationship between COVID-19 and ICU-acquired bloodstream infections related to multidrug-resistant bacteria. Antibiot Basel Switz. 2023;12(7):1105.

    CAS  Google Scholar 

  157. Dupuis C, de Montmollin E, Buetti N, Goldgran-Toledano D, Reignier J, Schwebel C, et al. Impact of early corticosteroids on 60-day mortality in critically ill patients with COVID-19: a multicenter cohort study of the OUTCOMEREA network. PLoS ONE. 2021;16(8):e0255644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Camou F, Issa N, Hessamfar M, Guisset O, Mourissoux G, Pedeboscq S, et al. Is tocilizumab plus dexamethasone associated with superinfection in critically ill COVID-19 patients? J Clin Med. 2022;11(19):5559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Szabó BG, Czél E, Nagy I, Korózs D, Petrik B, Marosi B, et al. Clinical and microbiological outcomes and follow-up of secondary bacterial and fungal infections among critically ill COVID-19 adult patients treated with and without immunomodulation: a prospective cohort study. Antibiot Basel Switz. 2023;12(7):1196.

    Google Scholar 

  160. Tanzarella ES, Vargas J, Menghini M, Postorino S, Pozzana F, Vallecoccia MS, et al. An observational study to develop a predictive model for bacterial pneumonia diagnosis in severe COVID-19 patients-C19-PNEUMOSCORE. J Clin Med. 2023;12(14):4688.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Dossett LA, Dageforde LA, Swenson BR, Metzger R, Bonatti H, Sawyer RG, et al. Obesity and site-specific nosocomial infection risk in the intensive care unit. Surg Infect avr. 2009;10(2):137–42.

    Article  Google Scholar 

  162. Timsit JF, Ruppé E, Barbier F, Tabah A, Bassetti M. Bloodstream infections in critically ill patients: an expert statement. Intensive Care Med févr. 2020;46(2):266–84.

    Article  Google Scholar 

  163. Buetti N, Souweine B, Mermel L, Mimoz O, Ruckly S, Loiodice A, et al. Obesity and risk of catheter-related infections in the ICU. A post hoc analysis of four large randomized controlled trials. Intensive Care Med. 2021;47(4):435–43.

    Article  PubMed  Google Scholar 

  164. Kolhe NV, Fluck RJ, Selby NM, Taal MW. Acute kidney injury associated with COVID-19: a retrospective cohort study. PLoS Med. 2020;17(10).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chan L, Chaudhary K, Saha A, Chauhan K, Vaid A, Zhao S, et al. AKI in hospitalized patients with COVID-19. J Am Soc Nephrol JASN janv. 2021;32(1):151–60.

    CAS  Google Scholar 

  166. Wan YI, Bien Z, Apea VJ, Orkin CM, Dhairyawan R, Kirwan CJ, et al. Acute kidney injury in COVID-19: multicentre prospective analysis of registry data. Clin Kidney J. 2021;14(11):2356–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sharma P, Uppal NN, Wanchoo R, Shah HH, Yang Y, Parikh R, et al. COVID-19-associated kidney injury: a case series of kidney biopsy findings. J Am Soc Nephrol JASN sept. 2020;31(9):1948–58.

    Article  CAS  Google Scholar 

  168. Volbeda M, Jou-Valencia D, van den Heuvel MC, Knoester M, Zwiers PJ, Pillay J, et al. Comparison of renal histopathology and gene expression profiles between severe COVID-19 and bacterial sepsis in critically ill patients. Crit Care Lond Engl. 2021;25(1):202.

    Article  Google Scholar 

  169. Jansen J, Reimer KC, Nagai JS, Varghese FS, Overheul GJ, de Beer M, et al. SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids. Cell Stem Cell. 2022;29(2):217–231.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Nadim MK, Forni LG, Mehta RL, Connor MJ, Liu KD, Ostermann M, et al. COVID-19-associated acute kidney injury: consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup. Nat Rev Nephrol déc. 2020;16(12):747–64.

    Article  CAS  Google Scholar 

  171. Birkelo BC, Parr SK, Perkins AM, Greevy RA, Hung AM, Shah SC, et al. Comparison of COVID-19 versus influenza on the incidence, features, and recovery from acute kidney injury in hospitalized United States Veterans. Kidney Int. 2021;100(4):894–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Cai X, Wu G, Zhang J, Yang L. Risk factors for acute kidney injury in adult patients with COVID-19: a systematic review and meta-analysis. Front Med. 2021;8:719472.

    Article  Google Scholar 

  173. Martín-Del-Campo F, Ruvalcaba-Contreras N, Velázquez-Vidaurri AL, Cueto-Manzano AM, Rojas-Campos E, Cortés-Sanabria L, et al. Morbid obesity is associated with mortality and acute kidney injury in hospitalized patients with COVID-19. Clin Nutr ESPEN. 2021;45:200–5.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Page-Wilson G, Arakawa R, Nemeth S, Bell F, Girvin Z, Tuohy MC, et al. Obesity is independently associated with septic shock, renal complications, and mortality in a multiracial patient cohort hospitalized with COVID-19. PLoS ONE. 2021;16(8):e0255811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Gupta S, Coca SG, Chan L, Melamed ML, Brenner SK, Hayek SS, et al. AKI treated with renal replacement therapy in critically ill patients with COVID-19. J Am Soc Nephrol JASN janv. 2021;32(1):161–76.

    CAS  Google Scholar 

  176. So M, Takahashi M, Miyamoto Y, Ishisaka Y, Iwagami M, Tsugawa Y, et al. The effect of obesity on in-hospital mortality among patients with COVID-19 receiving corticosteroids. Diabetes Metab Syndr janv. 2022;16(1):102373.

    Article  CAS  Google Scholar 

  177. Zamoner W, Santos CADS, Magalhães LE, de Oliveira PGS, Balbi AL, Ponce D. Acute kidney injury in COVID-19: 90 days of the pandemic in a Brazilian public hospital. Front Med. 2021;8:622577.

    Article  Google Scholar 

  178. Bowe B, Cai M, Xie Y, Gibson AK, Maddukuri G, Al-Aly Z. Acute kidney injury in a national cohort of hospitalized US veterans with COVID-19. Clin J Am Soc Nephrol CJASN. 2020;16(1):14–25.

    Article  PubMed  Google Scholar 

  179. Nakeshbandi M, Maini R, Daniel P, Rosengarten S, Parmar P, Wilson C, et al. The impact of obesity on COVID-19 complications: a retrospective cohort study. Int J Obes. 2020;44(9):1832–7.

    Article  CAS  Google Scholar 

  180. Schiffl H. Obesity and the survival of critically ill patients with acute kidney injury: a paradox within the paradox? Kidney Dis Basel Switz janv. 2020;6(1):13–21.

    Google Scholar 

  181. Collaboration PS, Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet Lond Engl. 2009;373(9669):1083–96.

    Article  Google Scholar 

  182. Di Angelantonio E, Bhupathiraju SN, Wormser D, Gao P, Kaptoge S, de Gonzalez AB, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. The Lancet août. 2016;388(10046):776–86.

    Article  Google Scholar 

  183. Naderi N, Kleine CE, Park C, Hsiung JT, Soohoo M, Tantisattamo E, et al. Obesity paradox in advanced kidney disease: from bedside to the bench. Prog Cardiovasc Dis août. 2018;61(2):168–81.

    Article  Google Scholar 

  184. Sharma A, Lavie CJ, Borer JS, Vallakati A, Goel S, Lopez-Jimenez F, et al. Meta-analysis of the relation of body mass index to all-cause and cardiovascular mortality and hospitalization in patients with chronic heart failure. Am J Cardiol. 2015;115(10):1428–34.

    Article  PubMed  Google Scholar 

  185. Nie W, Zhang Y, Jee SH, Jung KJ, Li B, Xiu Q. Obesity survival paradox in pneumonia: a meta-analysis. BMC Med. 2014;12:61.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Zhi G, Xin W, Ying W, Guohong X, Shuying L. “Obesity paradox” in acute respiratory distress syndrome: asystematic review and meta-analysis. PLOS ONE. 2016;11(9).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Tlayjeh H, Arabi YM, Ferguson ND, Zhou Q, Lamontagne F, Arroliga A, et al. Body mass index and mortality in subjects with ARDS: post-hoc analysis of the OSCILLATE trial. Respir Care sept. 2019;64(9):1042–8.

    Article  Google Scholar 

  188. Pepper DJ, Sun J, Welsh J, Cui X, Suffredini AF, Eichacker PQ. Increased body mass index and adjusted mortality in ICU patients with sepsis or septic shock: a systematic review and meta-analysis. Crit Care Lond Engl. 2016;20(1):181.

    Article  Google Scholar 

  189. Pepper DJ, Demirkale CY, Sun J, Rhee C, Fram D, Eichacker P, et al. Does obesity protect against death in sepsis? A retrospective cohort study of 55,038 adult patients*: Crit Care Med. 2019;47(5):643–50.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Manolis AS, Manolis AA, Manolis TA, Apostolaki NE, Melita H. COVID-19 Infection and body weight: a deleterious liaison in a J-curve relationship. Obes Res Clin Pract. 2021;47(6):687–91. [cité 11 nov 2021]; Disponible sur: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8563353/

  191. Abumayyaleh M, Núñez Gil IJ, El-Battrawy I, Estrada V, Becerra-Muñoz VM, Aparisi A, et al. Does there exist an obesity paradox in COVID-19? Insights of the international HOPE-COVID-19-registry. Obes Res Clin Pract juin. 2021;15(3):275–80.

    Article  Google Scholar 

  192. Zhang X, Lewis AM, Moley JR, Brestoff JR. A systematic review and meta-analysis of obesity and COVID-19 outcomes. Sci Rep. 2021;11(1):7193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Vulturar DM, Crivii CB, Orăsan OH, Palade E, Buzoianu AD, Zehan IG, et al. Obesity impact on SARS-CoV-2 infection: pros and cons “obesity paradox”—a systematic review. J Clin Med. 2022;11(13):3844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Banack HR, Stokes A. The ‘obesity paradox’ may not be a paradox at all. Int J Obes août. 2017;41(8):1162–3.

    Article  CAS  Google Scholar 

  195. Ou X, Jiang J, Lin B, Liu Q, Lin W, Chen G, et al. Antibody responses to COVID-19 vaccination in people with obesity: a systematic review and meta-analysis. Influenza Other Respir Viruses janv. 2023;17(1):e13078.

    Article  CAS  Google Scholar 

  196. Westheim AJF, Bitorina AV, Theys J, Shiri-Sverdlov R. COVID-19 infection, progression, and vaccination: focus on obesity and related metabolic disturbances. Obes Rev Off J Int Assoc Study Obes. 2021;22(10):e13313.

    Article  CAS  Google Scholar 

  197. Warpechowski J, Leszczyńska P, Juchnicka D, Olichwier A, Szczerbiński Ł, Krętowski AJ. Assessment of the immune response in patients with insulin resistance, obesity, and diabetes to COVID-19 vaccination. Vaccines. 2023;11(7):1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Fu C, Lin N, Zhu J, Ye Q. Association between overweight/obesity and the safety and efficacy of COVID-19 vaccination: a systematic review. Vaccines. 2023;11(5):996.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Tian W, Ren X, Han M, Zhang Y, Gao X, Chen Z, et al. Epidemiological and clinical characteristics of vaccinated COVID-19 patients: a meta-analysis and systematic review. Int J Immunopathol Pharmacol. 2022;36:3946320221141802.

    Article  PubMed  Google Scholar 

  200. Riccò M, Valente M, Dalmonte G, Marchesi F, Peruzzi S, Ballabeni L, et al. Knowledge, attitudes and practices towards SARS-CoV-2 vaccination among morbid obese individuals: a pilot study. Acta Bio-Medica Atenei Parm. 2022;93(3):e2022234.

    Google Scholar 

  201. Vallis M, Glazer S. Protecting individuals living with overweight and obesity: attitudes and concerns toward COVID-19 vaccination in Canada. Obes Silver Spring Md juill. 2021;29(7):1128–37.

    Article  CAS  Google Scholar 

  202. Salluh JIF, Arabi YM, Binnie A. COVID-19 research in critical care: the good, the bad, and the ugly. Intensive Care Med avr. 2021;47(4):470–2.

    Article  CAS  Google Scholar 

  203. Citerio G, the ICM Editorial Board. And once the storm is over… ICM will remain the intensivist’s beacon. Intensive Care Med 2021;47(6):687–91.

  204. Martinez-Simon A, Honorato-Cia C, Cacho-Asenjo E, Aquerreta I, Panadero-Sanchez A, Núñez-Córdoba JM. COVID-19 publications in anaesthesiology journals: a bibliometric analysis. Br J Anaesth. 2021;S0007–0912(21):00769–8.

    Google Scholar 

  205. Andreotti F, Gervasoni C, Di Pasquale G, Maggioni AP. Methodological education in response to the quality of COVID-19 publications. Pharmacol Res févr. 2021;164:105381.

    Article  CAS  Google Scholar 

  206. Collins R, Bowman L, Landray M, Peto R. The magic of randomization versus the myth of real-world evidence. N Engl J Med. 2020;382(7):674–8.

    Article  PubMed  Google Scholar 

  207. Maggioni AP, Andreotti F, Gervasoni C, Pasquale GD. COVID-19 trials in Italy: a call for simplicity, top standards and global pooling. Int J Cardiol. 2020;318:160–4.

  208. Pitrowsky MT, Quintairos A, Salluh JIF. ICU organization and disparities in clinical trajectories and outcomes during the pandemic. Intensive Care Med. 2022;48(8):1120–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Winkelman C, Maloney B, Kloos J. The impact of obesity on critical care resource use and outcomes. Crit Care Nurs Clin North Am. 2009;21(3):403–22 , vii.

    Article  PubMed  Google Scholar 

  210. Winfield RD. Caring for the critically ill obese patient: challenges and opportunities. Nutr Clin Pract Off Publ Am Soc Parenter Enter Nutr. 2014;29(6):747–50.

    Google Scholar 

  211. Xie J, Tong Z, Guan X, Du B, Qiu H, Slutsky AS. Critical care crisis and some recommendations during the COVID-19 epidemic in China. Intensive Care Med mai. 2020;46(5):837–40.

    Article  CAS  Google Scholar 

  212. Wahlster S, Sharma M, Lewis AK, Patel PV, Hartog CS, Jannotta G, et al. The coronavirus disease 2019 pandemic’s effect on critical care resources and health-care providers: a global survey. Chest févr. 2021;159(2):619–33.

    Article  CAS  Google Scholar 

  213. Rotenstein LS, Sinsky C, Cassel CK. How to measure progress in addressing physician well-being: beyond burnout. JAMA. 2021;326(21):2129–30.

    Article  PubMed  Google Scholar 

  214. Wozniak H, Benzakour L, Moullec G, Buetti N, Nguyen A, Corbaz S, et al. Mental health outcomes of ICU and non-ICU healthcare workers during the COVID-19 outbreak: a cross-sectional study. Ann Intensive Care. 2021;11(1):106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Busch IM, Moretti F, Mazzi M, Wu AW, Rimondini M. What we have learned from two decades of epidemics and pandemics: a systematic review and meta-analysis of the psychological burden of frontline healthcare workers. Psychother Psychosom. 2021;90(3):178–90.

    Article  PubMed  Google Scholar 

  216. Laurent A, Fournier A, Lheureux F, Louis G, Nseir S, Jacq G, et al. Mental health and stress among ICU healthcare professionals in France according to intensity of the COVID-19 epidemic. Ann Intensive Care. 2021;11(1):90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Gupta S, Hayek SS, Wang W, Chan L, Mathews KS, Melamed ML, et al. Factors associated with death in critically ill patients with coronavirus disease 2019 in the US. JAMA Intern Med. 2020;180(11):1–12.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This manuscript was edited for proper English language, grammar, punctuation, spelling, and overall style by American Journal Experts.

Author information

Authors and Affiliations

Authors

Contributions

AB and LP wrote the review design. AB, EK, YJ, ADJ, HS, MJ, BG, DV, SJ, PP, and LP wrote the main manuscript. AB and LP prepared Fig. 1. ADJ and AB prepared Fig. 2. HS and AB prepared Fig. 3. All authors reviewed the manuscript. AB and LP approved the final version.

Corresponding author

Correspondence to Alexandra Beurton.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

Alexandra Beurton: no conflicts of interest. Emma J Kooistra: no conflicts of interest. Audrey De Jong reports receiving fees for teaching presentations for Drager, Medtronic and Fisher & Paykel. Helmut Schiffl: no conflicts of interest. Mercé Jourdain: no conflicts of interest. Bruno Garcia: no conflicts of interest. Damien Vimpère: no conflicts of interest. Samir Jaber reports receiving consulting fees from Drager, Medtronic, Fresenius, Baxter and Fisher & Paykel. Peter Pickkers: no conflicts of interest. Laurent Papazian received consultancy fees from Air liquid MS, Faron and MSD.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beurton, A., Kooistra, E.J., De Jong, A. et al. Specific and Non-specific Aspects and Future Challenges of ICU Care Among COVID-19 Patients with Obesity: A Narrative Review. Curr Obes Rep (2024). https://doi.org/10.1007/s13679-024-00562-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13679-024-00562-3

Keywords

Navigation