Skip to main content

Advertisement

Log in

Berries in Microbiome-Mediated Gastrointestinal, Metabolic, and Immune Health

  • REVIEW
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Current research has shown that berry-derived polymeric substrates that resist human digestion (dietary fibers and polyphenols) are extensively metabolized in the gastrointestinal tract dominated by microbiota. This review assesses current epidemiological, experimental, and clinical evidence of how berry (strawberry, blueberry, raspberry, blackberry, cranberry, black currant, and grapes) phytochemicals interact with the microbiome and shape health or metabolic risk factor outcomes.

Recent Findings

There is a growing evidence that the compositional differences among complex carbohydrate fractions and classes of polyphenols define reversible shifts in microbial populations and human metabolome to promote gastrointestinal health. Interventions to prevent gastrointestinal inflammation and improve metabolic outcomes may be achieved with selection of berries that provide distinct polysaccharide substrates for selective multiplication of beneficial microbiota or oligomeric decoys for binding and elimination of the pathogens, as well as phenolic substrates that hold potential to modulate gastrointestinal mucins, reduce luminal oxygen, and release small phenolic metabolites signatures capable of ameliorating inflammatory and metabolic perturbations.

Summary

These mechanisms may explain many of the differences in microbiota and host gastrointestinal responses associated with increased consumption of berries, and highlight potential opportunities to intentionally shift gut microbiome profiles or to modulate risk factors associated with better nutrition and health outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. van Zonneveld M, Larranaga N, Blonder B, Coradin L, Hormaza JI, Hunter D. Human diets drive range expansion of megafauna-dispersed fruit species. Proc Natl Acad Sci. 2018;115:3326–31.

  2. Craig WJ, Mangels AR, Fresán U, Marsh K, Miles FL, Saunders AV, et al. The safe and effective use of plant-based diets with guidelines for health professionals. Nutrients. 2021;13:4144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kahleova H, Levin S, Barnard N. Cardio-metabolic benefits of plant-based diets. Nutrients. Multidisciplinary Digital Publishing Institute; 2017;9:848.

  4. Wright N, Wilson L, Smith M, Duncan B, McHugh P. The BROAD study: a randomised controlled trial using a whole food plant-based diet in the community for obesity, ischaemic heart disease or diabetes. Nutr Diabetes Nature Publishing Group. 2017;7:e256–e256.

    Article  CAS  Google Scholar 

  5. Hladik CM, Pasquet P. The human adaptations to meat eating: a reappraisal. Hum Evol. 2002;17:199–206.

    Article  Google Scholar 

  6. James WPT, Johnson RJ, Speakman JR, Wallace DC, Frühbeck G, Iversen PO, et al. Nutrition and its role in human evolution. J Intern Med. 2019;285:533–49.

    Article  CAS  PubMed  Google Scholar 

  7. • Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57:1–24. The review provides a critical analysis of gut microbiota as it applies to the metabolism of dietary components and some host-generated substances, and highlights target gut microbial pathways responsible for changes in nutritional composition.

  8. McBurney MI, Davis C, Fraser CM, Schneeman BO, Huttenhower C, Verbeke K, et al. Establishing what constitutes a healthy human gut microbiome: state of the science, regulatory considerations, and future directions. J Nutr. 2019;149:1882–95.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moon CD, Young W, Maclean PH, Cookson AL, Bermingham EN. Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. MicrobiologyOpen. 2018;7: e00677.

    Article  PubMed  PubMed Central  Google Scholar 

  10. • Alba K, Campbell GM, Kontogiorgos V. Dietary fibre from berry-processing waste and its impact on bread structure: a review. J Sci Food Agric. 2019;99:4189–99. This summarizes the current understanding of dietary fiber from berries and berry-derived waste products, details fractionation strategies, and defines its application in food processing and manufacturing.

  11. Matijašić M, Meštrović T, Čipčić Paljetak H, Perić M, Barešić A, Verbanac D. Gut microbiota beyond bacteria—mycobiome, virome, archaeome, and eukaryotic parasites in IBD. Int J Mol Sci. 2020;21:2668.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Oren A, da Costa MS, Garrity GM, Rainey FA, Rosselló-Móra R, Schink B, et al. Proposal to include the rank of phylum in the International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol. 2015;65:4284–7.

  13. Reese AT, Dunn RR. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. mBio. Am Soc Microbiol. 2018;9:e01294–18.

  14. Kaoutari AE, Armougom F, Gordon JI, Raoult D, Henrissat B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol Nature Publishing Group. 2013;11:497–504.

    Article  Google Scholar 

  15. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. •• Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, et al. A new genomic blueprint of the human gut microbiota. Nature. 2019;568:499–504. The study expands our current knowledge of the human microbiome with uncultured candidate bacterial species by reconstructing metagenome-assembled genomes from human gut microbiomes.

  17. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6.

    Article  PubMed  Google Scholar 

  18. Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol. 2014;32:834–41.

    Article  CAS  PubMed  Google Scholar 

  19. Miller TL, Wolin MJ. Fermentations by saccharolytic intestinal bacteria. Am J Clin Nutr. 1979;32:164–72.

    Article  CAS  PubMed  Google Scholar 

  20. Heidarian F, Alebouyeh M, Shahrokh S, Balaii H, Zali MR. Altered fecal bacterial composition correlates with disease activity in inflammatory bowel disease and the extent of IL8 induction. Curr Res Transl Med. 2019;67:41–50.

    Article  PubMed  Google Scholar 

  21. Rathinasabapathy T, Sakthivel LP, Komarnytsky S. Plant-based support of respiratory health during viral outbreaks. J Agric Food Chem. 2022;70:2064–76.

  22. Rathinasabapathy T, Lomax J, Srikanth K, Esposito D, Kay CD, Komarnytsky S. Effect of wild blueberry metabolites on biomarkers of gastrointestinal and immune health in vitro. Immuno Multidisciplinary Digital Publishing Institute. 2022;2:293–306.

    Google Scholar 

  23. •• Vong CI, Rathinasabapathy T, Moncada M, Komarnytsky S. All polyphenols are not created equal: exploring the diversity of phenolic metabolites. J Agric Food Chem. 2022;70:2077–91. The review summarizes structural differences and metabolism of plant polyphenols with a specific focus on unique small phenolic metabolite signatures and their impact on health-associated outcomes in experimental and clinical settings.

  24. Vicente AR, Saladié M, Rose JK, Labavitch JM. The linkage between cell wall metabolism and fruit softening: looking to the future. J Sci Food Agric. 2007;87:1435–48.

    Article  CAS  Google Scholar 

  25. •• Komarnytsky S, Retchin S, Vong CI, Lila MA. Gains and losses of agricultural food production: implications for the twenty-first century. Annu Rev Food Sci Technol. 2022;13:239–61. The study reviews the evolution of agricultural food systems and introduces the concept of “food systems losses” defined as progressive decreases in dietary fiber, complex carbohydrates, micronutrients, and several classes of phytochemicals in cultivated crops.

  26. Mayer A-MB, Trenchard L, Rayns F. Historical changes in the mineral content of fruit and vegetables in the UK from 1940 to 2019: a concern for human nutrition and agriculture. Int J Food Sci Nutr. Taylor & Francis; 2022;73:315–26.

  27. • Grondin JA, Kwon YH, Far PM, Haq S, Khan WI. Mucins in intestinal mucosal defense and inflammation: learning from clinical and experimental studies. Front Immunol. 2020;11. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2020.02054. This reviews the current knowledge on the structure and function of mucins, a highly glycosylated protein that mediates host-microbiota-diet interactions in the gut. 

  28. Zoetendal EG, Raes J, van den Bogert B, Arumugam M, Booijink CCGM, Troost FJ, et al. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 2012;6:1415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saffouri GB, Shields-Cutler RR, Chen J, Yang Y, Lekatz HR, Hale VL, et al. Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nat Commun. Nature Publishing Group; 2019;10:2012.

  30. Grundy MM-L, Lapsley K, Ellis PR. A review of the impact of processing on nutrient bioaccessibility and digestion of almonds. Int J Food Sci Technol. 2016;51:1937–46.

  31. Pauly M, Keegstra K. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J Cell Mol Biol. 2008;54:559–68.

    Article  CAS  Google Scholar 

  32. Steck J, Kaufhold L, Bunzel M. Structural profiling of xyloglucans from food plants by high-performance anion-exchange chromatography with parallel pulsed amperometric and mass spectrometric detection. J Agric Food Chem. American Chemical Society; 2021;69:8838–49.

  33. Larsbrink J, Rogers TE, Hemsworth GR, McKee LS, Tauzin AS, Spadiut O, et al. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature. 2014;506:498–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol Nature Publishing Group. 2012;10:323–35.

    Article  CAS  Google Scholar 

  35. Guillon F, Champ M. Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Res Int. 2000;33:233–45.

    Article  Google Scholar 

  36. Baxter NT, Schmidt AW, Venkataraman A, Kim KS, Waldron C, Schmidt TM. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio. 2019;10:e02566–18.

  37. Theilmann MC, Goh YJ, Nielsen KF, Klaenhammer TR, Barrangou R, Abou Hachem M. Lactobacillus acidophilus metabolizes dietary plant glucosides and externalizes their bioactive phytochemicals. mBio. 2017;8:e01421–17.

  38. Kawai Y, Nishikawa T, Shiba Y, Saito S, Murota K, Shibata N, et al. Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries: implication in the anti-atherosclerotic mechanism of dietary flavonoids. J Biol Chem. 2008;283:9424–34.

    Article  CAS  PubMed  Google Scholar 

  39. Espín JC, Larrosa M, García-Conesa MT, Tomás-Barberán F. Biological significance of urolithins, the gut microbial ellagic acid-derived metabolites: the evidence so far. Evid Based Complement Alternat Med. Hindawi; 2013;2013:e270418.

  40. Ou K, Sarnoski P, Schneider KR, Song K, Khoo C, Gu L. Microbial catabolism of procyanidins by human gut microbiota. Mol Nutr Food Res. 2014;58:2196–205.

    Article  CAS  PubMed  Google Scholar 

  41. Golovinskaia O, Wang C-K. Review of functional and pharmacological activities of berries. Mol Basel Switz. 2021;26:3904.

    CAS  Google Scholar 

  42. Hjartåker A, Knudsen MD, Tretli S, Weiderpass E. Consumption of berries, fruits and vegetables and mortality among 10,000 Norwegian men followed for four decades. Eur J Nutr. 2015;54:599–608.

    Article  PubMed  Google Scholar 

  43. Bachman JL, Reedy J, Subar AF, Krebs-Smith SM. Sources of food group intakes among the US population, 2001–2002. J Am Diet Assoc. 2008;108:804–14.

    Article  PubMed  Google Scholar 

  44. Basu A, Rhone M, Lyons TJ. Berries: emerging impact on cardiovascular health. Nutr Rev. 2010;68:168–77.

    Article  PubMed  Google Scholar 

  45. Mink PJ, Scrafford CG, Barraj LM, Harnack L, Hong C-P, Nettleton JA, et al. Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr. 2007;85:895–909.

    Article  CAS  PubMed  Google Scholar 

  46. Hssaini L, Charafi J, Razouk R, Hernández F, Fauconnier M-L, Ennahli S, et al. Assessment of morphological traits and fruit metabolites in eleven fig varieties (Ficus carica L.). Int J Fruit Sci. Taylor & Francis; 2020;20:8–28.

  47. Azzini E, Vitaglione P, Intorre F, Napolitano A, Durazzo A, Foddai MS, et al. Bioavailability of strawberry antioxidants in human subjects. Br J Nutr. 2010;104:1165–73.

    Article  CAS  PubMed  Google Scholar 

  48. Puupponen-Pimiä R, Seppänen-Laakso T, Kankainen M, Maukonen J, Törrönen R, Kolehmainen M, et al. Effects of ellagitannin-rich berries on blood lipids, gut microbiota, and urolithin production in human subjects with symptoms of metabolic syndrome. Mol Nutr Food Res. 2013;57:2258–63.

    Article  PubMed  Google Scholar 

  49. Selma MV, Beltrán D, Luna MC, Romo-Vaquero M, García-Villalba R, Mira A, et al. Isolation of human intestinal bacteria capable of producing the bioactive metabolite isourolithin a from ellagic acid. Front Microbiol. 2017;8:1521.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Braune A, Blaut M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes. 2016;7:216–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. •• Chandra P, Rathore AS, Kay KL, Everhart JL, Curtis P, Burton-Freeman B, et al. Contribution of berry polyphenols to the human metabolome. Mol Basel Switz. 2019;24:E4220. This evaluates the contribution of dietary berry polyphenols to the human microbiome, with a particular focus on fluctuations in the pools of small molecule metabolites already present in plasma and urine at baseline.

  52. • Ezzat-Zadeh Z, Henning SM, Yang J, Woo SL, Lee R-P, Huang J, et al. California strawberry consumption increased the abundance of gut microorganisms related to lean body weight, health and longevity in healthy subjects. Nutr Res NYN. 2021;85:60–70. An exemplary clinical study on dietary supplementation with strawberries as it applies to the abundance of gut microorganisms related to lean body weight, health, and longevity in healthy subjects.

  53. Mancabelli L, Milani C, Lugli GA, Turroni F, Cocconi D, van Sinderen D, et al. Identification of universal gut microbial biomarkers of common human intestinal diseases by meta-analysis. FEMS Microbiol Ecol. 2017;93:fix153.

  54. Leong C, Haszard JJ, Heath A-LM, Tannock GW, Lawley B, Cameron SL, et al. Using compositional principal component analysis to describe children’s gut microbiota in relation to diet and body composition. Am J Clin Nutr. 2020;111:70–8.

  55. Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, et al. Gut microbiota and extreme longevity. Curr Biol. 2016;26:1480–5.

    Article  CAS  PubMed  Google Scholar 

  56. Zhou K. Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies. J Funct Foods. 2017;33:194–201.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mengist MF, Grace MH, Xiong J, Kay CD, Bassil N, Hummer K, et al. Diversity in metabolites and fruit quality traits in blueberry enables ploidy and species differentiation and establishes a strategy for future genetic studies. Front Plant Sci. 2020;11:370.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Taira T, Yamaguchi S, Takahashi A, Okazaki Y, Yamaguchi A, Sakaguchi H, et al. Dietary polyphenols increase fecal mucin and immunoglobulin A and ameliorate the disturbance in gut microbiota caused by a high fat diet. J Clin Biochem Nutr. 2015;57:212–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guglielmetti S, Fracassetti D, Taverniti V, Del Bo’ C, Vendrame S, Klimis-Zacas D, et al. Differential modulation of human intestinal bifidobacterium populations after consumption of a wild blueberry (Vaccinium angustifolium) drink. J Agric Food Chem. 2013;61:8134–40.

  60. Warner EF, Smith MJ, Zhang Q, Raheem KS, O’Hagan D, O’Connell MA, et al. Signatures of anthocyanin metabolites identified in humans inhibit biomarkers of vascular inflammation in human endothelial cells. Mol Nutr Food Res. 2017;61.

  61. Skates E, Overall J, DeZego K, Wilson M, Esposito D, Lila MA, et al. Berries containing anthocyanins with enhanced methylation profiles are more effective at ameliorating high fat diet-induced metabolic damage. Food Chem Toxicol. 2018;111:445–53.

    Article  CAS  PubMed  Google Scholar 

  62. Ntemiri A, Ghosh TS, Gheller ME, Tran TTT, Blum JE, Pellanda P, et al. Whole blueberry and isolated polyphenol-rich fractions modulate specific gut microbes in an in vitro colon model and in a pilot study in human consumers. Nutrients. 2020;12:E2800.

    Article  Google Scholar 

  63. Zeng Q, Li D, He Y, Li Y, Yang Z, Zhao X, et al. Discrepant gut microbiota markers for the classification of obesity-related metabolic abnormalities. Sci Rep. 2019;9:13424.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Núñez-Gómez V, Periago MJ, Navarro-González I, Campos-Cava MP, Baenas N, González-Barrio R. Influence of raspberry and its dietary fractions on the in vitro activity of the colonic microbiota from normal and overweight subjects. Plant Foods Hum Nutr Dordr Neth. 2021;76:494–500.

    Article  Google Scholar 

  65. Ludwig IA, Mena P, Calani L, Borges G, Pereira-Caro G, Bresciani L, et al. New insights into the bioavailability of red raspberry anthocyanins and ellagitannins. Free Radic Biol Med. 2015;89:758–69.

    Article  CAS  PubMed  Google Scholar 

  66. Lim T, Lee K, Kim RH, Cha KH, Koo SY, Moon EC, et al. Black raspberry extract can lower serum LDL cholesterol via modulation of gut microbial composition and serum bile acid profile in rats fed trimethylamine-N-oxide with a high-fat diet. Food Sci Biotechnol [Internet]. 2022 [cited 2022 Jul 1]; Available from: https://doi.org/10.1007/s10068-022-01079-y

  67. Shaw OM, Hurst RD, Harper JL. Boysenberry ingestion supports fibrolytic macrophages with the capacity to ameliorate chronic lung remodeling. Am J Physiol-Lung Cell Mol Physiol. American Physiological Society; 2016;311:L628–38.

  68. Franck M, de Toro-Martín J, V Varin T, Garneau V, Pilon G, Roy D, et al. Gut microbial signatures of distinct trimethylamine N-oxide response to raspberry consumption. Nutrients. 2022;14:1656.

  69. Zhang X, Zhao A, Sandhu AK, Edirisinghe I, Burton-Freeman BM. Red Raspberry and fructo-oligosaccharide supplementation, metabolic biomarkers, and the gut microbiota in adults with prediabetes: a randomized crossover clinical trial. J Nutr. 2022;152:1438–49.

    Article  PubMed  Google Scholar 

  70. Zhang X, Zhao A, Sandhu AK, Edirisinghe I, Burton-Freeman BM. Functional deficits in gut microbiome of young and middle-aged adults with prediabetes apparent in metabolizing bioactive (poly)phenols. Nutrients. 2020;12:3595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Finn CE, Clark JR. Blackberry. In: Badenes ML, Byrne DH, editors. Fruit breed [Internet]. Boston, MA: Springer US; 2012. p. 151–90. Available from: https://doi.org/10.1007/978-1-4419-0763-9_5

  72. Dou Z, Chen C, Fu X. Digestive property and bioactivity of blackberry polysaccharides with different molecular weights. J Agric Food Chem. 2019;67:12428–40.

    Article  CAS  PubMed  Google Scholar 

  73. Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8:1715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dou Z, Chen C, Huang Q, Fu X. In vitro digestion of the whole blackberry fruit: bioaccessibility, bioactive variation of active ingredients and impacts on human gut microbiota. Food Chem. Elsevier; 2022;370:131001.

  75. Marques C, Fernandes I, Meireles M, Faria A, Spencer JPE, Mateus N, et al. Gut microbiota modulation accounts for the neuroprotective properties of anthocyanins. Sci Rep. 2018;8:11341.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jass J, Reid G. Effect of cranberry drink on bacterial adhesion in vitro and vaginal microbiota in healthy females. Can J Urol. 2009;16:4901–7.

    PubMed  Google Scholar 

  77. Bekiares N, Krueger CG, Meudt JJ, Shanmuganayagam D, Reed JD. Effect of sweetened dried cranberry consumption on urinary proteome and fecal microbiome in healthy human subjects. OMICS J Integr Biol. Mary Ann Liebert, Inc., publishers; 2018;22:145–53.

  78. Özcan E, Sun J, Rowley DC, Sela DA. A human gut commensal ferments cranberry carbohydrates to produce formate. Appl Environ Microbiol. 2017;83:e01097-e1117.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Straub TJ, Chou W-C, Manson AL, Schreiber HL, Walker BJ, Desjardins CA, et al. Limited effects of long-term daily cranberry consumption on the gut microbiome in a placebo-controlled study of women with recurrent urinary tract infections. BMC Microbiol. 2021;21:53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jeitler M, Michalsen A, Schwiertz A, Kessler CS, Koppold-Liebscher D, Grasme J, et al. Effects of a supplement containing a cranberry extract on recurrent urinary tract infections and intestinal microbiota: a prospective, uncontrolled exploratory study. J Integr Complement Med. 2022;28:399–406.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Heiss C, Istas G, Feliciano RP, Weber T, Wang B, Favari C, et al. Daily consumption of cranberry improves endothelial function in healthy adults: a double blind randomized controlled trial. Food Funct. 2022;13:3812–24.

    Article  CAS  PubMed  Google Scholar 

  82. Sirven MA, Venancio VP, Shankar S, Klemashevich C, Castellón-Chicas MJ, Fang C, et al. Ulcerative colitis results in differential metabolism of cranberry polyphenols by the colon microbiome in vitro. Food Funct Royal Society of Chemistry. 2021;12:12751–64.

    Article  CAS  Google Scholar 

  83. Molan A-L, Liu Z, Plimmer G. Evaluation of the effect of blackcurrant products on gut microbiota and on markers of risk for colon cancer in humans. Phytother Res PTR. 2014;28:416–22.

    Article  CAS  PubMed  Google Scholar 

  84. Dashnyam P, Mudududdla R, Hsieh T-J, Lin T-C, Lin H-Y, Chen P-Y, et al. β-Glucuronidases of opportunistic bacteria are the major contributors to xenobiotic-induced toxicity in the gut. Sci Rep. Nature Publishing Group; 2018;8:16372.

  85. Esposito D, Damsud T, Wilson M, Grace MH, Strauch R, Li X, et al. Black currant anthocyanins attenuate weight gain and improve glucose metabolism in diet-induced obese mice with intact, but not disrupted, gut microbiome. J Agric Food Chem. 2015;63:6172–80.

    Article  CAS  PubMed  Google Scholar 

  86. Paturi G, Butts CA, Monro JA, Hedderley D. Effects of blackcurrant and dietary fibers on large intestinal health biomarkers in rats. Plant Foods Hum Nutr. 2018;73:54–60.

    Article  CAS  PubMed  Google Scholar 

  87. Akagawa S, Akagawa Y, Nakai Y, Yamagishi M, Yamanouchi S, Kimata T, et al. Fiber-rich barley increases butyric acid-producing bacteria in the human gut microbiota. Metabolites. 2021;11:559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19:29–41.

    Article  CAS  PubMed  Google Scholar 

  89. Cao L, Lee SG, Melough MM, Sakaki JR, Maas KR, Koo SI, et al. Long-term blackcurrant supplementation modified gut microbiome profiles in mice in an age-dependent manner: an exploratory study. Nutrients. 2020;12:E290.

    Article  Google Scholar 

  90. Song H, Shen X, Wang F, Li Y, Zheng X. Black current anthocyanins improve lipid metabolism and modulate gut microbiota in high-fat diet-induced obese mice. Mol Nutr Food Res. 2021;65: e2001090.

    Article  PubMed  Google Scholar 

  91. Ganesh BP, Klopfleisch R, Loh G, Blaut M. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PLoS ONE. 2013;8: e74963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wagner C, De Gezelle J, Komarnytsky S. Celtic provenance in traditional herbal medicine of medieval wales and classical antiquity. Front Pharmacol [Internet]. 2020 [cited 2020 Apr 28];11. Available from: https://www.frontiersin.org/articles/10.3389/fphar.2020.00105/full#B12

  93. Terral J-F, Tabard E, Bouby L, Ivorra S, Pastor T, Figueiral I, et al. Evolution and history of grapevine (Vitis vinifera) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Ann Bot. 2010;105:443–55.

    Article  PubMed  Google Scholar 

  94. • Stalmach A, Edwards CA, Wightman JD, Crozier A. Colonic catabolism of dietary phenolic and polyphenolic compounds from Concord grape juice. Food Funct. 2013;4:52–62. An elegant study that determines the fate of undigested (poly)phenolic compounds from grape juice and demonstrates colonic transformation to small phenolic acids and aromatic compounds as a major catabolic pathway in humans.

  95. Baldwin J, Collins B, Wolf PG, Martinez K, Shen W, Chuang C-C, et al. Table grape consumption reduces adiposity and markers of hepatic lipogenesis and alters gut microbiota in butter fat-fed mice. J Nutr Biochem. 2016;27:123–35.

    Article  CAS  PubMed  Google Scholar 

  96. Wijayabahu AT, Waugh SG, Ukhanova M, Mai V. Dietary raisin intake has limited effect on gut microbiota composition in adult volunteers. Nutr J. 2019;18:14.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zhang L, Carmody RN, Kalariya HM, Duran RM, Moskal K, Poulev A, et al. Grape proanthocyanidin-induced intestinal bloom of Akkermansia muciniphila is dependent on its baseline abundance and precedes activation of host genes related to metabolic health. J Nutr Biochem. 2018;56:142–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yang J, Kurnia P, Henning SM, Lee R, Huang J, Garcia MC, et al. Effect of standardized grape powder consumption on the gut microbiome of healthy subjects: a pilot study. Nutrients. 2021;13:3965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. 2013;110:9066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25:1096–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature Nature Publishing Group. 2012;489:242–9.

    CAS  Google Scholar 

  102. Figueroa-Lozano S, Akkerman R, Beukema M, van Leeuwen SS, Dijkhuizen L, de Vos P. 2′-Fucosyllactose impacts the expression of mucus-related genes in goblet cells and maintains barrier function of gut epithelial cells. J Funct Foods. 2021;85: 104630.

    Article  CAS  Google Scholar 

  103. Bonyadi N, Dolatkhah N, Salekzamani Y, Hashemian M. Effect of berry-based supplements and foods on cognitive function: a systematic review. Sci Rep. Nature Publishing Group; 2022;12:3239.

  104. Barata A, Malfeito-Ferreira M, Loureiro V. The microbial ecology of wine grape berries. Int J Food Microbiol. 2012;153:243–59.

    Article  CAS  PubMed  Google Scholar 

  105. Cueva C, Bartolomé B, Moreno-Arribas MV, Bustos I, Requena T, González-Manzano S, et al. Susceptibility and tolerance of human gut culturable aerobic microbiota to wine polyphenols. Microb Drug Resist Larchmt N. 2015;21:17–24.

    Article  CAS  Google Scholar 

  106. Overall J, Bonney SA, Wilson M, Beermann A, Grace MH, Esposito D, et al. Metabolic effects of berries with structurally diverse anthocyanins. Int J Mol Sci [Internet]. 2017 [cited 2017 Sep 19];18. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343956/

  107. Vollmer W, Joris B, Charlier P, Foster S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev. 2008;32:259–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by the USDA National Institute of Food and Agriculture Hatch project #1023927 and by the Wild Blueberry Association of North America (S. K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slavko Komarnytsky.

Ethics declarations

Conflict of Interest

Nothing to disclose. This article does not contain any studies with human or animal subjects performed by any of the authors.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komarnytsky, S., Wagner, C., Gutierrez, J. et al. Berries in Microbiome-Mediated Gastrointestinal, Metabolic, and Immune Health. Curr Nutr Rep 12, 151–166 (2023). https://doi.org/10.1007/s13668-023-00449-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-023-00449-0

Keywords

Navigation