Skip to main content
Log in

Effects of Blackcurrant and Dietary Fibers on Large Intestinal Health Biomarkers in Rats

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

This study examined the effects of anthocyanin-rich blackcurrant extract and dietary fibers individually and their combinations on biomarkers of large intestinal health in rats. After six weeks of feeding, rats fed diets with blackcurrant gained significantly less body weight and reduced their food intake resulting in a lower food efficiency compared with those rats fed control diets. Combining dietary fiber (apple or broccoli) with blackcurrant in the diet was more effective in reducing the body weight gain and food intake. Cecal bacterial populations and short-chain fatty acids differed between the experimental diets. Blackcurrants significantly altered the bacterial populations by increasing the abundance of Bacteroides-Prevotella-Porphyromonas group and Lactobacillus spp., while decreasing the abundance of Bifidobacterium spp. and Clostridium perfringens. Propionic acid concentrations were increased by the diets with blackcurrant. Butyric acid concentrations were increased by dietary fiber supplementation. Dietary fiber increased the number of goblet cells in the colon. Diets with blackcurrant were more effective in altering the biomarkers of large intestinal health than those without blackcurrant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simpson HL, Campbell BJ (2015) Review article: dietary fibre–microbiota interactions. Aliment Pharmacol Ther 42:158–179

    Article  CAS  Google Scholar 

  2. Bienenstock J, Gibson G, Klaenhammer TR, Walker WA, Neish AS (2013) New insights into probiotic mechanisms: a harvest from functional and metagenomic studies. Gut Microbes 4:94–100

    Article  Google Scholar 

  3. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165:1332–1345

    Article  CAS  Google Scholar 

  4. Bentley-Hewitt K, Blatchford P, Parkar S, Ansell J, Pernthaner A (2012) Digested and fermented green kiwifruit increases human β-defensin 1 and 2 production in vitro. Plant Foods Hum Nutr 67:208–214

    Article  CAS  Google Scholar 

  5. Tomás-Barberán FA, Selma MV, Espín JC (2016) Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr Opin Clin Nutr Metab Care 19:471–476

    Article  Google Scholar 

  6. Etxeberria U, Fernández-Quintela A, Milagro FI, Aguirre L, Martínez JA, Portillo MP (2013) Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. J Agric Food Chem 61:9517–9533

    Article  CAS  Google Scholar 

  7. Yang M, Koo SI, Song WO, Chun OK (2011) Food matrix affecting anthocyanin bioavailability: review. Curr Med Chem 18:291–300

    Article  CAS  Google Scholar 

  8. Duda-Chodak A, Tarko T, Satora P, Sroka P (2015) Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr 54:325–341

    Article  CAS  Google Scholar 

  9. Sun-Waterhouse D, Farr J, Wibisono R, Saleh Z (2008) Fruit-based functional foods I: production of food-grade apple fibre ingredients. Int J Food Sci Technol 43:2113–2122

    Article  CAS  Google Scholar 

  10. Mandimika T, Paturi G, De Guzman CE, Butts CA, Nones K, Monro JA, Butler RC, Joyce NI, Mishra S, Ansell J (2012) Effects of dietary broccoli fibre and corn oil on serum lipids, faecal bile acid excretion and hepatic gene expression in rats. Food Chem 131:1272–1278

    Article  CAS  Google Scholar 

  11. Paturi G, Butts CA, Stoklosinski H, Ansell J (2012) Effects of early dietary intervention with a fermentable fibre on colonic microbiota activity and mucin gene expression in newly weaned rats. J Funct Foods 4:520–530

    Article  CAS  Google Scholar 

  12. Richardson AJ, Calder AG, Stewart CS, Smith A (1989) Simultaneous determination of volatile and non-volatile acidic fermentation products of anaerobes by capillary gas chromatography. Lett Appl Microbiol 9:5–8

    Article  CAS  Google Scholar 

  13. Culling CFA (1974) Handbook of histopathological and histochemical techniques, 3rd edn. Butterworths, London

    Google Scholar 

  14. Tangney CC, Rasmussen HE (2013) Polyphenols, inflammation, and cardiovascular disease. Curr Atheroscler Rep 15:324

    Article  Google Scholar 

  15. Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E (2016) The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8:78

    Article  Google Scholar 

  16. Esposito D, Damsud T, Wilson M, Grace MH, Strauch R, Li X, Lila MA, Komarnytsky S (2015) Black currant anthocyanins attenuate weight gain and improve glucose metabolism in diet-induced obese mice with intact, but not disrupted, gut microbiome. J Agric Food Chem 63:6172–6180

    Article  CAS  Google Scholar 

  17. Badshah H, Ullah I, Kim SE, Kim T-h, Lee HY, Kim MO (2013) Anthocyanins attenuate body weight gain via modulating neuropeptide Y and GABAB1 receptor in rats hypothalamus. Neuropeptides 47:347–353

    Article  CAS  Google Scholar 

  18. Pan P, Lam V, Salzman N, Huang Y-W, Yu J, Zhang J, Wang L-S (2017) Black raspberries and their anthocyanin and fiber fractions alter the composition and diversity of gut microbiota in F-344 rats. Nutr Cancer 69:943–951

    Article  CAS  Google Scholar 

  19. Espley RV, Butts CA, Laing WA, Martell S, Smith H, McGhie TK, Zhang J, Paturi G, Hedderley D, Bovy A, Schouten HJ, Putterill J, Allan AC, Hellens RP (2014) Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice. J Nutr 144:146–154

    Article  CAS  Google Scholar 

  20. Overall J, Bonney S, Wilson M, Beermann A, Grace M, Esposito D, Lila M, Komarnytsky S (2017) Metabolic effects of berries with structurally diverse anthocyanins. Int J Mol Sci 18:422

    Article  Google Scholar 

  21. Molan A-L, Liu Z, Plimmer G (2014) Evaluation of the effect of blackcurrant products on gut microbiota and on markers of risk for colon cancer in humans. Phytother Res 28:416–422

    Article  CAS  Google Scholar 

  22. Molan A-L, Liu Z, Kruger M (2010) The ability of blackcurrant extracts to positively modulate key markers of gastrointestinal function in rats. World J Microbiol Biotechnol 26:1735–1743

    Article  Google Scholar 

  23. Million M, Lagier JC, Yahav D, Paul M (2013) Gut bacterial microbiota and obesity. Clin Microbiol Infect 19:305–313

    Article  CAS  Google Scholar 

  24. Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, Flint HJ, Louis P (2014) Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 8:1323–1335

    Article  CAS  Google Scholar 

  25. Salonen A, Lahti L, Salojarvi J, Holtrop G, Korpela K, Duncan SH, Date P, Farquharson F, Johnstone AM, Lobley GE, Louis P, Flint HJ, de Vos WM (2014) Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J 8:2218–2230

    Article  CAS  Google Scholar 

  26. Byrne CS, Chambers ES, Morrison DJ, Frost G (2015) The role of short chain fatty acids in appetite regulation and energy homeostasis. Int J Obes 39:1331–1338

    Article  CAS  Google Scholar 

  27. Lin HV, Frassetto A, Kowalik Jr EJ, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G, Marsh DJ (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 7:e35240

  28. Arora T, Sharma R, Frost G (2011) Propionate. Anti-obesity and satiety enhancing factor? Appetite 56:511–515

    Article  Google Scholar 

  29. Canani RB, Di Costanzo M, Leone L, Pedata M, Meli R, Calignano A (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 17:1519–1528

    Article  CAS  Google Scholar 

  30. Birchenough GMH, Johansson ME, Gustafsson JK, Bergstrom JH, Hansson GC (2015) New developments in goblet cell mucus secretion and function. Mucosal Immunol 8:712–719

    Article  CAS  Google Scholar 

  31. Paturi G, Butts C, Monro J, Nones K, Martell S, Butler R, Sutherland J (2010) Cecal and colonic responses in rats fed 5 or 30% corn oil diets containing either 7.5% broccoli dietary fiber or microcrystalline cellulose. J Agric Food Chem 58:6510–6515

    Article  CAS  Google Scholar 

  32. Paturi G, Mandimika T, Butts CA, Zhu S, Roy NC, McNabb WC, Ansell J (2012) Influence of dietary blueberry and broccoli on cecal microbiota activity and colon morphology in mdr1a−/− mice, a model of inflammatory bowel diseases. Nutrition 28:324–330

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Sheridan Martell, Hannah Dinnan and Janice Rhodes for animal care, Dongxiao Sun-Waterhouse and Reginald Wibisono for apple fiber preparation, Cloe Erika De Guzman for broccoli fiber preparation, Halina Stoklosinski for SCFAs analysis, and Juliet Ansell and Margot Skinner for helpful discussions. E. faecalis culture stock was obtained from AgResearch Grasslands culture collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunaranjan Paturi.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 232 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paturi, G., Butts, C.A., Monro, J.A. et al. Effects of Blackcurrant and Dietary Fibers on Large Intestinal Health Biomarkers in Rats. Plant Foods Hum Nutr 73, 54–60 (2018). https://doi.org/10.1007/s11130-018-0652-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-018-0652-7

Keywords

Navigation