Skip to main content
Log in

Antioxidant, genoprotective and immunomodulatory potential of Vitex negundo leaves in experimental arthritis

  • Research Article
  • Published:
Oriental Pharmacy and Experimental Medicine Aims and scope Submit manuscript

Abstract

Vitex negundo is a medicinal plant used in Indian and folklore medicines to cure various ailments including arthritis. In the present study, the hydroethanolic extract of V. negundo leaves (VNE) were evaluated for antioxidant, genoprotective and immunomodulatory activity in Freund’s complete adjuvant (FCA) induced arthritis. VNE was evaluated for in vitro antioxidant activity using various parameters including plasmid nicking assay. VNE (200 mg/kg body weight) was orally administered to FCA induced arthritic rats to evaluate its genoprotective effects on peripheral blood leukocytes using the alkaline comet assay. Furthermore, the effects of VNE treatment on serum proinflammatory mediators such as tumor necrosis factor-α (TNF-α) and interleukin -1α (IL-1α) and the hematological parameters such as total RBC count, hematocrit and hemoglobin were measured in arthritic rats. The results showed that VNE exhibited potential in vitro antioxidant and DNA protecting activities in a concentration dependent manner. The phytoconstituents of VNE showed a strong and positive correlation with the antioxidant properties. DNA damage in the peripheral blood leukocytes of arthritic animals was significantly decreased after VNE treatment. VNE showed inhibition of serum proinflammatory cytokines (TNF-α and IL-1α) however, the inhibition was statistically not-significant. The arthritic animals showed significant increase in hemolysis, which was restored by VNE treatment. The results of the present study indicate that VNE may be a source of antioxidant, genoprotective with immunomodulatory activity, which may be attributed to its antioxidant phytoconstituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altindag O, Karakoc M, et al. (2007) Increased DNA damage and oxidative stress in patients with rheumatoid arthritis. Clin Biochem 40:167–171

    Article  CAS  PubMed  Google Scholar 

  • Bashir S, Harris G, et al. (1993) Oxidative DNA damage and cellular sensitivity to oxidative stress in human autoimmune diseases. Ann Rheum Dis 52:659–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapple IL (1997) C reactive oxygen species and antioxidants in inflammatory diseases. J Clin Periodontol 24:287–296

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay P, Hazarika S, et al. (2012) Vitex negundo inhibits cyclooxygenase-2 inflammatory cytokine mediated inflammation on carageneen induced rat hind paw edema. Pharmacog Res 4:134–137

    Article  Google Scholar 

  • De Vizcaya-Ruiz A, Rivero-Muller A, et al. (2003) Hematotoxicity response in rats by the novel copper-based anticancer agent: casiopeina II. Toxicology 194:103–113

    Article  PubMed  Google Scholar 

  • Devi PR, Kumari SK, et al. (2007) Effect of Vitex negundo leaf extract on the free radicals scavengers in complete Freund's adjuvant induced arthritic rats. Ind J Clin Biochem 22:143–147

    Article  Google Scholar 

  • Dharmasiri MG, Jayakody JRAC, et al. (2003) Anti-inflammatory and analgesic activities of mature fresh leaves of Vitex negundo. J Ethnopharmacol 87:199–206

    Article  CAS  PubMed  Google Scholar 

  • Dixit D, Dixit AK, et al. (2013) Radioprotective effect of Terminalia chebula Retzius extract against γ-irradiation-induced oxidative stress. Biomed Aging Pathol 3:83–88

    Article  CAS  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Review. Physiol Rev 82:47–95

    Article  CAS  PubMed  Google Scholar 

  • Gandhi NM, Nair CKK (2005) Radiation protection by Terminalia chebula: some mechanistic aspects. Mol Cell Biochem 277:43–48

    Article  CAS  PubMed  Google Scholar 

  • Garcia O, Romero I, et al. (2007) Measurement of DNA damage on silver stained comets using free Internate software. Mutat Res 627:186–190

    Article  CAS  PubMed  Google Scholar 

  • Geckil H, Ates B, et al. (2005) Antioxidant, free radical scavenging and metal chelating characteristics of propolis. Am J Biochem Biotech 1:27–31

    Article  CAS  Google Scholar 

  • Hajizadeh S, DeGroot J, et al. (2003) TeKoppele JM, Tarkowski a, Collins LV. Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis. Arthritis Res Ther 5:234–240

    Article  Google Scholar 

  • Halliwell B, Gutteridge JMC (1985) Chronic inflammation and autoimmune disease. In: free radicals in biology and medicine, clarendon press, 279Ioannides C (2000) xenobiotic metabolism and bioactivation by cytochromes P450. In: Wiseman H, Goldfarb P, Ridgway T, Wiseman A (eds) Biomolecular free radical toxicity: causes and prevention. Chichester, John Wiley and Sons Limited, p. 103

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Hua BL, Chi CW, et al. (2008) Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT 41:385–390

    Article  Google Scholar 

  • Karaman A, Binici DN, et al. (2011) Comet assay and analysis of micronucleus formation in patients with rheumatoid arthritis. Mutat Res 721:1–5

    Article  CAS  PubMed  Google Scholar 

  • Kavitha C, Ramesh M, et al. (2012) Toxicity of Moringa oleifera seed extract on some hematological and biochemical profiles in a freshwater fish, Cyprinus carpio. Experiment Toxicol Pathol 64:681–687

    Article  CAS  Google Scholar 

  • Kumar PP, Kumaravel S, et al. (2010) Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo. Afr J Biochem Res 4:191–195

    Google Scholar 

  • Lad H, Dixit D, et al. (2015) Antioxidant and antiinflammatory effects of Vitex negundo on Freund’s complete adjuvant induced arthritis. Int J Pharma Pharmaceutical Sci 7:81–85

    Google Scholar 

  • Lakshmanashetty RH, Nagaraj VB, et al. (2010) In vitro antioxidant activity of Vitex negundo L. Leaf Extracts Chiang Mai J Sci 37(3):489–497

    CAS  Google Scholar 

  • Laughton MJ, Halliwell B, et al. (1987) Antioxidant and prooxidant actions of the plant phenolics quercetin, gossypol and myricetin. Biochem Pharmacol 36:717–720

    Article  Google Scholar 

  • Lee JC, Kim HR, et al. (2002) Antioxidant property of an ethanol extract of the stem of Opuntia Ficus – indica Var. Saboten J Agri Food Chem 50:6490–6649

    Article  CAS  Google Scholar 

  • Mehta AB, Hoffbrand AV (1999) Haematological aspects of systemic disease. In: Hoffbrand AV, Catovsky D, Tuddenham EGD (eds) Postgraduate Haematology; Chapt 59, 5th edn. Blackwell Publishing Ltd, Hoboken

    Google Scholar 

  • Mukinda JT, Syce JA (2007) Acute and chronic toxicity of the aqueous extract of Artemisia Afra in rodents. J Ethnopharmacol 112:138–144

    Article  CAS  PubMed  Google Scholar 

  • Mustafa RA, Azizah AH, et al. (2010) Total phenolic compounds, flavonoids and radical scavenging activity of selected tropical plants. J Food Sci 75:C28–C35

    Article  CAS  PubMed  Google Scholar 

  • Negri G, Teixeira EW (2011) Hydroxycinnamic acid amide derivatives, phenolic compounds and antioxidant activities of extracts of pollen samples from Southeast Brazil. J Agric Food Chem 59:5516–5522

    Article  CAS  PubMed  Google Scholar 

  • Panday GS, Chunekar KC (1998) Bhav prakash nighantu Varanasi: Chaukhambha Bharati Academy p. 344–345

  • Pandey A, Bani S, et al. (2012) Anti-arthritic activity of agnuside mediated through the down-regulation of inflammatory mediators and cytokines. Inflamm Res 61:293–304

    Article  CAS  PubMed  Google Scholar 

  • Ryan KA, Smith MF Jr, et al. (2004) Reactive oxygen and nitrogen species differentially regulate toll-like receptor 4-mediated activation of NF kappa B and interleukin-8 expression. Infect Immun 72:2123–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabnis M (2006) Chemistry and pharmacology of ayurvedic medicinal plants, 1st edn. Varanasi: Chaukambha Amarbharati Prakashan; p. 363–366

  • Shahidi F (2000) Antioxidants in food and food antioxidants. Nahrung. 44:158–163

    Article  CAS  PubMed  Google Scholar 

  • Singh H, Dixit A, et al. (2015) Comparative evaluation of total phenolic content, total flavonoid content and DPPH free radical scavenging activity of different plant parts of Vitex negundo. Int J Pharm Pharm Sci 7:144–147

    CAS  Google Scholar 

  • Tandon VR (2005) Medicinal uses and biological activities of Vitex negundo. Nat Pro Rad 4:162–165

    Google Scholar 

  • Telang RS, Chatterjee S, et al. (1999) Studies on analgesic and anti-inflammatory activities of Vitex negundo Linn. Ind J Pharmacol 31:363–366

    Google Scholar 

  • Valko M, Leibfritz D, et al. (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  • Venkatesha SH, Berman BM, et al. (2011) Herbal medicinal products target defined biochemical and molecular mediators of inflammatory autoimmune arthritis. Bioorg Med Chem 19:21–29

    Article  CAS  PubMed  Google Scholar 

  • Wong C, Li H, et al. (2006) A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem 97:705–711

    Article  CAS  Google Scholar 

  • Yadav AS, Bhatnagar D (2007a) Modulatory effect of spice extracts on iron induced lipid peroxidation in rat liver. Biofactors 29:147–157

    Article  CAS  PubMed  Google Scholar 

  • Yadav AS, Bhatnagar D (2007b) Free radical scavenging activity, metal chelation and antioxidant power of some of the Indian spices. Biofactors 31:219–227

    Article  CAS  PubMed  Google Scholar 

  • Yizhong C, Qiong L, et al. (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184

    Article  Google Scholar 

  • Zargar M, Azizah AH, et al. (2011) Bioactive compounds and antioxidant activity of different extracts from Vitex negundo leaf. J Med Plants Res 5:2525–2532

    CAS  Google Scholar 

  • Zheng CJ, Zhao XX, et al. (2014) Therapeutic effects of standardized Vitex negundo seeds extract on complete Freund's adjuvant induced arthritis in rats. Phytomedicine 21:838–846

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Bhatnagar.

Ethics declarations

Ethical Statement

All the experiments were ap proved and conducted as per the guidelines of the Institutional Animal Ethics Committee (IAEC) (No. Biochem /01/2013–14).

Conflict of Interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lad, H., Joshi, A., Dixit, D. et al. Antioxidant, genoprotective and immunomodulatory potential of Vitex negundo leaves in experimental arthritis. Orient Pharm Exp Med 16, 217–224 (2016). https://doi.org/10.1007/s13596-016-0234-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13596-016-0234-x

Keywords

Navigation