Skip to main content
Log in

Mutation in the GA3ox gene governs short-internode characteristic in a korean cucumber inbred line

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Here, we identified a new natural mutant, si-2, from a Korean cucumber inbred line. The genes responsible for dwarf (DW) and/or short internode (SI) in cucurbits were selected and used to identify the gene(s) controlling the si-2 phenotype. We evaluated the transcript levels of the candidate genes between wild type (WT) and si-2 mutant and identified sequence polymorphism from the differentially expressed genes between the WT and si-2 mutants. Finally, we identified that CsGy7G019320 encodes GA3ox (gibberellin 3-beta-dioxygenase 1-like protein) with an SNP (single nucleotide polymorphism; A ◊ G) in an intron and a 20 bp deletion in the si-2 mutant. This fact strongly speculates that the GA3ox-mediated gibberellic acid (GA) signaling pathway could be involved in the si-2 mutant. It is well known that GAs have a significant impact on plant growth and development. In the si-2 mutant, a 20 bp deletion in the promoter may abolished the transcript levels of CsGy7G019320. Promoter analysis indicated that the 20 bp deleted promoter sequence of CsGy7G019320 may be considered as the AT-hook protein binding site. Although the involvement of the genes encoding GA3ox and AT-hook protein in GA signaling has been well identified, a 20 bp deletion in the promoter sequence of GA3ox in cucumber has not been revealed in other studies. Our data suggests that a mutation in the promoter sequence of CsGy7G019320 caused the si-2 mutant phenotype by suppression of GA3ox expression, possibly leading to decreased GA content in cucumber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The gene (CsGy7G019320) and its promoter sequences obtained in this study have been deposited in the GenBank/NCBI database under the GenBank accession numbers; MZ647960 (promoter sequence of CsGy7G019320-WT), MZ647961 (promoter sequence of CsGy7G019320-SI), MZ670433 (gene sequence of CsGy7G019320-WT), and MZ670434 (gene sequence of CsGy7G019320-SI).

References

  • Achard P, Gusti A, Cheminant S, Alioua M, Dhondt S, Coppens F, Beemster GT, Genschik P (2009) Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr Biol 28(14):1188–1193

    Article  Google Scholar 

  • Appleford NE, Lenton JR (1991) Gibberellins and leaf expansion in near-isogenic wheat lines containing Rht1 and Rht3 dwarfing alleles. Planta 183:229–236

    Article  CAS  PubMed  Google Scholar 

  • Berget SM, Moore C, Sharp PA (1977) Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci USA 74(8):3171–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolduc N, Hake S (2009) The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. The Plant cell 21(6), 1647–1658

  • Chen S, Wang X, Zhang L, Lin S, Liu D, Wang Q, Cai S, El-Tanbouly R, Gan L, Wu H (2016) Identification and characterization of tomato gibberellin 2-oxidases (GA2oxs) and effects of fruit-specific SlGA2ox1 overexpression on fruit and seed growth and development. Hort Res 3:16059

    Article  Google Scholar 

  • Chen Y, Hou M, Liu L, Wu S, Shen Y, Ishiyama K, Kobayashi M, McCarty DR, Ta BC (2014) The maize DWARF1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol. Plant Physiol Dec 166(4):2028–2039

    Article  Google Scholar 

  • Chiang HL, Wu JY, Chen YT (2017) Identification of functional single nucleotide polymorphisms in the branch-point site.Hum Genomics11 (1)

  • Cramer CS, Wehner TC (2000) Path analysis of the correlation between fruit number and plant traits of cucumber populations. Hort Sci 35:708–711

    Google Scholar 

  • Dalmadi A, Kalo P, Jakab J, Saskoi A, Petrovics T, Deak G, Botond-Kiss G (2008) Dwarf plants of diploid Medicago sativa carry a mutation in the gibberellin 3-β-hydroxylase gene. Plant Cell Rep 27:1271

    Article  CAS  PubMed  Google Scholar 

  • Denna DW (1962) A study of the genetic, morphological and physiological basis for the bush and vine habit of several cucurbits. PhD thesis Cornell Univ Ithaca NY

  • Dong W, Wu D, Li G, Wu D, Wang Z (2018) Next-generation sequencing from bulked segregant analysis identifies a dwarfism gene in watermelon. Sci Rep 8:2908

    Article  PubMed  PubMed Central  Google Scholar 

  • Dyutin KE, Afanasyeva EA (1987) Inheritance of the short vine trait in watermelon (Nasledovaniye korotkopletistostiu arbuza). Cytol Genet 21(3):227–229

    Google Scholar 

  • Fleet CM, Sun TP (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Bio 8:77–85

    Article  CAS  Google Scholar 

  • Gebremeskel H, Dou J, Li B, Zhao S, Muhammad U, Lu X, He N, Liu W (2019) Molecular mapping and candidate gene analysis for GA3 responsive short Internode in Watermelon (Citrullus lanatus). Int J Mol Sci 21:290

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert W (1978) Why genes in pieces? Nature 271(5645):501

    Article  CAS  PubMed  Google Scholar 

  • Gomez MD, Barro-Trastoy D, Escoms E, Saura-Sánchez M, Sánchez I, Briones-Moreno A, Vera-Sirera F, Carrera E, Ripoll JJ, Yanofsky MF (2018) Gibberellins negatively modulate ovule number in plants. Development 145:13

    Google Scholar 

  • Gorlova O, Fedorov A, Logothetis C, Amos C, Gorlov I (2014) Genes with a large intronic burden show greater evolutionary conservation on the protein level. BMC Evol Biol 14(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  • Guner N, Wehner TC (2003) Gene list for watermelon. Cucurbit Genet Coop Rep 26:76–92

    Google Scholar 

  • Gusmini G, Wehner TC (2008) Fifty-five years of yield improvement for cucumber, melon, and watermelon in the United States. Hort Techno 18:9–12

    Google Scholar 

  • Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci Dec 5(12):523–530

    Article  CAS  Google Scholar 

  • Hexun H, Xiaoqi Z, Zhencheng W, Qinghuai L, Xi L (1998) Inheritance of male-sterility and dwarfism in watermelon [Citrullus lanatus. (Thunb) Matsum And Nakai] Sci Hort 74(3):175–181

    Article  Google Scholar 

  • Hou S, Niu H, Tao Q, Wang S, Gong Z, Li S, Weng Y, Li Z (2017) A mutant in the CsDET2 gene leads to a systemic brassinosteriod deficiency and super compact phenotype in cucumber (Cucumis sativus L.). Theor Appl Genet 130(8):1693–1703

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Zhang X, Wei Z, Li Q, Li X (1998) Inheritance of male-sterility and dwarfism in watermelon [Citrullus lanatus (Thunb.) Matsum and Nakai]. Sci Hort-Amsterdam 74:175–181

    Article  Google Scholar 

  • Hwang N, Park HS, Lee MG, Lim S, Hodge PW, Kim SC, Miller B, Weisz D (2014) Spectroscopic study of extended star clusters in dwarf Galaxy NGC 6822. Astrophys J (ApJ) 783(1):49

    Article  Google Scholar 

  • Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano N, Matsuoka M, Kobayashi M (2001) Cloning and functional analysis of two gibberellin 3β-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA 98:8909–8914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalsotra A, Cooper TA (2011) Functional consequences of developmentally regulated alternative splicing. Nat Rev Genet 12(10):715–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauffman C, Lower R (1976) Inheritance of an extreme dwarf plant type in the cucumber. J Am Soc Hort Sci 101 (1976), pp. 150–151

  • Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 1:815–822

    Article  Google Scholar 

  • Knavel DE (1990) Inheritance of a short-internode mutant of mainstream’ musk melon. Hort Sci 25:1274–1275

    Google Scholar 

  • Kubicki B, Soltysiak U, Korzeniewska A (1986) Induced mutations in cucumber (Cucumis sativus L.) V. Compact type of growth. Genet Pol 27:289–298

    Google Scholar 

  • Li Y, Yang L, Pathak M, Li D, He X, Weng Y (2011) Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theor Appl Genet 123(6):973–983

    Article  PubMed  Google Scholar 

  • Lin T, Wang S, Zhong Y, Gao D, Cui Q, Chen H, Zhang Z, Shen H, Weng Y, Huang S (2016) A truncated F-Box protein confers the Dwarfism in Cucumber. J of Genet and Genome 43(4):223–226

    Article  Google Scholar 

  • Liu PBW, Loy JB (1972) Inheritance and morphology of two dwarf mutants in watermelon. J Am Soc Hort Sci 97:745–748

    Article  Google Scholar 

  • Liu PBW, Loy JB (1976) Action of Gibberellic Acid on Cell Proliferation in the Subapical shoot Meristem of Watermelon Seedlings. Am J Botan 63:700–704

    Article  CAS  Google Scholar 

  • Luo A, Qian Q, Yin H, Liu X, Yin C, Lan Y, Tang J, Tang Z, Cao S, Wang X, Xia K, Fu X, Luo D, Chu C (2006) EUI1, encoding a putative cytochrome P450 monooxygenase, regulates Internode Elongation by modulating gibberellin responses in Rice.Plant and Cell Physiol181–191

  • MacMillan J (2001) Occurrence of gibberellins in vascular plants, Fungi, and Bacteria. J Plant Growth Regul 20:387–442

    Article  CAS  PubMed  Google Scholar 

  • Matsushita A, Furumoto T, Ishida S, Takahashi Y (2007) AGF1, an AT-Hook protein, is necessary for the negative feedback of AtGA3ox1 encoding GA 3-Oxidase. Plant Physiol 143(3):1152–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migocka M, Papierniak A (2011) Identification of suitable reference genes for studying gene expression in cucumber plants subjected to abiotic stress and growth regulators. Mol Breed 28:343–357

    Article  Google Scholar 

  • Mohr HC (1956) Mode of inheritance of bushy growth characteristic in watermelon. Proc Assoc South Agric Work 53:174

    Google Scholar 

  • Nagai K, Hirano K, Angeles-Shim RB, Ashikari M (2018) Breeding applications and molecular basis of semi-dwarfism in rice. In Rice Genomics Genetics and Breeding 155:155–176

    Article  Google Scholar 

  • Paris HS, Nerson H, Karchi Z (1984) Genetics of internode length in melons. J Hered 75:403406

    Article  Google Scholar 

  • Patikoglou GA, Kim JL, Sun L, Yang SH, Kodadek T, Burley SK (1999) TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. Genes Dev 15(24):3217–3230

    Article  Google Scholar 

  • Peng J, Harberd NP (2002) The role of GA-mediated signaling in the control of seed germination. Curr Opin Plant Biol 5:376–381

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Richards DE, Hartley NM (1999) ‘green revolution’ genes encode mutant gibberellin response modulators. Nature 400(6741):256–261

    Article  CAS  PubMed  Google Scholar 

  • Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y, Gu X, Du Y, Li Y, Lin T, Yuan J, Yang X, Chen J, Chen H, Xiong X, Huang K, Fei Z, Mao L, Tian L, Stadler T, Renner SS, Kamoun S, Lucas WJ, Zhang Z, Huang S (2013) A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet 45:1510–1515

    Article  CAS  PubMed  Google Scholar 

  • Robinson RW, Mishanec W (1965) A new dwarf cucumber. Veg Imp Nwsl 7:23

    Google Scholar 

  • Salamini F (2003) Hormones and the Green Revolution. Science 302:71–72

    Article  CAS  PubMed  Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semi-dwarf (sd-1), green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99:9043–9048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Zhang H, Fan M, He Y, Guo P (2020) A mutation in the intron splice acceptor site of a GA3ox gene confers dwarf architecture in watermelon (Citrullus lanatus L.). Sci Rep 10:14915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Linden L (2018) Marker for compact growth in cucumber. WO 2017/042272

  • Wang H, Li W, Qin Y, Pan Y, Wang X, Weng Y, Chen P, Li Y (2017) The cytochrome P450 gene CsCYP85A1 is a putative candidate for super compact-1 (Scp-1) plant architecture mutation in cucumber (Cucumis sativus L.).Front Plant Sci8

  • Wang Y, Bo K, Gu X, Pan J, Li Y, Chen J, Wen C, Ren Z, Ren H, Chen X, Grumet R, Weng Y (2020) Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. Hort Res 7:3

    Article  CAS  Google Scholar 

  • Wei C, Zhu C, Yang L (2019) A point mutation resulting in a 13 bp deletion in the coding sequence of cldf leads to a GA-deficient dwarf phenotype in watermelon. Hort Res 6:132

    Article  CAS  Google Scholar 

  • Xie Z, Nolan TM, Jiang H, Yin Y (2019) AP2/ERF transcription factor Regulatory Networks in hormone and abiotic stress responses in Arabidopsis. Front Plant Sci 10:228

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu L, Wang C, Cao W, Zhou S, Wu T (2018) CLAVATA1-type receptor-like kinase CsCLAVATA1 is a putative candidate gene for dwarf mutation in cucumber. Mol Genet Genome 293:1393–1405

    Article  CAS  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Li YG (2009) Study on a new short stem gene of watermelon. Chin Gard Dig 4:32–33

    Google Scholar 

  • Yang S, Zhang K, Zhu H, Zhang X, Yan W, Xu N, Liu D, Hu J, Wu Y, Weng Y, Yang L (2020) Melon short internode (CmSi) encodes an ERECTA-like receptor kinase regulating stem elongation through auxin signaling. Hort Res 7:202

    Article  CAS  Google Scholar 

  • Yang YF, Zhu T, Niu DK (2013) Association of intron loss with high mutation rate in Arabidopsis: implications for genome size evolution. Genome Biol Evol 5(4):723–733

    Article  PubMed  PubMed Central  Google Scholar 

  • Ying SY, Lin SL (2005) Intronic microRNAs. Biochem Biophys Res Commun 326(3):515–520

    Article  CAS  PubMed  Google Scholar 

  • Zeevaart JA, Gage DA, Talon M (1993) Gibberellin A1 is required for stem elongation in spinach. Proc Natl Acad Sci USA 90:7401–7405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Xie Y, Guo H, Zhao L, Xiong H, Gu J, Li J, Kong F, Sui L, Zhao Z (2016) Gibberellins regulate the stem elongation rate without affecting the mature plant height of a quick development mutant of winter wheat (Triticum aestivum L.). Plant Physiol Biochem 107:228–236

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Liu J, Liu S, Ding Z, Luan F, Gao P (2019) Bulked-segregant analysis identified a putative region related to short internode length in Melon. Hort Sci 54(8):1293–1298

    CAS  Google Scholar 

  • Zhu H, Zhang M, Sun S, Yang S, Li J, Li H, Yang H, Zhang K, Hu J, Liu D, Yang L (2019) A single nucleotide deletion in an ABC Transporter Gene leads to a dwarf phenotype in Watermelon. Front Plant Sci 10:1399

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo YC, Li QZ (2011) Identification of TATA and TATA-less promoters in plant genomes by integrating diversity measure, GC-Skew and DNA geometric flexibility.Genomics112–120

Download references

Acknowledgements

We thank Yong Suk Chung for helpful comments on the manuscript. We would like to thank Editage (www.editage.co.kr) for English language editing. This work was supported by the cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01652901) of Rural Development Administration, Republic of Korea, and the Basic Science Research Program of the National Research Foundation (NRF) funded by the Republic of Korea’s Ministry of Education (Grant No. NRF 2020R1A2C108800).

Funding

This research was supported by the cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ016529012022) of Rural Development Administration, Republic of Korea, and the Basic Science Research Program of the National Research Foundation (NRF) funded by the Republic of Korea’s Ministry of Education (Grant No. NRF 2020R1A2C108800).

Author information

Authors and Affiliations

Authors

Contributions

S. Lee planned experiments, analyzed the data and wrote the manuscript. S. Begum, and I. Bae conducted experiments and analyzed the data. M. Badri Anarjan conducted experiments, analyzed the data, and wrote the manuscript.

Corresponding author

Correspondence to Sanghyeob Lee.

Ethics declarations

Conflict of interest

Author IB is employed by DONGHO Seed Co. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Communicated by Seon-In Yeom.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anarjan, M.B., Begum, S., Bae, I. et al. Mutation in the GA3ox gene governs short-internode characteristic in a korean cucumber inbred line. Hortic. Environ. Biotechnol. 64, 485–495 (2023). https://doi.org/10.1007/s13580-022-00496-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-022-00496-6

Keywords

Navigation