Skip to main content

Advertisement

Log in

Long non-coding RNA NR2F2-AS1: its expanding oncogenic roles in tumor progression

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Long non-coding RNA (LncRNA) is a new type of non-coding RNA whose transcription is more than 200 nucleotides in length and can be up to 100 kb. The crucial regulatory function of lncRNAs in different cellular processes is now notable in many human diseases, especially in different steps of tumorigenesis, making them clinically significant. This research tried to collect all evidence obtained so far regarding Nuclear Receptor subfamily 2 group F member 2 Antisense RNA 1 (NR2F2-AS1) to explore its role in carcinogenesis and molecular mechanism in several cancers. Collecting evidence value an oncogenic role for NR2F2-AS1, whose dysregulation changes the status for cancerous cells to gain the supremacy toward cellular proliferation, dissemination, and ultimately migration. The NR2F2-AS1 acts as competitive endogenous RNA (ceRNA) and contains several microRNA response elements (MREs) for different microRNAs involved in various pathways such as PI3K/AKT, Wnt/β-catenin, and TGF-β. This clinically makes NR2F2-AS1 a remarkable lncRNA which contributes to cancer progression and invasion and perhaps could be a candidate as a prognostic marker or even a therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hauptman N, Glavač D. Long non-coding RNA in cancer. Int J Mol Sci. 2013;14(3):4655–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pertea M. The human transcriptome: an unfinished story. Genes. 2012;3(3):344–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Luo J, et al. Long non-coding RNAs: a rising biotarget in colorectal cancer. Oncotarget. 2017;8:22187–202.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rafat M, et al. The outstanding role of miR-132-3p in carcinogenesis of solid tumors. Hum Cell. 2021;34(4):1051.

    Article  CAS  PubMed  Google Scholar 

  5. Bánfai B, et al. Long noncoding RNAs are rarely translated in two human cell lines. Genome Res. 2012;22(9):1646–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Graf J, Kretz M. From structure to function: route to understanding lncRNA mechanism. BioEssays. 2020;42(12):2000027.

    Article  CAS  Google Scholar 

  7. Jantrapirom S, et al. Long noncoding RNA-dependent methylation of nonhistone proteins. Wiley Interdiscip Rev: RNA. 2021;12(6): e1661.

    CAS  PubMed  Google Scholar 

  8. Han P, Chang C-P. Long non-coding RNA and chromatin remodeling. RNA Biol. 2015;12(10):1094–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Salmena L, et al. A ceRNA hypothesis: the rosetta stone of a hidden RNA language? Cell. 2011;146(3):353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Militello G, et al. Screening and validation of lncRNAs and circRNAs as miRNA sponges. Brief bioinform. 2017;18(5):780–8.

    CAS  PubMed  Google Scholar 

  11. Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17(5):272–83.

    Article  CAS  PubMed  Google Scholar 

  12. Müller V, et al. Interplay of lncRNA H19/miR-675 and lncRNA NEAT1/miR-204 in breast cancer. Mol Oncol. 2019;13(5):1137–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Baribault C, et al. Developmentally linked human DNA hypermethylation is associated with down-modulation, repression, and upregulation of transcription. Epigenetics. 2018;13(3):275–89.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang S, et al. LncRNA NR2F2-AS1 promotes tumourigenesis through modulating BMI1 expression by targeting miR-320b in non-small cell lung cancer. J Cell Mol Med. 2019;23(3):2001–11.

    Article  CAS  PubMed  Google Scholar 

  15. Liu C, et al. LncRNA NR2F2-AS1 induces epithelial-mesenchymal transition of non-small cell lung cancer by modulating BVR/ATF-2 pathway via regulating miR-545-5p/c-Met axis. Am J Cancer Res. 2021;11(10):4844.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen L, et al. LncRNA NR2F2-AS1 upregulates Rac1 to increase cancer stemness in clear cell renal cell carcinoma. Cancer Biother Radiopharm. 2020;35(4):301–6.

    Article  CAS  PubMed  Google Scholar 

  17. Fu X, et al. LncRNA NR2F2-AS1 positively regulates CDK4 to promote cancer cell proliferation in prostate carcinoma. Aging Male. 2020;23(5):1073–9.

    Article  PubMed  CAS  Google Scholar 

  18. Liu D, et al. NR2F2-AS1 accelerates cell proliferation through regulating miR-4429MBD1 axis in cervical cancer. Biosci Rep. 2020;40(6):BSR20194282.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Qin H, Qin C. Downregulation of long non-coding RNA NR2F2-AS1 inhibits proliferation and induces apoptosis of nasopharyngeal carcinoma cells by upregulating the expression of PTEN. Oncology Lett. 2020;19(2):1145–50.

    CAS  Google Scholar 

  20. Zhang Z, et al. NR2F2-AS1 suppressed trastuzumab effects on esophageal cancer by inhibiting miR-4429 and miR-425–5p expression through targeting IGF1R. Res Square. 2021. https://doi.org/10.21203/rs.3.rs-401449/v1.

    Article  Google Scholar 

  21. Liu J, et al. LncRNA NR2F2-AS1 silencing induces cell cycle arrest in G0/G1 phase via downregulating Cyclin D1 in colorectal cancer. Cancer Manag Res. 2020;12:1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li F, et al. Downregulation of lncRNA NR2F2 antisense RNA 1 induces G1 arrest of colorectal cancer cells by downregulating cyclin-dependent kinase 6. Dig Dis Sci. 2020;65(2):464–9.

    Article  CAS  PubMed  Google Scholar 

  23. Roosenboom J, et al. SNPs associated with testosterone levels influence human facial morphology. Front Genet. 2018;9:497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guo L, Ye K. Mapping genome variants sheds light on genetic and phenotypic differentiation in Chinese. Genomics, Proteomics & Bioinform. 2019;17(3):226.

    Article  Google Scholar 

  25. Hong Q, et al. LRG1 may accelerate the progression of ccRCC via the TGF-β pathway. BioMed Res Int. 2020. https://doi.org/10.1155/2020/1285068.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li J, et al. A genomic and epigenomic atlas of prostate cancer in Asian populations. Nature. 2020;580(7801):93–9.

    Article  CAS  PubMed  Google Scholar 

  27. Jiang N, et al. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep. 2020;47(6):4587–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pompura SL, Dominguez-Villar M. The PI3K/AKT signaling pathway in regulatory T-cell development, stability, and function. J Leukoc Biol. 2018;103(6):1065–76.

    Article  CAS  Google Scholar 

  29. Martini M, et al. PI3K/AKT signaling pathway and cancer: an updated review. Ann Med. 2014;46(6):372–83.

    Article  CAS  PubMed  Google Scholar 

  30. Mayer IA, Arteaga CL. The PI3K/AKT pathway as a target for cancer treatment. Annu Rev Med. 2016;67:11–28.

    Article  CAS  PubMed  Google Scholar 

  31. Brunet A, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96(6):857–68.

    Article  CAS  PubMed  Google Scholar 

  32. Tsutsui S, et al. The Akt expression correlates with the VEGF-A and-C expression as well as the microvessel and lymphatic vessel density in breast cancer. Oncol Rep. 2010;23(3):621–30.

    Article  PubMed  Google Scholar 

  33. Papa A, Pandolfi PP. The PTEN–PI3K axis in cancer. Biomolecules. 2019;9(4):153.

    Article  CAS  PubMed Central  Google Scholar 

  34. Gao X, et al. PTENP1/miR-20a/PTEN axis contributes to breast cancer progression by regulating PTEN via PI3K/AKT pathway. J Exp Clin Cancer Res. 2019;38(1):1–14.

    Article  Google Scholar 

  35. Long Z-W, et al. MiR-374b promotes proliferation and inhibits apoptosis of human GIST cells by inhibiting PTEN through activation of the PI3K/Akt pathway. Mol Cells. 2018;41(6):532.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zheng L, et al. MiR-106b induces cell radioresistance via the PTEN/PI3K/AKT pathways and p21 in colorectal cancer. J Transl Med. 2015;13(1):1–13.

    Article  CAS  Google Scholar 

  37. van Leenders GJ, et al. Polycomb-group oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features. Eur Urol. 2007;52(2):455–63.

    Article  PubMed  CAS  Google Scholar 

  38. Hoenerhoff MJ, et al. BMI1 cooperates with H-RAS to induce an aggressive breast cancer phenotype with brain metastases. Oncogene. 2009;28(34):3022–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guo B-H, et al. Bmi-1 promotes invasion and metastasis, and its elevated expression is correlated with an advanced stage of breast cancer. Mol Cancer. 2011;10(1):1–23.

    Article  CAS  Google Scholar 

  40. Tsai H-L, et al. Impact of BMI1 expression on the apoptotic effect of paclitaxel in colorectal cancer. Am J Cancer Res. 2019;9(11):2544.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Du J, et al. Polycomb group protein Bmi1 expression in colon cancers predicts the survival. Med Oncol. 2010;27(4):1273–6.

    Article  CAS  PubMed  Google Scholar 

  42. Qin Z-K, et al. Expression of Bmi-1 is a prognostic marker in bladder cancer. BMC Cancer. 2009;9(1):1–7.

    Article  CAS  Google Scholar 

  43. Song L-B, et al. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J Clin Investig. 2009;119(12):3626–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. MacDonald BT, Tamai K, He X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Clevers H. Wnt/β-catenin signaling in development and disease. Cell. 2006;127(3):469–80.

    Article  CAS  PubMed  Google Scholar 

  46. Yu F, et al. BMI1 activates WNT signaling in colon cancer by negatively regulating the WNT antagonist IDAX. Biochem Biophys Res Commun. 2018;496(2):468–74.

    Article  CAS  PubMed  Google Scholar 

  47. Hu X, et al. A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell. 2014;26(3):344–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu T, et al. CDK4/6-dependent activation of DUB3 regulates cancer metastasis through SNAIL1. Nat Commun. 2017;8(1):1–12.

    CAS  Google Scholar 

  49. Pereg Y, et al. Ubiquitin hydrolase Dub3 promotes oncogenic transformation by stabilizing Cdc25A. Nat Cell Biol. 2010;12(4):400–6.

    Article  CAS  PubMed  Google Scholar 

  50. Delgado-Díaz MR, et al. Dub3 controls DNA damage signalling by direct deubiquitination of H2AX. Mol Oncol. 2014;8(5):884–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Srivastava N, et al. Role of H2AX in DNA damage response and human cancers. Mutat Res/Rev Mutat Res. 2009;681(2–3):180–8.

    Article  CAS  Google Scholar 

  52. Heldin C. The regulation of TGFbeta signal transduction. Development. 2009;136(22):3699–714.

    Article  PubMed  CAS  Google Scholar 

  53. Xu J, et al. Up-regulation of MBD1 promotes pancreatic cancer cell epithelial-mesenchymal transition and invasion by epigenetic down-regulation of E-cadherin. Curr Mol Med. 2013;13(3):387–400.

    CAS  PubMed  Google Scholar 

  54. Hawkins SM, et al. Expression and functional pathway analysis of nuclear receptor NR2F2 in ovarian cancer. J Clin Endocrinol Metab. 2013;98(7):E1152–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Qin J, et al. COUP-TFII inhibits TGF-β-induced growth barrier to promote prostate tumorigenesis. Nature. 2013;493(7431):236–40.

    Article  CAS  PubMed  Google Scholar 

  56. Qin J, et al. Nuclear receptor COUP-TFII controls pancreatic islet tumor angiogenesis by regulating vascular endothelial growth factor/vascular endothelial growth factor receptor-2 signaling. Cancer Res. 2010;70(21):8812–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shin S-W, et al. Clinical significance of chicken ovalbumin upstream promoter-transcription factor II expression in human colorectal cancer. Oncol Rep. 2009;21(1):101–6.

    PubMed  Google Scholar 

  58. Navab R, et al. Expression of chicken ovalbumin upstream promoter-transcription factor II enhances invasiveness of human lung carcinoma cells. Cancer Res. 2004;64(15):5097–105.

    Article  CAS  PubMed  Google Scholar 

  59. Xia B, et al. NR2F2 plays a major role in insulin-induced epithelial-mesenchymal transition in breast cancer cells. BMC Cancer. 2020;20(1):1–12.

    Article  CAS  Google Scholar 

  60. Qin J, et al. COUP-TFII regulates tumor growth and metastasis by modulating tumor angiogenesis. Proc Natl Acad Sci. 2010;107(8):3687–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bruchim I, Attias Z, Werner H. Targeting the IGF1 axis in cancer proliferation. Expert Opin Ther Targets. 2009;13(10):1179–92.

    Article  CAS  PubMed  Google Scholar 

  62. Liu L, et al. Upregulation of IGF1 by tumor-associated macrophages promotes the proliferation and migration of epithelial ovarian cancer cells. Oncol Rep. 2018;39(2):818–26.

    CAS  PubMed  Google Scholar 

  63. Sun Y, Sun X, Shen B. Molecular imaging of IGF-1R in cancer. Mol Imag. 2017;16:1536012117736648.

    Article  CAS  Google Scholar 

  64. Organ SL, Tsao M-S. An overview of the c-MET signaling pathway. Ther Adv Med Oncol. 2011;3(1):S7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Christensen JG, Burrows J, Salgia R. c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett. 2005;225(1):1–26.

    Article  CAS  PubMed  Google Scholar 

  66. Ma PC, et al. c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev. 2003;22(4):309–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to Hormozgan University of Medical Sciences (HUMS) for their support from project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kianoosh Malekzadeh.

Ethics declarations

Conflict of interest

The authors hereby declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbanzadeh, S., Poor-Ghassem, N., Afsa, M. et al. Long non-coding RNA NR2F2-AS1: its expanding oncogenic roles in tumor progression. Human Cell 35, 1355–1363 (2022). https://doi.org/10.1007/s13577-022-00733-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00733-1

Keywords

Navigation