Skip to main content

Advertisement

Log in

The outstanding role of miR-132-3p in carcinogenesis of solid tumors

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

MicroRNAs are a group of short non-coding RNAs (miRNAs), which are epigenetically involved in gene expression and other cellular biological processes and can be considered as potential biomarkers for cancer detection and support for treatment management. This review aims to amass the evidence to reach the molecular mechanism and clinical significance of miR-132 in different types of cancer. Dysregulation of miR-132 level in various types of malignancies, including hepatocellular carcinoma, breast cancer, colorectal cancer, gastric cancer, lung cancer, prostate cancer, osteosarcoma, pancreatic cancer, and ovarian cancer have reported, significantly decrease in its level, which can be indicated to its function as a tumor suppressor. miR-132 is involved in cell proliferation, migration, and invasion through cell cycle pathways, such as PI3K, TGFβ or hippo signaling pathways, or on oncogenes such as Ras, AKT, mTOR, glycolysis. miR-132 could be potentially a candidate as a valuable biomarker for prognosis in various cancers. Through this study, we proposed that miR-132 can potentially be a candidate as a prognostic marker for early detection of tumor development, progression, as well as metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Djebali S, Davis C. merkel A, Dobin A, Lassmann T, mortazavi A, et al. Landscape of transcription in human cells nature. 2012;489:101–8.

  2. Lee JT. Epigenetic regulation by long noncoding RNAs. Science. 2012;338(6113):1435–9.

    Article  CAS  PubMed  Google Scholar 

  3. Zhu S, Li W, Liu J, Chen C-H, Liao Q, Xu P, et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR–Cas9 library. Nat Biotechnol. 2016;34(12):1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kambara H, Niazi F, Kostadinova L, Moonka DK, Siegel CT, Post AB, et al. Negative regulation of the interferon response by an interferon-induced long non-coding RNA. Nucleic Acids Res. 2014;42(16):10668–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li Z, Shen J, Chan MT, Wu WK. TUG 1: a pivotal oncogenic long non-coding RNA of human cancers. Cell Prolif. 2016;49(4):471–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang X, Ma N, Wang D, Li F, He R, Li D, et al. Metformin inhibits tumor growth by regulating multiple miRNAs in human cholangiocarcinoma. Oncotarget. 2015;6(5):3178.

    Article  PubMed  Google Scholar 

  7. Vance KW, Sansom SN, Lee S, Chalei V, Kong L, Cooper SE, et al. The long non-coding RNA Paupar regulates the expression of both local and distal genes. EMBO J. 2014;33(4):296–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang B, Song JH, Cheng Y, Abraham JM, Ibrahim S, Sun Z, et al. Long non-coding antisense RNA KRT7-AS is activated in gastric cancers and supports cancer cell progression by increasing KRT7 expression. Oncogene. 2016;35(37):4927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ambros V. microRNAs: tiny regulators with great potential. Cell. 2001;107(7):823–6.

    Article  CAS  PubMed  Google Scholar 

  10. Piroozian F, Bagheri Varkiyani H, Koolivand M, Ansari M, Afsa M, AtashAbParvar A, MalekZadeh K. The impact of variations in transcription of DICER and AGO2 on exacerbation of childhood B-cell lineage acute lymphoblastic leukaemia. Int J exp Pathol. 2019.

  11. Koolivand M, Ansari M, Piroozian F, Moein S, MalekZadeh K. Alleviating the progression of acute myeloid leukemia (AML) by sulforaphane through controlling miR-155 levels. Mol Biol Rep. 2018;45(6):2491–9.

    Article  CAS  PubMed  Google Scholar 

  12. Remenyi J, Hunter CJ, Cole C, Ando H, Impey S, Monk CE, et al. Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochem J. 2010;428(2):281–91.

    Article  CAS  PubMed  Google Scholar 

  13. Sun M, Yamashita T, Shang J, Liu N, Deguchi K, Feng J, et al. Time-dependent profiles of microRNA expression induced by ischemic preconditioning in the gerbil hippocampus. Cell Transpl. 2015;24(3):367–76.

    Article  Google Scholar 

  14. Qian Y, Song J, Ouyang Y, Han Q, Chen W, Zhao X, et al. Advances in roles of miR-132 in the nervous system. Front Pharmacol. 2017;8:770.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu K, Li X, Cao Y, Ge Y, Wang J, Shi B. miR-132 inhibits cell proliferation, invasion and migration of hepatocellular carcinoma by targeting PIK3R3. Int J Oncol. 2015;47(4):1585–93.

    Article  CAS  PubMed  Google Scholar 

  16. Lei CJ, Li L, Gao X, Zhang J, Pan QY, Long HC, Chen CZ, Ren DF, Zheng G. Hsa-miR-132 inhibits proliferation of hepatic carcinoma cells by targeting YAP. Cell Biochem Funct. 2015;33(5):326–33.

    Article  CAS  PubMed  Google Scholar 

  17. Sha M, Wang B, Xiao L, Ye J, Wang J, Luan ZY. Expression of miR-212 and miR-132 in serum of patients with primary liver cancer and their targeted regulation of GP73. Zhonghua gan Zang Bing za zhi= Zhonghua Ganzangbing Zazhi= Chinese Journal of Hepatology. 2017;25(12):920–6.

  18. Zheng Y-B, Luo H-P, Shi Q, Hao Z-N, Ding Y, Wang Q-S, et al. miR-132 inhibits colorectal cancer invasion and metastasis via directly targeting ZEB2. World J Gastroenterol. 2014;20(21):6515.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yong C, Xiao-lu H, Xiao-xiang Y, Yun Z, Tao W. Decreased expression of miR-132 in CRC tissues and its inhibitory function on tumor progression. Open Life Sci. 2016;11(1):130–5.

    Article  CAS  Google Scholar 

  20. Liu Z, Wang H, Cai H, Hong Y, Li Y, Su D, Fan Z. Long non-coding RNA MIAT promotes growth and metastasis of colorectal cancer cells through regulation of miR-132/Derlin-1 pathway. Cancer Cell Int. 2018;18(1):1.

    Article  Google Scholar 

  21. Zhang M, Li Y, Wang H, Yu W, Lin S, Guo J. LncRNA SNHG5 affects cell proliferation, metastasis and migration of colorectal cancer through regulating miR-132-3p/CREB5. Cancer Biol Ther. 2019;20(4):524–36.

    Article  CAS  PubMed  Google Scholar 

  22. Li Y, Zu L, Wang Y, Wang M, Chen P, Zhou Q. miR-132 inhibits lung cancer cell migration and invasion by targeting SOX4. J Thorac Dis. 2015;7(9):1563.

    PubMed  PubMed Central  Google Scholar 

  23. Jiang X, Chen X, Chen L, Ma Y, Zhou L, Qi Q, Liu Y, Zhang S, Luo J, Zhou X. Upregulation of the miR-212/132 cluster suppresses proliferation of human lung cancer cells. Oncol Rep. 2015;33(2):705–12.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang JX, Zhai JF, Yang XT, Wang J. MicroRNA-132 inhibits migration, invasion and epithelial-mesenchymal transition by regulating TGFβ1/Smad2 in human non-small cell lung cancer. Eur Rev Med Pharmacol Sci. 2016;20(18):3793.

    PubMed  Google Scholar 

  25. Guo H, Zhang X, Chen Q, Bao Y, Dong C, Wang X. miR-132 suppresses the migration and invasion of lung cancer cells by blocking USP9X-induced epithelial-mesenchymal transition. Am J Trans Res. 2018;10(1):224.

    CAS  Google Scholar 

  26. Zhang ZG, Chen WX, Wu YH, Liang HF, Zhang BX. miR-132 prohibits proliferation, invasion, migration, and metastasis in breast cancer by targeting HN1. Biochem Biophys Res Commun. 2014;454(1):109–14.

    Article  CAS  PubMed  Google Scholar 

  27. Damavandi Z, Torkashvand S, Vasei M, Soltani BM, Tavallaei M, Mowla SJ. Aberrant expression of breast development-related microRNAs, miR-22, miR-132, and miR-212, in breast tumor tissues. J Breast Cancer. 2016;19(2):148–55.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang D, Ren J, Ren H, Fu J-l, Yu D. MicroRNA-132 suppresses cell proliferation in human breast cancer by directly targeting FOXA1. Acta Pharmacologica Sinica. 2018;39(1):124.

  29. Xie M, Fu Z, Cao J, Liu Y, Wu J, Li Q, Chen Y. MicroRNA-132 and microRNA-212 mediate doxorubicin resistance by down-regulating the PTEN-AKT/NF-κB signaling pathway in breast cancer. Biomed Pharmacother. 2018;102:286–94.

    Article  CAS  PubMed  Google Scholar 

  30. Li S, Xu JJ, Zhang QY. MicroRNA-132-3p inhibits tumor malignant progression by regulating lysosomal-associated protein transmembrane 4 beta in breast cancer. Cancer Sci. 2019;110(10):3098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qu W, Sm D, Cao G, Sj W, Xh Z, Li Gh. miR‐132 mediates a metabolic shift in prostate cancer cells by targeting Glut1. FEBS Open Bio. 2016;6(7):735–41.

  32. Fu W, Tao T, Qi M, Wang L, Hu J, Li X, Xing N, Du R, Han B. MicroRNA-132/212 upregulation inhibits TGF-β-mediated epithelial-mesenchymal transition of prostate cancer cells by targeting SOX4. Prostate. 2016;76(16):1560–70.

    Article  CAS  PubMed  Google Scholar 

  33. Li S-L, Sui Y, Sun J, Jiang T-Q, Dong G. Identification of tumor suppressive role of microRNA-132 and its target gene in tumorigenesis of prostate cancer. Int J Mol Med. 2018;41(4):2429–33.

    CAS  PubMed  Google Scholar 

  34. Park J-K, Henry JC, Jiang J, Esau C, Gusev Y, Lerner MR, et al. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor. Biochem Biophys Res Commun. 2011;406(4):518–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao DW, Hou YS, Sun FB, Han B, Li SJ. Effects of miR-132 on proliferation and apoptosis of pancreatic cancer cells via Hedgehog signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(5):1978–85.

    PubMed  Google Scholar 

  36. Liu Y, Li Y, Liu J, Wu Y, Zhu Q. MicroRNA-132 inhibits cell growth and metastasis in osteosarcoma cell lines possibly by targeting Sox4. Int J Oncol. 2015;47(5):1672–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tian H, Hou L, Xiong Y-M, Huang J-X, Zhang W-H, Pan Y-Y, et al. miR-132 targeting E2F5 suppresses cell proliferation, invasion, migration in ovarian cancer cells. Am J Trans Res. 2016;8(3):1492.

    CAS  Google Scholar 

  38. Lin L, Wang Z, Jin H, Shi H, Lu Z, Qi Z. MiR-212/132 is epigenetically downregulated by SOX4/EZH2-H3K27me3 feedback loop in ovarian cancer cells. Tumor Biol. 2016;37(12):15719–27.

    Article  CAS  Google Scholar 

  39. Ou R, Zhu L, Zhao L, Li W, Tao F, Lu Y, et al. HPV16 E7-induced upregulation of KDM2A promotes cervical cancer progression by regulating miR-132–radixin pathway. J Cell Physiol. 2019;234(3):2659–71.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao JL, Zhang L, Guo X, Wang JH, Zhou W, Liu M, Li X, Tang H. miR-212/132 downregulates SMAD2 expression to suppress the G1/S phase transition of the cell cycle and the epithelial to mesenchymal transition in cervical cancer cells. IUBMB Life. 2015;67(5):380–94.

    Article  CAS  PubMed  Google Scholar 

  41. Liu X, Yu H, Cai H, Wang Y. The expression and clinical significance of miR-132 in gastric cancer patients. Diagn Pathol. 2014;9(1):1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li W, Zhang J, Chen T, Yin P, Yang J, Cao Y. miR-132 upregulation promotes gastric cancer cell growth through suppression of FoxO1 translation. Tumor Biol. 2016;37(12):15551–7.

    Article  CAS  Google Scholar 

  43. He L, Qu L, Wei L, Chen Y, Suo J. Reduction of miR-132-3p contributes to gastric cancer proliferation by targeting MUC13. Mol Med Rep. 2017;15(5):3055–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu F, Cheng Z, Li X, Li Y, Zhang H, Li J, Liu F, Xu H, Li F. A novel Pak1/ATF2/miR-132 signaling axis is involved in the hematogenous metastasis of gastric cancer cells. Mol Therapy-Nucl Acids. 2017;8:370–82.

    Article  CAS  Google Scholar 

  45. Liu Q, Liao F, Wu H, Cai T, Yang L, Wang ZF, Zou R. Upregulation of miR-132 expression in glioma and its clinical significance. Tumor Biol. 2014;35(12):12299–304.

    Article  CAS  Google Scholar 

  46. Wang H, Li XT, Wu C, Wu ZW, Li YY, Yang TQ, Chen GL, Xie XS, Huang YL, Du ZW, Zhou YX. miR-132 can inhibit glioma cells invasion and migration by target MMP16 in vitro. Onco Targets Ther. 2015;8:3211.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang ZH, Zhang QS, Duan YL, Zhang JL, Li GF, Zheng DL. TGF-β induced miR-132 enhances the activation of TGF-β signaling through inhibiting SMAD7 expression in glioma cells. Biochem Biophys Res Commun. 2015;463(3):187–92.

    Article  CAS  PubMed  Google Scholar 

  48. Chen S, Wang Y, Ni C, Meng G, Sheng X. HLF/miR-132/TTK axis regulates cell proliferation, metastasis and radiosensitivity of glioma cells. Biomed Pharmacother. 2016;83:898–904.

    Article  CAS  PubMed  Google Scholar 

  49. Wang YZ, Han JJ, Fan SQ, Yang W, Zhang YB, Xu TJ, Xu GM. miR-132 weakens proliferation and invasion of glioma cells via the inhibition of Gli1. Eur Rev Med Pharmacol Sci. 2018;22(7):1971–8.

    PubMed  Google Scholar 

  50. Zhou KE, Zhang C, Yao H, Zhang X, Zhou Y, Che Y, Huang Y. Knockdown of long non-coding RNA NEAT1 inhibits glioma cell migration and invasion via modulation of SOX2 targeted by miR-132. Mol Cancer. 2018;17(1):105.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wei XC, Lv ZH. MicroRNA-132 inhibits migration, invasion and epithelial-mesenchymal transition via TGFβ1/Smad2 signaling pathway in human bladder cancer. Onco Targets Ther. 2019;12:5937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bi LL, Hua XQ, Li WH, Wang L, Li Y, Jia XF. SNHG16 promotes cell proliferation and migration through sponging miR-132 in melanoma. J Bio Regul Homeost Agents 2020;34(4).

  53. Reustle A, Fisel P, Renner O, Büttner F, Winter S, Rausch S, Kruck S, Nies AT, Hennenlotter J, Scharpf M, Fend F. Characterization of the breast cancer resistance protein (BCRP/ABCG2) in clear cell renal cell carcinoma. Int J Cancer. 2018;143(12):3181–93.

    Article  CAS  PubMed  Google Scholar 

  54. Chen T, Lu M, Zhou X, Pan X, Han Y, Zhang Y, Ye B, Dong J, Li P. miR-132 and miR-212 cluster function as a tumor suppressor in thyroid cancer cells by CSDE1 mediated post-transcriptional program. Int J Clin Exp Pathol. 2018;11(2):963.

    PubMed  PubMed Central  Google Scholar 

  55. Chen X, Li M, Zhou H, Zhang L. miR-132 targets FOXA1 and exerts tumor-suppressing functions in thyroid cancer. Oncol Res Featuring Preclin Clin Cancer Therapeutics. 2019;27(4):431–7.

    Article  Google Scholar 

  56. Zhang H, Lin J, Hu T, Ren Z, Wang W, He Q. Effect of miR-132 on bupivacaine-induced neurotoxicity in human neuroblastoma cell line. J Pharmacol Sci. 2019;139(3):186–92.

    Article  CAS  PubMed  Google Scholar 

  57. Cai Y, Wang W, Guo H, Li H, Xiao Y, Zhang Y. miR-9-5p, miR-124-3p, and miR-132-3p regulate BCL2L11 in tuberous sclerosis complex angiomyolipoma. Lab Invest. 2018;98(7):856–70.

    Article  CAS  PubMed  Google Scholar 

  58. Invernizzi F, Viganò M, Grossi G, Lampertico P. The prognosis and management of inactive HBV carriers. Liver Int. 2016;36:100–4.

    Article  CAS  PubMed  Google Scholar 

  59. Schwartz M, Roayaie S, Konstadoulakis M. Strategies for the management of hepatocellular carcinoma. Nat Clin Pract Oncol. 2007;4(7):424–32.

    Article  CAS  PubMed  Google Scholar 

  60. El-Serag HB, Marrero JA, Rudolph L, Reddy KR. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology. 2008;134(6):1752–63.

    Article  PubMed  Google Scholar 

  61. Blum HE. Hepatocellular carcinoma: therapy and prevention. World J Gastroenterol. 2005;11(47):7391.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sostres C, Gargallo CJ, Lanas A. Aspirin, cyclooxygenase inhibition and colorectal cancer. World J Gastrointestinal Pharmacol Therapeutics. 2014;5(1):40.

    Article  Google Scholar 

  63. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA. 2011;61(2):69–90.

  64. Arai Y, Aoyama T, Inaba Y, Okabe H, Ihaya T, Kichikawa K, et al. Phase II study on hepatic arterial infusion chemotherapy using percutaneous catheter placement techniques for liver metastases from colorectal cancer (JFMC28 study). Asia Pac J Clin Oncol. 2015;11(1):41–8.

    Article  PubMed  Google Scholar 

  65. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.

    Article  CAS  PubMed  Google Scholar 

  66. van Meerbeeck JP, Fennell DA, De Ruysscher DK. Small-cell lung cancer. Lancet (London, England). 2011;378(9804):1741–55.

    Article  Google Scholar 

  67. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh J-WW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Euro J Cancer. 2013;49(6):1374–403.

  68. Liu W, Schaffer L, Herrs N, Chollet C, Taylor S. Improved sleep after Qigong exercise in breast cancer survivors: a pilot study. Asia Pac J Oncol Nurs. 2015;2(4):232.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kam J, Kam J, Mann GB, Phillips C, Wentworth JM, King J, et al. Solitary pituitary metastasis from HER2-positive breast cancer. Asia Pac J Clin Oncol. 2017;13(2):e181–4.

    Article  PubMed  Google Scholar 

  70. Khan AP, Rajendiran TM, Bushra A, Asangani IA, Athanikar JN, Yocum AK, et al. The role of sarcosine metabolism in prostate cancer progression. Neoplasia. 2013;15(5):491–IN13.

  71. Costello LC, Franklin RB. The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol Cancer. 2006;5(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sadeghi RN, Karami-Tehrani F, Salami S. Targeting prostate cancer cell metabolism: impact of hexokinase and CPT-1 enzymes. Tumor Biol. 2015;36(4):2893–905.

    Article  CAS  Google Scholar 

  73. Sahra IB, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P, et al. Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Can Res. 2010;70(6):2465–75.

    Article  Google Scholar 

  74. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA: a cancer journal for clinicians. 2010;60(5):277–300.

  75. Neoptolemos JP, Stocken DD, Friess H, Bassi C, Dunn JA, Hickey H, et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med. 2004;350(12):1200–10.

    Article  CAS  PubMed  Google Scholar 

  76. Simianu VV, Zyromski NJ, Nakeeb A, Lillemoe KD. Pancreatic cancer: progress made. Acta Oncol. 2010;49(4):407–17.

    Article  PubMed  Google Scholar 

  77. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer: Interdisciplinary International Journal of the American Cancer. Society. 2009;115(7):1531–43.

    Google Scholar 

  78. Yan K, Gao J, Yang T, Ma Q, Qiu X, Fan Q, et al. MicroRNA-34a inhibits the proliferation and metastasis of osteosarcoma cells both in vitro and in vivo. PLoS ONE. 2012;7(3):e33778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Amankwah EK, Conley AP, Reed DR. Epidemiology and therapies for metastatic sarcoma. Clin Epidemiol. 2013;5:147.

    PubMed  PubMed Central  Google Scholar 

  80. Bacci G, Briccoli A, Rocca M, Ferrari S, Donati D, Longhi A, et al. Neoadjuvant chemotherapy for osteosarcoma of the extremities with metastases at presentation: recent experience at the Rizzoli Institute in 57 patients treated with cisplatin, doxorubicin, and a high dose of methotrexate and ifosfamide. Ann Oncol. 2003;14(7):1126–34.

    Article  CAS  PubMed  Google Scholar 

  81. Rainusso N, Wang LL, Yustein JT. The adolescent and young adult with cancer: state of the art-bone tumors. Curr Oncol Rep. 2013;15(4):296–307.

    Article  PubMed  Google Scholar 

  82. Maldonado L, Hoque MO. Epigenomics and ovarian carcinoma. Biomark Med. 2010;4(4):543–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chung Y-W, Bae H-S, Song J-Y, Lee JK, Lee NW, Kim T, et al. Detection of microRNA as novel biomarkers of epithelial ovarian cancer from the serum of ovarian cancer patient. Int J Gynecol Cancer. 2013;23(4):673–9.

    Article  PubMed  Google Scholar 

  84. Bosch FX, Broker TR, Forman D, Moscicki A-B, Gillison ML, Doorbar J, et al. Comprehensive control of human papillomavirus infections and related diseases. Vaccine. 2013;31:H1–31.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rodríguez AC, Schiffman M, Herrero R, Wacholder S, Hildesheim A, Castle PE, et al. Rapid clearance of human papillomavirus and implications for clinical focus on persistent infections. J Natl Cancer Inst. 2008;100(7):513–7.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci. 2005;102(45):16426–31.

    Article  CAS  PubMed  Google Scholar 

  87. Sitarz R, Skierucha M, Mielko J, Offerhaus GJ, Maciejewski R, Polkowski WP. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res. 2018;10:239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Furnari FB, Fenton T, Bachoo RM, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21(2683–2710):2.

    Google Scholar 

  89. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359:492–507.

    Article  CAS  PubMed  Google Scholar 

  90. Wu J, Wang J. HMGN5 expression in bladder cancer tissue and its role on prognosis. Eur Rev Med Pharmacol Sci. 2018;22(4):970–5.

    CAS  PubMed  Google Scholar 

  91. Chamie K, Litwin MS, Bassett JC, Daskivich TJ, Lai J, Hanley JM, Konety BR, Saigal CS. Urologic Diseases in America Project. Recurrence of high-risk bladder cancer: a population-based analysis. Cancer. 2013;119(17):3219–27.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature. 2007;445(7130):851.

    Article  CAS  PubMed  Google Scholar 

  93. Davids LM, Kleemann B. The menace of melanoma: a photodynamic approach to adjunctive cancer therapy. InMelanoma-From Early Detection to Treatment 2013. IntechOpen.

  94. Tolleson WH. Human melanocyte biology, toxicology, and pathology. J Environ Sci Health C. 2005;23(2):105–61.

    Article  Google Scholar 

  95. Pópulo H, Soares P, Lopes JM. Insights into melanoma: targeting the mTOR pathway for therapeutics. Expert Opin Ther Targets. 2012;16(7):689–705.

    Article  PubMed  Google Scholar 

  96. Vasudev NS, Selby PJ, Banks RE. Renal cancer biomarkers: the promise of personalized care. BMC Med. 2012;10(1):1.

    Article  Google Scholar 

  97. Randall JM, Millard F, Kurzrock R. Molecular aberrations, targeted therapy, and renal cell carcinoma: current state-of-the-art. Cancer Metastasis Rev. 2014;33(4):1109–24.

    Article  CAS  PubMed  Google Scholar 

  98. Cairns P. Renal cell carcinoma. Cancer Biomark. 2011;9(1–6):461–73.

    Article  PubMed Central  Google Scholar 

  99. Brown RL, de Souza JA, Cohen EE. Thyroid cancer: burden of illness and management of disease. J Cancer. 2011;2:193.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lang BH, Wong KP, Wan KY, Lo CY. Significance of metastatic lymph node ratio on stimulated thyroglobulin levels in papillary thyroid carcinoma after prophylactic unilateral central neck dissection. Ann Surg Oncol. 2012;19(4):1257–63.

    Article  PubMed  Google Scholar 

  101. Rodrigues DA, Gomes CM, Costa IM. Tuberous sclerosis complex. An Bras Dermatol. 2012;87(2):184–96.

    Article  PubMed  Google Scholar 

  102. Hinton RB, Prakash A, Romp RL, Krueger DA, Knilans TK. Cardiovascular manifestations of tuberous sclerosis complex and summary of the revised diagnostic criteria and surveillance and management recommendations from the international tuberous sclerosis consensus group. J Am Heart Assoc. 2014;3(6):e001493.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Northrup H, Krueger DA, Roberds S, Smith K, Sampson J, Korf B, Kwiatkowski DJ, Mowat D, Nellist M, Povey S, de Vries P. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 international tuberous sclerosis complex consensus conference. Pediatr Neurol. 2013;49(4):243–54.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Mahajan A, Liu Z, Gellert L, Zou X, Yang G, Lee P, et al. HMGA2: a biomarker significantly overexpressed in high-grade ovarian serous carcinoma. Mod Pathol. 2010;23(5):673.

    Article  CAS  PubMed  Google Scholar 

  105. Zhang Y, Kwok JS-L, Choi P-W, Liu M, Yang J, Singh M, et al. Pinin interacts with C-terminal binding proteins for RNA alternative splicing and epithelial cell identity of human ovarian cancer cells. Oncotarget. 2016;7(10):11397.

  106. Zhang D, Yong Ma Q, Hu HT, Zhang M. β2-adrenergic antagonists suppress pancreatic cancer cell invasion by inhibiting CREB, NF-κB and AP-1. Cancer Biol Ther. 2010;10(1):19–29.

    Article  CAS  PubMed  Google Scholar 

  107. Alvarez-Saavedra M, Antoun G, Yanagiya A, Oliva-Hernandez R, Cornejo-Palma D, Perez-Iratxeta C, Sonenberg N, Cheng HY. miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. Hum Mol Genet. 2011;20(4):731–51.

    Article  CAS  PubMed  Google Scholar 

  108. Benovic JL. Novel β2-adrenergic receptor signaling pathways. J Allergy Clin Immunol. 2002;110(6):S229–35.

    Article  CAS  PubMed  Google Scholar 

  109. Weddle D, Tithoff P, Williams M, Schuller H. β-Adrenergic growth regulation of human cancer cell lines derived from pancreatic ductal carcinomas. Carcinogenesis. 2001;22(3):473–9.

    Article  CAS  PubMed  Google Scholar 

  110. Salemi M, Pettinato A, Fraggetta F, Calogero AE, Pennisi M, Pepe L, Pepe P. Expression of miR-132 and miR-212 in prostate cancer and metastatic lymph node: Case report and revision of the literature. Archivio Italiano di Urologia e. Andrologia. 2020;1(3):92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kianoosh Malekzadeh.

Ethics declarations

Conflict of interest

Hereby, we declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafat, M., Moraghebi, M., Afsa, M. et al. The outstanding role of miR-132-3p in carcinogenesis of solid tumors. Human Cell 34, 1051–1065 (2021). https://doi.org/10.1007/s13577-021-00544-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00544-w

Keywords

Navigation