Skip to main content

Advertisement

Log in

Pediatric high-grade glioma: a review of biology, prognosis, and treatment

  • Review
  • Published:
Journal of Radiation Oncology

Abstract

The incidence of high-grade gliomas (HGGs) in children is significantly lower than in adults, with less than 400 children diagnosed every year in the USA. While the histopathology of HGGs in children is very similar to those in adults, their biology is very different. Recent studies have led to an exponential increase in our understanding of the biology of these tumors, with the identification of distinct epigenetic subtypes, each with characteristic clinical and molecular profiles. The 2016 WHO classification of central nervous system tumors has recognized the most common subtype, with the poorest prognosis—“diffuse midline glioma H3 K27M-mutant”—marking a shift towards the integration of molecular features with the traditional histopathological diagnosis. Like adults, children with HGGs have a very poor prognosis overall, with treatment consisting of maximal safe surgical resection followed by radiation therapy. However, the role of temozolomide, which is a well-established adjuvant therapy for MGMT-methylated HGGs in adults, is less clear in children. In this review, we outline the epidemiology, recent advances in our understanding of biology, past landmark clinical trials, and promising therapeutic strategies for pediatric HGG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HGG:

high-grade glioma

WHO:

World Health Organization

CNS:

central nervous system

LGG:

low-grade glioma

RT:

radiation therapy

MAPK:

mitogen-activated protein kinase

CCSS:

Childhood Cancer Survivor Study

AA:

anaplastic astrocytoma

GBM:

glioblastoma multiforme

DIPG:

diffuse intrinsic pontine glioma

PFS:

progression-free survival

OS:

overall survival

PXA:

pleomorphic xanthoastrocytoma

GTR:

gross total resection

EFS:

event-free survival

HSCT:

hematopoietic stem cell transplant

bMMRD:

biallelic mismatch repair deficiency

HDAC:

histone deacetylase

References

  1. Ostrom QT, de Blank PM, Kruchko C, Petersen CM, Liao P, Finlay JL, Stearns DS, Wolff JE, Wolinsky Y, Letterio JJ, Barnholtz-Sloan JS (2015) Alex’s lemonade stand foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-Oncology 16(Suppl 10):x1–x36. https://doi.org/10.1093/neuonc/nou327

    Article  PubMed  Google Scholar 

  2. Korshunov A, Schrimpf D, Ryzhova M, Sturm D, Chavez L, Hovestadt V, Sharma T, Habel A, Burford A, Jones C, Zheludkova O, Kumirova E, Kramm CM, Golanov A, Capper D, von Deimling A, Pfister SM, Jones DT (2017) H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers. Acta Neuropathol 134(3):507–516. https://doi.org/10.1007/s00401-017-1710-1

    Article  CAS  PubMed  Google Scholar 

  3. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109. https://doi.org/10.1007/s00401-007-0243-4

    Article  PubMed  PubMed Central  Google Scholar 

  4. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  5. Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B, Li Y, Zhu X, Qu C, Chen X, Zhang J, Easton J, Edmonson M, Ma X, Lu C, Nagahawatte P, Hedlund E, Rusch M, Pounds S, Lin T, Onar-Thomas A, Huether R, Kriwacki R, Parker M, Gupta P, Becksfort J, Wei L, Mulder HL, Boggs K, Vadodaria B, Yergeau D, Russell JC, Ochoa K, Fulton RS, Fulton LL, Jones C, Boop FA, Broniscer A, Wetmore C, Gajjar A, Ding L, Mardis ER, Wilson RK, Taylor MR, Downing JR, Ellison DW, Zhang J, Baker SJ, St. Jude Children’s Research Hospital-Washington University Pediatric Cancer Genome P (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46(5):444–450. https://doi.org/10.1038/ng.2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Korshunov A, Ryzhova M, Hovestadt V, Bender S, Sturm D, Capper D, Meyer J, Schrimpf D, Kool M, Northcott PA, Zheludkova O, Milde T, Witt O, Kulozik AE, Reifenberger G, Jabado N, Perry A, Lichter P, von Deimling A, Pfister SM, Jones DT (2015) Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol 129(5):669–678. https://doi.org/10.1007/s00401-015-1405-4

    Article  CAS  PubMed  Google Scholar 

  7. Castel D, Philippe C, Calmon R, Le Dret L, Truffaux N, Boddaert N, Pages M, Taylor KR, Saulnier P, Lacroix L, Mackay A, Jones C, Sainte-Rose C, Blauwblomme T, Andreiuolo F, Puget S, Grill J, Varlet P, Debily MA (2015) Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 130(6):815–827. https://doi.org/10.1007/s00401-015-1478-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Korshunov A, Capper D, Reuss D, Schrimpf D, Ryzhova M, Hovestadt V, Sturm D, Meyer J, Jones C, Zheludkova O, Kumirova E, Golanov A, Kool M, Schuller U, Mittelbronn M, Hasselblatt M, Schittenhelm J, Reifenberger G, Herold-Mende C, Lichter P, von Deimling A, Pfister SM, Jones DT (2016) Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathol 131(1):137–146. https://doi.org/10.1007/s00401-015-1493-1

    Article  CAS  PubMed  Google Scholar 

  9. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DA, Tonjes M, Hovestadt V, Albrecht S, Kool M, Nantel A, Konermann C, Lindroth A, Jager N, Rausch T, Ryzhova M, Korbel JO, Hielscher T, Hauser P, Garami M, Klekner A, Bognar L, Ebinger M, Schuhmann MU, Scheurlen W, Pekrun A, Fruhwald MC, Roggendorf W, Kramm C, Durken M, Atkinson J, Lepage P, Montpetit A, Zakrzewska M, Zakrzewski K, Liberski PP, Dong Z, Siegel P, Kulozik AE, Zapatka M, Guha A, Malkin D, Felsberg J, Reifenberger G, von Deimling A, Ichimura K, Collins VP, Witt H, Milde T, Witt O, Zhang C, Castelo-Branco P, Lichter P, Faury D, Tabori U, Plass C, Majewski J, Pfister SM, Jabado N (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384):226–231. https://doi.org/10.1038/nature10833

    Article  CAS  PubMed  Google Scholar 

  10. Jones C, Perryman L, Hargrave D (2012) Paediatric and adult malignant glioma: close relatives or distant cousins? Nat Rev Clin Oncol 9(7):400–413. https://doi.org/10.1038/nrclinonc.2012.87

    Article  CAS  PubMed  Google Scholar 

  11. Paugh BS, Qu C, Jones C, Liu Z, Adamowicz-Brice M, Zhang J, Bax DA, Coyle B, Barrow J, Hargrave D, Lowe J, Gajjar A, Zhao W, Broniscer A, Ellison DW, Grundy RG, Baker SJ (2010) Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol 28(18):3061–3068. https://doi.org/10.1200/JCO.2009.26.7252

    Article  PubMed  PubMed Central  Google Scholar 

  12. Broniscer A, Baker SJ, West AN, Fraser MM, Proko E, Kocak M, Dalton J, Zambetti GP, Ellison DW, Kun LE, Gajjar A, Gilbertson RJ, Fuller CE (2007) Clinical and molecular characteristics of malignant transformation of low-grade glioma in children. J Clin Oncol 25(6):682–689. https://doi.org/10.1200/JCO.2006.06.8213

    Article  CAS  PubMed  Google Scholar 

  13. Sposto R, Ertel IJ, Jenkin RD, Boesel CP, Venes JL, Ortega JA, Evans AE, Wara W, Hammond D (1989) The effectiveness of chemotherapy for treatment of high grade astrocytoma in children: results of a randomized trial. A report from the Childrens Cancer Study Group J Neurooncol 7(2):165–177

    CAS  Google Scholar 

  14. Finlay JL, Boyett JM, Yates AJ, Wisoff JH, Milstein JM, Geyer JR, Bertolone SJ, McGuire P, Cherlow JM, Tefft M et al (1995) Randomized phase III trial in childhood high-grade astrocytoma comparing vincristine, lomustine, and prednisone with the eight-drugs-in-1-day regimen. Childrens Cancer Group. J Clin Oncol 13(1):112–123. https://doi.org/10.1200/JCO.1995.13.1.112

    Article  CAS  PubMed  Google Scholar 

  15. Cohen KJ, Pollack IF, Zhou T, Buxton A, Holmes EJ, Burger PC, Brat DJ, Rosenblum MK, Hamilton RL, Lavey RS, Heideman RL (2011) Temozolomide in the treatment of high-grade gliomas in children: a report from the Children’s Oncology Group. Neuro-Oncology 13(3):317–323. https://doi.org/10.1093/neuonc/noq191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kleihues P, Schauble B, zur Hausen A, Esteve J, Ohgaki H (1997) Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol 150 (1):1–13

  17. Varley JM (2003) Germline TP53 mutations and Li-Fraumeni syndrome. Hum Mutat 21(3):313–320. https://doi.org/10.1002/humu.10185

    Article  CAS  PubMed  Google Scholar 

  18. Durno CA, Aronson M, Tabori U, Malkin D, Gallinger S, Chan HS (2012) Oncologic surveillance for subjects with biallelic mismatch repair gene mutations: 10 year follow-up of a kindred. Pediatr Blood Cancer 59(4):652–656. https://doi.org/10.1002/pbc.24019

    Article  PubMed  Google Scholar 

  19. Melean G, Sestini R, Ammannati F, Papi L (2004) Genetic insights into familial tumors of the nervous system. Am J Med Genet C Semin Med Genet 129C(1):74–84. https://doi.org/10.1002/ajmg.c.30022

    Article  PubMed  Google Scholar 

  20. Ballester R, Marchuk D, Boguski M, Saulino A, Letcher R, Wigler M, Collins F (1990) The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63 (4):851–859

  21. Rosser T, Packer RJ (2002) Intracranial neoplasms in children with neurofibromatosis 1. J Child Neurol 17(8):630–637; discussion 646-651. https://doi.org/10.1177/088307380201700815

    Article  PubMed  Google Scholar 

  22. Rosenfeld A, Listernick R, Charrow J, Goldman S (2010) Neurofibromatosis type 1 and high-grade tumors of the central nervous system. Childs Nerv Syst 26(5):663–667. https://doi.org/10.1007/s00381-009-1024-2

    Article  PubMed  Google Scholar 

  23. Walter AW, Hancock ML, Pui CH, Hudson MM, Ochs JS, Rivera GK, Pratt CB, Boyett JM, Kun LE (1998) Secondary brain tumors in children treated for acute lymphoblastic leukemia at St Jude Children’s Research Hospital. J Clin Oncol 16(12):3761–3767. https://doi.org/10.1200/JCO.1998.16.12.3761

    Article  CAS  PubMed  Google Scholar 

  24. Broniscer A, Ke W, Fuller CE, Wu J, Gajjar A, Kun LE (2004) Second neoplasms in pediatric patients with primary central nervous system tumors: the St. Jude Children’s Research Hospital experience. Cancer 100(10):2246–2252. https://doi.org/10.1002/cncr.20253

    Article  PubMed  Google Scholar 

  25. Armstrong GT (2010) Long-term survivors of childhood central nervous system malignancies: the experience of the Childhood Cancer Survivor Study. Eur J Paediatr Neurol 14(4):298–303. https://doi.org/10.1016/j.ejpn.2009.12.006

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pollack IF, Boyett JM, Yates AJ, Burger PC, Gilles FH, Davis RL, Finlay JL, Children's Cancer G (2003) The influence of central review on outcome associations in childhood malignant gliomas: results from the CCG-945 experience. Neuro-Oncology 5(3):197–207. https://doi.org/10.1215/S1152-8517-03-00009-7

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gajjar A, Bowers DC, Karajannis MA, Leary S, Witt H, Gottardo NG (2015) Pediatric brain tumors: innovative genomic information is transforming the diagnostic and clinical landscape. J Clin Oncol 33(27):2986–2998. https://doi.org/10.1200/JCO.2014.59.9217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bavle AA, Lin FY, Parsons DW (2016) Applications of genomic sequencing in pediatric CNS tumors. Oncology (Williston Park) 30(5):411–423

    Google Scholar 

  29. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M, Zhang J, Gajjar A, Dyer MA, Mullighan CG, Gilbertson RJ, Mardis ER, Wilson RK, Downing JR, Ellison DW, Zhang J, Baker SJ, St. Jude Children’s Research Hospital-Washington University Pediatric Cancer Genome P (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44 (3):251–253. https://doi.org/10.1038/ng.1102

  30. Buczkowicz P, Hoeman C, Rakopoulos P, Pajovic S, Letourneau L, Dzamba M, Morrison A, Lewis P, Bouffet E, Bartels U, Zuccaro J, Agnihotri S, Ryall S, Barszczyk M, Chornenkyy Y, Bourgey M, Bourque G, Montpetit A, Cordero F, Castelo-Branco P, Mangerel J, Tabori U, Ho KC, Huang A, Taylor KR, Mackay A, Bendel AE, Nazarian J, Fangusaro JR, Karajannis MA, Zagzag D, Foreman NK, Donson A, Hegert JV, Smith A, Chan J, Lafay-Cousin L, Dunn S, Hukin J, Dunham C, Scheinemann K, Michaud J, Zelcer S, Ramsay D, Cain J, Brennan C, Souweidane MM, Jones C, Allis CD, Brudno M, Becher O, Hawkins C (2014) Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet 46(5):451–456. https://doi.org/10.1038/ng.2936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jakacki RI, Cohen KJ, Buxton A, Krailo MD, Burger PC, Rosenblum MK, Brat DJ, Hamilton RL, Eckel SP, Zhou T, Lavey RS, Pollack IF (2016) Phase 2 study of concurrent radiotherapy and temozolomide followed by temozolomide and lomustine in the treatment of children with high-grade glioma: a report of the Children’s Oncology Group ACNS0423 study. Neuro-Oncology 18(10):1442–1450. https://doi.org/10.1093/neuonc/now038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wolff JE, Wagner S, Reinert C, Gnekow A, Kortmann RD, Kuhl J, Van Gool SW (2006) Maintenance treatment with interferon-gamma and low-dose cyclophosphamide for pediatric high-grade glioma. J Neuro-Oncol 79(3):315–321. https://doi.org/10.1007/s11060-006-9147-8

    Article  CAS  Google Scholar 

  33. Finlay JL, Zacharoulis S (2005) The treatment of high grade gliomas and diffuse intrinsic pontine tumors of childhood and adolescence: a historical and futuristic perspective. J Neuro-Oncol 75(3):253–266. https://doi.org/10.1007/s11060-005-6747-7

    Article  CAS  Google Scholar 

  34. Wolff JE, Molenkamp G, Westphal S, Pietsch T, Gnekow A, Kortmann RD, Kuehl J (2000) Oral trofosfamide and etoposide in pediatric patients with glioblastoma multiforme. Cancer 89(10):2131–2137. https://doi.org/10.1002/1097-0142(20001115)89:10<2131::AID-CNCR14>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  35. Wolff JE, Westphal S, Molenkamp G, Gnekow A, Warmuth-Metz M, Rating D, Kuehl J (2002) Treatment of paediatric pontine glioma with oral trophosphamide and etoposide. Br J Cancer 87(9):945–949. https://doi.org/10.1038/sj.bjc.6600552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wolff JE, Driever PH, Erdlenbruch B, Kortmann RD, Rutkowski S, Pietsch T, Parker C, Metz MW, Gnekow A, Kramm CM (2010) Intensive chemotherapy improves survival in pediatric high-grade glioma after gross total resection: results of the HIT-GBM-C protocol. Cancer 116(3):705–712. https://doi.org/10.1002/cncr.24730

    Article  PubMed  Google Scholar 

  37. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003. https://doi.org/10.1056/NEJMoa043331

    Article  CAS  PubMed  Google Scholar 

  38. Narayana A, Kelly P, Golfinos J, Parker E, Johnson G, Knopp E, Zagzag D, Fischer I, Raza S, Medabalmi P, Eagan P, Gruber ML (2009) Antiangiogenic therapy using bevacizumab in recurrent high-grade glioma: impact on local control and patient survival. J Neurosurg 110(1):173–180. https://doi.org/10.3171/2008.4.17492

    Article  PubMed  Google Scholar 

  39. Morris PG (2012) Bevacizumab is an active agent for recurrent high-grade glioma, but do we need randomized controlled trials? Anti-Cancer Drugs 23(6):579–583. https://doi.org/10.1097/CAD.0b013e3283528847

    Article  CAS  PubMed  Google Scholar 

  40. Gururangan S, Chi SN, Young Poussaint T, Onar-Thomas A, Gilbertson RJ, Vajapeyam S, Friedman HS, Packer RJ, Rood BN, Boyett JM, Kun LE (2010) Lack of efficacy of bevacizumab plus irinotecan in children with recurrent malignant glioma and diffuse brainstem glioma: a Pediatric Brain Tumor Consortium Study. J Clin Oncol 28(18):3069–3075. https://doi.org/10.1200/JCO.2009.26.8789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Espinoza JC, Haley K, Patel N, Dhall G, Gardner S, Allen J, Torkildson J, Cornelius A, Rassekh R, Bedros A, Etzl M, Garvin J, Pradhan K, Corbett R, Sullivan M, McGowage G, Stein D, Jasty R, Sands SA, Ji L, Sposto R, Finlay JL (2016) Outcome of young children with high-grade glioma treated with irradiation-avoiding intensive chemotherapy regimens: final report of the Head Start II and III trials. Pediatr Blood Cancer 63(10):1806–1813. https://doi.org/10.1002/pbc.26118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Duffner PK, Krischer JP, Burger PC, Cohen ME, Backstrom JW, Horowitz ME, Sanford RA, Friedman HS, Kun LE (1996) Treatment of infants with malignant gliomas: the Pediatric Oncology Group experience. J Neuro-Oncol 28(2–3):245–256

    CAS  Google Scholar 

  43. Dufour C, Grill J, Lellouch-Tubiana A, Puget S, Chastagner P, Frappaz D, Doz F, Pichon F, Plantaz D, Gentet JC, Raquin MA, Kalifa C (2006) High-grade glioma in children under 5 years of age: a chemotherapy only approach with the BBSFOP protocol. Eur J Cancer 42(17):2939–2945. https://doi.org/10.1016/j.ejca.2006.06.021

    Article  CAS  PubMed  Google Scholar 

  44. Hegde M, Bielamowicz KJ, Ahmed N (2014) Novel approaches and mechanisms of immunotherapy for glioblastoma. Discov Med 17(93):145–154

    PubMed  Google Scholar 

  45. Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M, Durno C, Krueger J, Cabric V, Ramaswamy V, Zhukova N, Mason G, Farah R, Afzal S, Yalon M, Rechavi G, Magimairajan V, Walsh MF, Constantini S, Dvir R, Elhasid R, Reddy A, Osborn M, Sullivan M, Hansford J, Dodgshun A, Klauber-Demore N, Peterson L, Patel S, Lindhorst S, Atkinson J, Cohen Z, Laframboise R, Dirks P, Taylor M, Malkin D, Albrecht S, Dudley RW, Jabado N, Hawkins CE, Shlien A, Tabori U (2016) Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol 34(19):2206–2211. https://doi.org/10.1200/JCO.2016.66.6552

    Article  CAS  PubMed  Google Scholar 

  46. Bakry D, Aronson M, Durno C, Rimawi H, Farah R, Alharbi QK, Alharbi M, Shamvil A, Ben-Shachar S, Mistry M, Constantini S, Dvir R, Qaddoumi I, Gallinger S, Lerner-Ellis J, Pollett A, Stephens D, Kelies S, Chao E, Malkin D, Bouffet E, Hawkins C, Tabori U (2014) Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: report from the Constitutional Mismatch Repair Deficiency Consortium. Eur J Cancer 50(5):987–996. https://doi.org/10.1016/j.ejca.2013.12.005

    Article  PubMed  Google Scholar 

  47. Wimmer K, Kratz CP, Vasen HF, Caron O, Colas C, Entz-Werle N, Gerdes AM, Goldberg Y, Ilencikova D, Muleris M, Duval A, Lavoine N, Ruiz-Ponte C, Slavc I, Burkhardt B, Brugieres L, EU-CCf CMMRD (2014) Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European Consortium ‘Care for CMMRD’ (C4CMMRD). J Med Genet 51(6):355–365. https://doi.org/10.1136/jmedgenet-2014-102284

    Article  CAS  PubMed  Google Scholar 

  48. Shlien A, Campbell BB, de Borja R, Alexandrov LB, Merico D, Wedge D, Van Loo P, Tarpey PS, Coupland P, Behjati S, Pollett A, Lipman T, Heidari A, Deshmukh S, Avitzur N, Meier B, Gerstung M, Hong Y, Merino DM, Ramakrishna M, Remke M, Arnold R, Panigrahi GB, Thakkar NP, Hodel KP, Henninger EE, Goksenin AY, Bakry D, Charames GS, Druker H, Lerner-Ellis J, Mistry M, Dvir R, Grant R, Elhasid R, Farah R, Taylor GP, Nathan PC, Alexander S, Ben-Shachar S, Ling SC, Gallinger S, Constantini S, Dirks P, Huang A, Scherer SW, Grundy RG, Durno C, Aronson M, Gartner A, Meyn MS, Taylor MD, Pursell ZF, Pearson CE, Malkin D, Futreal PA, Stratton MR, Bouffet E, Hawkins C, Campbell PJ, Tabori U, Biallelic Mismatch Repair Deficiency C (2015) Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nat Genet 47(3):257–262. https://doi.org/10.1038/ng.3202

    Article  CAS  PubMed  Google Scholar 

  49. Williams MJ, Singleton WG, Lowis SP, Malik K, Kurian KM (2017) Therapeutic targeting of histone modifications in adult and pediatric high-grade glioma. Front Oncol 7:45. https://doi.org/10.3389/fonc.2017.00045

    Article  PubMed  PubMed Central  Google Scholar 

  50. van Vuurden DG, Hulleman E, Meijer OL, Wedekind LE, Kool M, Witt H, Vandertop PW, Wurdinger T, Noske DP, Kaspers GJ, Cloos J (2011) PARP inhibition sensitizes childhood high grade glioma, medulloblastoma and ependymoma to radiation. Oncotarget 2 (12):984-996. https://doi.org/10.18632/oncotarget.362

  51. Chornenkyy Y, Agnihotri S, Yu M, Buczkowicz P, Rakopoulos P, Golbourn B, Garzia L, Siddaway R, Leung S, Rutka JT, Taylor MD, Dirks PB, Hawkins C (2015) Poly-ADP-ribose polymerase as a therapeutic target in pediatric diffuse intrinsic pontine glioma and pediatric high-grade astrocytoma. Mol Cancer Ther 14(11):2560–2568. https://doi.org/10.1158/1535-7163.mct-15-0282

    Article  CAS  PubMed  Google Scholar 

  52. Grasso CS, Tang Y, Truffaux N, Berlow NE, Liu L, Debily MA, Quist MJ, Davis LE, Huang EC, Woo PJ, Ponnuswami A, Chen S, Johung TB, Sun W, Kogiso M, Du Y, Qi L, Huang Y, Hutt-Cabezas M, Warren KE, Le Dret L, Meltzer PS, Mao H, Quezado M, van Vuurden DG, Abraham J, Fouladi M, Svalina MN, Wang N, Hawkins C, Nazarian J, Alonso MM, Raabe EH, Hulleman E, Spellman PT, Li XN, Keller C, Pal R, Grill J, Monje M (2015) Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat Med 21(6):555–559. https://doi.org/10.1038/nm.3855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Bavle.

Ethics declarations

Funding

The authors did not receive any funding for this work.

Conflict of interest

Abhishek Bavle declares that he has no conflict of interest. Murali Chintagumpala declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bavle, A., Chintagumpala, M. Pediatric high-grade glioma: a review of biology, prognosis, and treatment. J Radiat Oncol 7, 7–15 (2018). https://doi.org/10.1007/s13566-018-0344-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13566-018-0344-9

Keywords

Navigation