Skip to main content
Log in

CHIP promotes CAD ubiquitination and degradation to suppress the proliferation and colony formation of glioblastoma cells

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Cancer cells are characterized as the uncontrolled proliferation, which demands high levels of nucleotides that are building blocks for DNA synthesis and replication. CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase and dihydroorotase) is a trifunctional enzyme that initiates the de novo pyrimidine synthesis, which is normally enhanced in cancer cells to preserve the pyrimidine pool for cell division. Glioma, representing most brain cancer, is highly addicted to nucleotides like pyrimidine to sustain the abnormal growth and proliferation of cells. CAD is previously reported to be dysregulated in glioma, but the underlying mechanism remains unclear.

Methods

The expression of CAD and CHIP (carboxyl terminus of Hsc70-interacting protein) protein in normal brain cells and three glioblastoma (GBM) cell lines were measured by immunoblots. Lentiviruses-mediated expression of target proteins or shRNAs were used to specifically overexpress or knock down CAD and CHIP. Cell counting, colony formation, apoptosis and cell cycle assays were used to assess the roles of CAD and CHIP in GBM cell proliferation and survival. Co-immunoprecipitation and ubiquitination assays were used to examine the interaction of CHIP with CAD and the ubiquitination of CAD. The correlation of CAD and CHIP expression with GBM patients’ survival was obtained by analyzing the GlioVis database.

Results

In this study, we showed that the expression of CAD was upregulated in glioma, which was positively correlated with the tumor grade and survival of glioma patients. Knockdown of CAD robustly inhibited the cell proliferation and colony formation of GBM cells, indicating the essential role of CAD in the pathogenesis of GBM. Mechanistically, we firstly identified that CAD was modified by the K29-linked polyubiquitination, which was mediated by the E3 ubiquitin ligase CHIP. By interacting with and ubiquitinating CAD, CHIP enhanced its proteasomal and lysosomal degradation, which accounted for the anti-proliferative role of CHIP in GBM cells. To sustain the expression of CAD, CHIP is significantly downregulated, which is correlated with the poor prognosis and survival of GBM patients. Notably, the low level of CHIP and high level of CAD overall predict the short survival of GBM patients.

Conclusion

Altogether, these results illustrated the essential role of CAD in GBM and revealed a novel therapeutic strategy for CAD-positive and CHIP-negative cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data related to this study are available within the article.

References

  1. P. Syed et al., Autoantibody Profiling of Glioma Serum Samples to identify biomarkers using human proteome arrays. Sci. Rep. 5, 13895 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. P.Y. Wen, S. Kesari, Malignant gliomas in adults. N Engl. J. Med. 359(5), 492–507 (2008)

    Article  CAS  PubMed  Google Scholar 

  3. H.S. Phillips et al., Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of Disease progression, and resemble stages in neurogenesis. Cancer Cell. 9(3), 157–173 (2006)

    Article  CAS  PubMed  Google Scholar 

  4. R. Stupp et al., Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10(5), 459–466 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. B. Faubert, A. Solmonson, R.J. DeBerardinis, Metabolic reprogramming and cancer progression. Science. 368(6487), 152– (2020)

    Article  Google Scholar 

  6. I. Martinez-Reyes, N.S. Chandel, Cancer metabolism: looking forward. Nat. Rev. Cancer. 21(10), 669–680 (2021)

    Article  CAS  PubMed  Google Scholar 

  7. D.D. Shi et al., De novo pyrimidine synthesis is a targetable vulnerability in IDH mutant glioma. Cancer Cell. 40(9), 939– (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. G. Li et al., Pyrimidine biosynthetic enzyme CAD: its function, regulation, and diagnostic potential. Int. J. Mol. Sci., 22(19), 10253 (2021)

  9. J. Shin et al., Allosteric regulation of CAD modulates de novo pyrimidine synthesis during the cell cycle. Nat. Metabolism. 5(2), 277– (2023)

    Article  CAS  Google Scholar 

  10. J.A. Cox et al., Novel role for carbamoyl phosphate synthetase 2 in cranial sensory circuit formation. Int. J. Dev. Neurosci. 33, 41–48 (2014)

    Article  CAS  PubMed  Google Scholar 

  11. D.A. Ridder et al., Key enzymes in Pyrimidine Synthesis, CAD and CPS1, predict prognosis in Hepatocellular Carcinoma. Cancers (Basel), 13(4), 744 (2021)

  12. R.J. Miltenberger, K.A. Sukow, P.J. Farnham, An e-box-mediated increase in cad transcription at the G1/S-phase boundary is suppressed by inhibitory c-Myc mutants. Mol. Cell. Biol. 15(5), 2527–2535 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J. Shin et al., Allosteric regulation of CAD modulates de novo pyrimidine synthesis during the cell cycle. Nat. Metab. 5(2), 277–293 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. L. Lee et al., Oligomeric structure of the multifunctional protein CAD that initiates pyrimidine biosynthesis in mammalian cells. Proc. Natl. Acad. Sci. U S A 82(20), 6802–6806 (1985)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M. Moreno-Morcillo et al., Structural insight into the core of CAD, the multifunctional protein leading De Novo Pyrimidine Biosynthesis. Structure. 25(6), 912– (2017)

    Article  CAS  PubMed  Google Scholar 

  16. I. Ben-Sahra et al., Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339(6125), 1323-1328 (2013)

  17. D.H. Kotsis et al., Protein kinase a phosphorylation of the multifunctional protein CAD antagonizes activation by the MAP kinase cascade. Mol. Cell. Biochem. 301(1–2), 69–81 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. L.M. Graves et al., Regulation of carbamoyl phosphate synthetase by MAP kinase. Nature. 403(6767), 328–332 (2000)

    Article  CAS  PubMed  Google Scholar 

  19. Y. Sha et al., STUB1 regulates TFEB-induced autophagy-lysosome pathway. EMBO J. 36(17), 2544–2552 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. C.A. Ballinger et al., Identification of CHIP, a Novel Tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol. Cell Biol. 19(6), 4535–4545 (1999)

  21. C. Cook et al., Loss of HDAC6, a novel CHIP substrate, alleviates abnormal tau accumulation. Hum. Mol. Genet. 21(13), 2936–2945 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S.M. Ronnebaum et al., The ubiquitin ligase CHIP prevents SirT6 degradation through noncanonical ubiquitination. Mol. Cell. Biol. 33(22), 4461–4472 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Y. Kopp et al., CHIP as a membrane-shuttling proteostasis sensor. Elife, 6, e29388 (2017)

  24. S.F. Ahmed et al., The chaperone-assisted E3 ligase C terminus of Hsc70-interacting protein (CHIP) targets PTEN for proteasomal degradation. J. Biol. Chem. 287(19), 15996–16006 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M.M. Al Mamun et al., Stub1 maintains proteostasis of master transcription factors in embryonic stem cells. Cell Rep., 39(10), 110919 (2022)

  26. C.F. Liu et al., Proteostasis by STUB1/HSP70 complex controls sensitivity to androgen receptor targeted therapy in advanced Prostate cancer. Nat. Commun., 9(1), 4700 (2018)

  27. I. Paul et al., The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity. Oncogene. 32(10), 1284–1295 (2013)

    Article  CAS  PubMed  Google Scholar 

  28. M. Kajiro et al., The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nat. Cell Biol. 11(3), 312–U190 (2009)

    Article  CAS  PubMed  Google Scholar 

  29. G. Zhao et al., DDX39B drives Colorectal cancer progression by promoting the stability and nuclear translocation of PKM2. Signal Transduct. Target. Therapy, 7(1), 275 (2022)

  30. T. Xu et al., Carboxyl terminus of Hsp70-interacting protein (CHIP) contributes to human glioma oncogenesis. Cancer Sci. 102(5), 959–966 (2011)

    Article  CAS  PubMed  Google Scholar 

  31. J. Hou et al., CSN6 controls the proliferation and Metastasis of glioblastoma by CHIP-mediated degradation of EGFR. Oncogene. 36(8), 1134–1144 (2017)

    Article  CAS  PubMed  Google Scholar 

  32. H.R. Ko et al., P42 Ebp1 regulates the proteasomal degradation of the p85 regulatory subunit of PI3K by recruiting a chaperone-E3 ligase complex HSP70/CHIP. Cell. Death Dis. 5(3), e1131 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. L.W. Sun et al., Corosolic acid attenuates the invasiveness of Glioblastoma Cells by promoting CHIP-Mediated AXL degradation and inhibiting GAS6/AXL/JAK Axis. Cells, 10(11), 2919 (2021)

  34. T. Li, E. Ju, S.J. Gao, Kaposi sarcoma-associated herpesvirus miRNAs suppress CASTOR1-mediated mTORC1 inhibition to promote tumorigenesis. J. Clin. Invest. 129(8), 3310–3323 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  35. T.Y. Wang et al., The E3 Ubiquitin Ligase CHIP in Normal cell Function and in Disease Conditions, Ann N Y Acad Sci. 1460(1), 3-10 (2020)

  36. K. Radovanac et al., Stabilization of integrin-linked kinase by the Hsp90-CHIP axis impacts cellular force generation, migration and the fibrotic response. EMBO J. 32(10), 1409–1424 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. K.N. Swatek, D. Komander, Ubiquitin Modifications. Cell Research. 26(4), 399–422 (2016)

    Article  CAS  PubMed  Google Scholar 

  38. I. Dikic, B.A. Schulman, An expanded lexicon for the ubiquitin code. Nat. Rev. Mol. Cell Biol. 24(4), 273–287 (2023)

    Article  CAS  PubMed  Google Scholar 

  39. T. Li et al., RNF167 activates mTORC1 and promotes tumorigenesis by targeting CASTOR1 for ubiquitination and degradation. Nat. Commun. 12(1), 1055 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. G. Herve, Structural insight into the core of CAD. Structure. 25(6), 819–820 (2017)

    Article  CAS  PubMed  Google Scholar 

  41. T.P. Mathews et al., Human phospholipase D activity transiently regulates pyrimidine biosynthesis in malignant gliomas. ACS Chem. Biol. 10(5), 1258–1268 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. S. Rabinovich et al., Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis. Nature. 527(7578), 379–383 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. G.R. Buel, S.G. Kim, J. Blenis, mTORC1 signaling Aids in CADalyzing pyrimidine biosynthesis. Cell. Metab. 17(5), 633–635 (2013)

    Article  CAS  PubMed  Google Scholar 

  44. L. Petrucelli et al., CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum. Mol. Genet. 13(7), 703–714 (2004)

    Article  CAS  PubMed  Google Scholar 

  45. P. Connell et al., The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat. Cell. Biol. 3(1), 93–96 (2001)

    Article  CAS  PubMed  Google Scholar 

  46. X. Zhu et al., Ubiquitination of inositol-requiring enzyme 1 (IRE1) by the E3 ligase CHIP mediates the IRE1/TRAF2/JNK pathway. J. Biol. Chem. 289(44), 30567–30577 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. M. Yang et al., E3 ubiquitin ligase CHIP facilitates toll-like receptor signaling by recruiting and polyubiquitinating src and atypical PKC{zeta}. J. Exp. Med. 208(10), 2099–2112 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. T. Wang et al., CHIP is a novel Tumor suppressor in Pancreatic cancer through targeting EGFR. Oncotarget. 5(7), 1969–1986 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  49. S. Wang et al., CHIP functions as a novel suppressor of tumour angiogenesis with prognostic significance in human gastric cancer. Gut. 62(4), 496–508 (2013)

    Article  CAS  PubMed  Google Scholar 

  50. J. Xu et al., E3 ubiquitin ligase CHIP attenuates cellular proliferation and invasion abilities in triple-negative Breast cancer cells. Clin. Exp. Med. 20(1), 109–119 (2020)

    Article  CAS  PubMed  Google Scholar 

  51. K. Pan et al., STUB1-SMYD2 Axis regulates Drug Resistance in Glioma cells. J. Mol. Neurosci. 72(9), 2030–2044 (2022)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all lab members for their helps and suggestions.

Funding

This work was supported by grants from the National Natural Science Foundation of China (8210082627), the Natural Science Foundation for Outstanding Young Scholars of Hunan Province (2022JJ20033) and the Key Project of Education Department of Hunan Province (22A0035) to T. Li to T. Li and Hunan Science and Technology Project (2017XK2020), the Key R&D Program of Hunan Province (2019NK2161) to S. He.

Author information

Authors and Affiliations

Authors

Contributions

Experimental design, Guanya Li, Tingting Li; data acquisition and analysis, Guanya Li, Kai Xiao, Jianfang Gao, Yinan Li, Shanping He, Tingting Li; writing and revision, Guanya Li, Tingting Li; supervision, Shanping He, Tingting Li; funding source, Shanping He, Tingting Li. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Shanping He or Tingting Li.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Xiao, K., Li, Y. et al. CHIP promotes CAD ubiquitination and degradation to suppress the proliferation and colony formation of glioblastoma cells. Cell Oncol. (2023). https://doi.org/10.1007/s13402-023-00899-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13402-023-00899-2

Keywords

Navigation