Skip to main content

Advertisement

Log in

Enhancement of thermochemical properties on rice husk under a wide range of torrefaction conditions

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In the present study, local biomass rick husk (RH) was torrefied by an electronic furnace for improving its thermochemical properties under a wide range of torrefaction temperature (i.e., 240, 280, 320, and 360 °C) and residence time (i.e., 0, 30, 60, and 90 min). In comparison with the thermochemical properties of the starting feedstock, the torrefaction temperature at around 360 °C for residence time of 0 min would be optimal to produce the RH-torrefied product. The calorific value can be raised by 41.2%, increasing from 13.96 to 19.71 MJ/kg. Based on the calorific values of the RH-torrefied products, it was found that torrefaction temperature and residence time are important parameters affecting their fuel properties and applications in solid biofuels. Consistently, their calorific values and carbon-to-hydrogen ratios generally increased at higher torrefaction temperatures for longer residence times. In contrast, the energy yield decreased with an increase in torrefaction temperatures and residence time. These findings also supported the thermal decomposition mechanism of the lignocellulosic biomass by the thermogravimetric analysis (TGA). Using the van Krevelen diagram for all RH-torrefied products as compared to various coals, it showed that several torrefied solids belong to the characteristics of lignite-like coal. However, the RH-torrefied biomass would not be appropriate to be directly reused as an auxiliary fuel in boilers because of the high content of silica (SiO2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kataki R, Chutia RS, Mishra M, Bordoloi N, Saikia R, Bhaskar T (2015) Feedstock suitability for thermochemical processes. In: Pandey A, Bhaskar T, Stocker M, Sukumaran RK (eds) Recent advances in thermochemical conversion of biomass. Elsevier, Amsterdam, pp 31–74

    Chapter  Google Scholar 

  2. Wu KT, Tsai CJ, Chen CS, Chen HW (2011) The characteristics of torrefied microalgae. Appl Energy 100:52–57. https://doi.org/10.1016/j.apenergy.2012.03.002

    Article  Google Scholar 

  3. Peng JH, Bi XT, Lim CJ, Sokhansanj S (2013) Study on density, hardness, and moisture uptake of torrefied wood pellets. Energy Fuels 27:967–974. https://doi.org/10.1021/ef301928q

    Article  Google Scholar 

  4. Asadullah M, Adi AM, Suhada N, Malek NH, Saringat MI, Azdarpour A (2014) Optimization of palm kernel shell torrefaction to produce energy densified bio-coal. Energy Convers Manag 88:1086–1093. https://doi.org/10.1016/j.enconman.2014.04.071

    Article  Google Scholar 

  5. Tsai WT, Huang CP, Lin YQ (2019) Characterization of biochars produced from dairy manure at high pyrolysis temperatures. Agronomy 9:634. https://doi.org/10.3390/agronomy9100634

    Article  Google Scholar 

  6. Tsai WT, Lin YQ, Tsai CH, Chung MH, Chu MH, Huang HJ, Jao YH, Yeh SI (2020) Conversion of water caltrop husk into torrefied biomass by torrefaction. Energy 195:11696. https://doi.org/10.1016/j.energy.2020.116967

    Article  Google Scholar 

  7. Basu P (2013) Biomass gasification, pyrolysis and torrefaction, 2nd edn. Academic Press, London

    Google Scholar 

  8. van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy 35:3748–3762. https://doi.org/10.1016/j.biombioe.2011.06.023

    Article  Google Scholar 

  9. Chen WH, Peng J, Bi XT (2015) A state-of-the-art review of biomass torrefaction, densification and applications. Renew Sustain Energy Rev 44:847–866. https://doi.org/10.1016/j.rser.2014.12.039

    Article  Google Scholar 

  10. Niu Y, Lv Y, Lei Y, Liu S, Liang Y, Wang D, Hui S (2019) Biomass torrefaction: properties, applications, challenges, and economy. Renew Sustain Energy Rev 115:109395. https://doi.org/10.1016/j.rser.2019.109395

    Article  Google Scholar 

  11. Mamvura TA, Danha G (2020) Biomass torrefaction as an emerging technology to aid in energy production. Heliyon 6:e03531. https://doi.org/10.1016/j.heliyon.2020.e03531

    Article  Google Scholar 

  12. Olugbade TO, Ojo OT (2020) Biomass torrefaction for the production of high-grade solid biofuels: a review. BioEnergy Res 13:999–1015. https://doi.org/10.1007/s12155-020-10138-3

    Article  Google Scholar 

  13. Chen WH, Lin BJ, Lin YY, Chu YS, Ubando AT, Show PL, Ong HC, Chang JS, Ho SH, Culaba AB, Petrissans A, Petrissans M (2021) Progress in biomass torrefaction: principles, applications and challenges. Prog Energy Combust Sci 82:100887. https://doi.org/10.1016/j.pecs.2020.100887

    Article  Google Scholar 

  14. Balat M (2007) Influence of coal as an energy source on environmental pollution. Energy Sources Part A 29:581–589. https://doi.org/10.1080/15567030701225260

    Article  Google Scholar 

  15. Li H, Liu X, Legros R, Bi XT, Lim CJ, Sokhansanj S (2012) Torrefaction of sawdust in a fluidized bed reactor. Bioresour Technol 103:453–458. https://doi.org/10.1016/j.biortech.2011.10.009

    Article  Google Scholar 

  16. Simonic M, Goricanec D, Urbancl D (2020) Impact of torrefaction on biomass properties depending on temperature and operation time. Sci Total Environ 740:140086. https://doi.org/10.1016/j.scitotenv.2020.140086

    Article  Google Scholar 

  17. Moraes CAM, Fernandes IJ, Calheiro D, Kieling AG, Brehm FA, Rigon MR, Fiho JAB, Schneider IAH, Osorio E (2014) Review of the rice production cycle: by-products and the main applications focusing on rice husk combustion and ash recycling. Waste Manag Res 32:1034–1048. https://doi.org/10.1177/0734242X14557379

    Article  Google Scholar 

  18. Soltani N, Bahrami A, Pech-Canul MI, Gonzalez LA (2015) Review on the physicochemical treatments of rice husk for production of advanced materials. Chem Eng J 264:899–935. https://doi.org/10.1016/j.cej.2014.11.056

    Article  Google Scholar 

  19. Quispe I, Navia R, Kahhat R (2017) Energy potential from rice husk through direct combustion and fast pyrolysis: a review. Waste Manag 59:200–210. https://doi.org/10.1016/j.wasman.2016.10.001

    Article  Google Scholar 

  20. Lim JS, Manan ZA, Alwi SRW, Hashim H (2012) A review on utilization of biomass from rice industry as a source of renewable energy. Renew Sustain Energy Rev 16:3084–3094. https://doi.org/10.1016/j.rser.2012.02.051

    Article  Google Scholar 

  21. Chakma S, Ranjan A, Choudhury HA, Dikshit PK, Moholkar VS (2016) Bioenergy from rice crop residues: role in developing countries. Clean Technol Environ Policy 18:373–394. https://doi.org/10.1007/s10098-015-1051-5

    Article  Google Scholar 

  22. Mofijur M, Mahlia TMI, Logeswaran J, Anwar M, Silitonga AS, Rahman SMA, Shamsuddin AH (2019) Potential of rice industry biomass as a renewable energy source. Energies 12:4116. https://doi.org/10.3390/en12214116

    Article  Google Scholar 

  23. Thengane SK, Burek J, Kung KS, Ghoniem AF, Sanchez DL (2020) Life cycle assessment of rice husk torrefaction and prospects for decentralized facilities at rice mills. J Clean Prod 275:123177. https://doi.org/10.1016/j.jclepro.2020.123177

    Article  Google Scholar 

  24. Adamon DGF, Fagbémi LA, Bensakhria A, Sanya EA (2019) Comparison of kinetic models for carbon dioxide and steam gasification of rice husk char. Waste Biomass Valor 10:407–415. https://doi.org/10.1007/s12649-017-0054-3

    Article  Google Scholar 

  25. Wang MJ, Huang YF, Chiueh PT, Kuan WH, Lo SL (2012) Microwave-induced torrefaction of rice husk and sugarcane residues. Energy 37:177–184. https://doi.org/10.1016/j.energy.2011.11.053

    Article  Google Scholar 

  26. Ahiduzzaman Md, Sadrul Islam AKM (2015) Energy yield of torrefied rice husk at atmospheric conditions. Procedia Eng 105:719–724. https://doi.org/10.1016/j.proeng.2015.05.062

    Article  Google Scholar 

  27. Chen D, Zhou J, Zhang Q, Zhu X, Lu Q (2014) Upgrading of rice husk by torrefaction and its influence on the fuel properties. BioResources 9:5893–5905

    Google Scholar 

  28. Chen D, Gao A, Ma Z, Fei D, Chang Y, Shen C (2018) In-depth study of rice husk torrefaction: Characterization of solid, liquid and gaseous products, oxygen migration and energy yield. Bioresour Technol 253:148–153. https://doi.org/10.1016/j.biortech.2018.01.009

    Article  Google Scholar 

  29. Manatura K, Lu JH, Wu KT, Hsu HT (2017) Exergy analysis on torrefied rice husk pellet in fluidized bed gasification. Appl Therm Eng 111:1016–1024. https://doi.org/10.1016/j.applthermaleng.2016.09.135

    Article  Google Scholar 

  30. Aslam U, Ramzan N, lqbal T, Sharif S, Hasan SW, Malik A (2019) Enhancement of fuel characteristics of rice husk via torrefaction process. Waste Manag Res 37:737–745. https://doi.org/10.1177/0734242X19838620

    Article  Google Scholar 

  31. Han J, Yu D, Yu X, Liu F, Wu J, Zeng X, Yu G, Xu M (2019) Effect of the torrefaction on the emission of PM10 from combustion of rice husk and its blends with a lignite. Proc Combust Inst 37:2733–2740. https://doi.org/10.1016/j.proci.2018.07.011

    Article  Google Scholar 

  32. Qi R, Chen Z, Wang M, Wu R, Jiang E (2019) Prediction method for torrefied rice husk based on gray-scale analysis. ACS Omega 4:17837–17842. https://doi.org/10.1021/acsomega.9b02478

    Article  Google Scholar 

  33. Zhang S, Su Y, Xiong Y, Zhang H (2020) Physicochemical structure and reactivity of char from torrefied rice husk: effects of inorganic species and torrefaction temperature. Fuel 262:116667. https://doi.org/10.1016/j.fuel.2019.116667

    Article  Google Scholar 

  34. Obernberger I, Biedermann F, Widmann W, Riedl-Narentenau R (1997) Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass Bioenergy 12:211–224. https://doi.org/10.1016/S0961-9534(96)00051-7

    Article  Google Scholar 

  35. van Loo S, Koppejan J (2008) The handbook of biomass combustion and co-firing. Earthscan, London

    Google Scholar 

  36. Tsai WT, Liu SC (2013) Effect of temperature on thermochemical property and true density of torrefied coffee residue. J Anal Appl Pyrolysis 102:47–52. https://doi.org/10.1016/j.jaap.2013.04.003

    Article  Google Scholar 

  37. Liu SC, Tsai WT, Li MH, Tsai CH (2015) Effect of holding time on fuel properties of biochars prepared from the torrefaction of coffee residue. Biomass Conver Biorefin 5:209–214. https://doi.org/10.1007/s13399-014-0139-1

    Article  Google Scholar 

  38. Tsai CH, Tsai WT, Liu SC, Lin YQ (2018) Thermochemical characterization of biochar from cocoa pod husk prepared at low pyrolysis temperature. Biomass Conver Biorefin 8:237–243. https://doi.org/10.1007/s13399-017-0259-5

    Article  Google Scholar 

  39. Mansaray KG, Ghaly AE (1997) Physical and thermochemical properties of rice husk. Energy Sources 19:989–1004. https://doi.org/10.1080/00908319708908904

    Article  Google Scholar 

  40. Mansaray KG, Ghaly AE (1998) Thermal degradation of rice husks in nitrogen atmosphere. Bioresour Technol 65:13–20. https://doi.org/10.1016/S0960-8524(98)00031-5

    Article  Google Scholar 

  41. Yao X, Xu K, Liang Y (2016) Comparing the thermo-physical properties of rice husk and rice straw as feedstock for thermochemical conversion and characterization of their waste ashes from combustion. BioResources 11:10549–10564

    Google Scholar 

  42. Jenkins BM, Baxter LL, Miles TR Jr, Miles TR (1998) Combustion properties of biomass. Fuel Process Technol 54:17–46. https://doi.org/10.1016/S0378-3820(97)00059-3

    Article  Google Scholar 

  43. Klass DJ (1998) Biomass for renewable energy, fuels, and chemicals. Academic Press, San Diego (USA)

    Google Scholar 

  44. Lim ACR, Chin BLF, Jawad ZA, Hii KL (2016) Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method. Procedia Eng 148:1247–1251. https://doi.org/10.1016/j.proeng.2016.06.486

    Article  Google Scholar 

  45. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  Google Scholar 

  46. Almeida G, Brito JO, Perre P (2010) Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: the potential of mass loss as a synthetic indicator. Bioresour Technol 101:9778–9784. https://doi.org/10.1016/j.biortech.2010.07.026

    Article  Google Scholar 

  47. Ben H, Ragauskas AJ (2012) Torrefaction of Loblloy pine. Green Chem 14:72–76. https://doi.org/10.1039/C1GC15570A

    Article  Google Scholar 

  48. Pinto F, Gominho J, Andre RN, Goncalves D, Miranda M, Varela F, Neves D, Santos J, Lourenco A, Pereira H (2015) Effect of rice husk torrefaction on syngas production and quality. Energy Fuels 31:5183–5192. https://doi.org/10.1021/acs.energyfuels.7b00259

    Article  Google Scholar 

  49. Brown R, del Campo B, Boateng AA, Garcia-Perez M, Masek O (2015) Fundamentals of biochar production. In: Lehmann J, Joseph S (eds) Biochar for environmental management, 2nd edn. Routledge, New York, pp 39–61

    Google Scholar 

  50. Antal MJ Jr, Gronli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42:1619–1640. https://doi.org/10.1021/ie0207919

    Article  Google Scholar 

  51. Hosokai S, Matsuoka K, Kuramoto K, Suzuki Y (2016) Modification of Dulong’s formula to estimate heating value of gas, liquid and solid fuels. Fuel Process Technol 152:399–405. https://doi.org/10.1016/j.fuproc.2016.06.040

    Article  Google Scholar 

  52. Han J, Yu D, Wu J, Yu X, Liu F, WangXu ZM (2021) Co-firing raw and torrefied rice husk with a high-Na/Ca/Cl coal: impacts on fine particulates emission and elemental partitioning. Fuel 292:120327. https://doi.org/10.1016/j.fuel.2021.120327

    Article  Google Scholar 

  53. Yoon SJ, Son YI, Kim YK, Lee JG (2012) Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier. Renew Energy 42:163–167. https://doi.org/10.1016/j.renene.2011.08.028

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Instrument Centers of National Pingtung University of Science and Technology and National Ching-Hwa University for the scanning electron microscopy – energy-dispersive X-ray spectroscopy (SEM-EDS) and the inductively coupled plasma – optical emission spectrometry (ICP-OES), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Tien Tsai.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, WT., Jiang, TJ., Tang, MS. et al. Enhancement of thermochemical properties on rice husk under a wide range of torrefaction conditions. Biomass Conv. Bioref. (2021). https://doi.org/10.1007/s13399-021-01945-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-021-01945-5

Keywords

Navigation