Skip to main content

Advertisement

Log in

Bioenergy from rice crop residues: role in developing economies

  • Review
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Energy demands of industry, agriculture, transport and domestic sectors of a developing nation are primarily in terms of electricity and transportation fuel. Rice is a major crop in many developing countries. The residues of this crop, viz. rice husk, and rice straw have high potential for bioenergy generation. This review article tries to explore potential of this bio-resource and emphasizes its effective utilization for energy production through techno-economic analysis. The structure, properties, and treatment of rice crop residues have been described. A literature review in production of various biofuels through thermo-chemical and biochemical conversion of rice straw and husk has been presented. Finally, brief literature review on economic analysis of production of liquid and gaseous biofuels from rice crop residues through biochemical and thermo-chemical routes has been presented. This analysis reveals that production of different biofuels from rice crop residues is economically viable. This review emphasizes that bioenergy from rice crop residues provides simultaneous solution to issues of energy security and climate change risk in developing nations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abedinifar S, Karimi K, Khanahmadi M, Taherzadeh MJ (2009) Ethanol production by Mucor indicus and Rhizopus oryzae from rice straw by separate hydrolysis and fermentation. Biomass Bioenerg 33:828–833

    Article  CAS  Google Scholar 

  • Adawi OAARAA (2008) Design, building and techno-economic evaluation of biogas digester. M.Tech dissertation, An-Najah National University

  • Agricultural Statistics at a Glance (2013) Directorate of Economics and Statistics, Department of Agriculture and Cooperation, Ministry of Agriculture, Govt. of India

  • Akshay Urja (2013) Ministry of New and Renewable Energy, Government of India, New Delhi, vol 7(1). http://mnre.gov.in

  • Alper K, Tekin K, Karagöz S (2015) Pyrolysis of agricultural residues for bio-oil production. Clean Technol Environ Policy 17:211–223

  • Amin MN, Mustafa AI, Khalil MI et al (2012) Adsorption of phenol onto rice straw biowaste for water purification. Clean Technol Environ Policy 14:837–844

    Article  CAS  Google Scholar 

  • Amiri H, Karimi K, Zilouei H (2014) Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresour Technol 152:450–456

    Article  CAS  Google Scholar 

  • Antongiovanni M, Sargentini C (1991) Variability in chemical composition of straws. Options Mediterr 16:49–53

    Google Scholar 

  • Atchison JE (1976) Agricultural residue and other non wood plant fibers. Science 191:768–772

    Article  CAS  Google Scholar 

  • Athar M, Farooq U, Ali SZ, Salman M (2014) Insight into the binding of copper(II) by non-toxic biodegradable material (Oryza sativa): effect of modification and interfering ions. Clean Technol Environ Policy 16:579–590

  • Azuma J, Tanaka F, Koshijima T (1984) Enhancement of enzymatic susceptibility of lignocellulosic wastes by microwave irradiation. J Ferment Technol 62:377–384

    CAS  Google Scholar 

  • Bak JS, Ko JK, Han YH et al (2009) Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresour Technol 100:1285–1290

    Article  CAS  Google Scholar 

  • Bakar MSA, Titiloye JO (2013) Catalytic pyrolysis of rice husk for bio-oil production. J Anal Appl Pyrolysis 103:362–368

    Article  CAS  Google Scholar 

  • Balagurumurthy B, Srivastava V, Vinit et al (2015) Value addition to rice straw through pyrolysis in hydrogen and nitrogen environments. Bioresour Technol 188:273–279

    Article  CAS  Google Scholar 

  • Bharadwaj A (2002) Gasification and combustion technologies of agro-residues and their application to rural electric power systems in India. Ph.D. dissertation, Carnegie Mellon University, Pittsburgh

  • Binod P, Sindhu R, Singhania RR et al (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101:4767–4774

    Article  CAS  Google Scholar 

  • Biomass Atlas of India V2.0, Combustion Gasification and Propulsion Laboratory, Bangalore: Indian Institute of Science. http://cgpl.iisc.ernet.in. Accessed Dec 2013

  • BP Statistical Review of World Energy (2011) BP p.l.c., London

  • Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis process for biomass. Renew Sustain Energy Rev 4:1–73

    Article  CAS  Google Scholar 

  • Buragohain B, Mahanta P, Moholkar VS (2010a) Thermodynamic optimization of biomass gasification for decentralized power generation and Fischer–Tropsch synthesis. Energy 35:2557–2559

    Article  CAS  Google Scholar 

  • Buragohain B, Mahanta P, Moholkar VS (2010b) Biomass gasification for decentralized power generation: the Indian perspective. Renew Sust Energy Rev 14:73–92

    Article  CAS  Google Scholar 

  • Buragohain B, Mahanta P, Moholkar VS (2011) Investigations in gasification of biomass mixtures using thermodynamic equilibrium and semi-equilibrium models. Int J Energy Environ 2:551–578

    CAS  Google Scholar 

  • Buragohain B, Mahanta P, Moholkar VS (2012) Performance correlations for biomass gasifiers using semi-equilibrium non-stoichiometric thermodynamic models. Int J Energy Res 36:590–618

    Article  CAS  Google Scholar 

  • Buragohain B, Chakma S, Kumar P, Mahanta P, Moholkar VS (2013) Comparative evaluation of kinetic, equilibrium and semi-equilibrium models for biomass gasification. Int J Energy Environ 4:581–614

    CAS  Google Scholar 

  • Chadha BS, Kanwar SS, Garcha HS (1995a) Simultaneous saccharification and fermentation of rice straw into ethanol. Acta Microbiol Immunol Hung 42:71–75

    CAS  Google Scholar 

  • Chadha BS, Kanwar SS, Saini HS, Garcha HS (1995b) Hybrid process for ethanol production from rice straw. Acta Microbiol Immunol Hung 42:53–59

    CAS  Google Scholar 

  • Chakma S, Moholkar VS (2011) Mechanistic features of ultrasonic desorption of aromatic pollutants. Chem Eng J 175:356–367

    Article  CAS  Google Scholar 

  • Chakma S, Moholkar VS (2013) Physical mechanism of sono-Fenton process. AIChE J 59:4303–4313

    Article  CAS  Google Scholar 

  • Chakraborty S, Chowdhury S, Das Saha P (2013) Artificial neural network (ANN) modeling of dynamic adsorption of crystal violet from aqueous solution using citric-acid-modified rice (Oryza sativa) straw as adsorbent. Clean Technol Environ Policy 15:255–264

    Article  CAS  Google Scholar 

  • Chang J-J, Chou C-H, Ho C-Y et al (2008) Syntrophic co-culture of aerobic Bacillus and anaerobic Clostridium for bio-fuels and bio-hydrogen production. Int J Hydrog Energy 33:5137–5146

    Article  CAS  Google Scholar 

  • Chen X, Yu J, Zhang Z, Lu C (2011) Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydr Polym 85:245–250

    Article  CAS  Google Scholar 

  • Chen X, Zhang YL, Gu Y et al (2014) Enhancing methane production from rice straw by extrusion pretreatment. Appl Energy 122:34–41

    Article  CAS  Google Scholar 

  • Cheng C-L, Che P-Y, Chen B-Y et al (2012) Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora. Appl Energy 100:3–9

    Article  CAS  Google Scholar 

  • Choudhury HA, Malani RS, Moholkar VS (2013) Acid catalyzed biodiesel synthesis from Jatropha oil: mechanistic aspects of ultrasonic intensification. Chem Eng J 231:262–272

    Article  CAS  Google Scholar 

  • Choudhury HA, Chakma S, Moholkar VS (2015) Biomass gasification integrated Fischer–Tropsch synthesis: perspectives, opportunities and challenges. In: Pandey A, Bhaskar T, Stocker M, Sukumaran RK (eds) Recent advances in thermochemical conversion of biomass. Elsevier BV, Amsterdam, pp 383–435

    Google Scholar 

  • CO2 Emissions from Fuel Combustion Highlights 2014 (2014) International Energy Agency (IEA) Statistics

  • de Ferrer BS, Ferrer A, Byers FM et al (1997) Sugar production from rice straw. Arch Latinoam Prod Anim 5:112–114

    Google Scholar 

  • Diep NQ, Fujimoto S, Yanagida T et al (2012) Comparison of the potential for ethanol production from rice straw in Vietnam and Japan via techno-economic evaluation. Int Energy J 13:113–122

    Google Scholar 

  • Dobermann A, Fairburst TH (2002) Rice straw management, Better. Crops Int 16:7–11

    Google Scholar 

  • Drapcho CM, Nhuan NP, Walker TH (2008) Biofuels engineering process technology. Mc-Graw Hill, New York

    Google Scholar 

  • Du J, Liu P, Liu Z-H et al (2010) Fast pyrolysis of biomass for bio-oil with ionic liquid and microwave irradiation. Ranliao Huaxue Xuebao 38:554–559

    CAS  Google Scholar 

  • Duque SH, Cardona CA, Moncada J (2015) Techno-economic and environmental analysis of ethanol production from 10 agroindustrial residues in Colombia. Energy Fuels 29:775–783

    CAS  Google Scholar 

  • Energy Statistics 2015 (2015) Ministry of Statistics and Programme Implementation. Government of India, New Delhi

    Google Scholar 

  • Executive Summary Power Sector (2015) Central Electricity Authority, Ministry of Power. Government of India, New Delhi

    Google Scholar 

  • Future of Coal Electricity in India and Sustainable Alternatives (2013) World Institute of Sustainable Energy (WISE), Pune

  • Gadde B, Bonnet S, Menke C, Garivait S (2009) Air pollutant emission from rice straw open field burning in India, Thailand and Philippines. Environ Pollut 157:1554–1558

    Article  CAS  Google Scholar 

  • Garrote G, Dominguez H, Parajo JC (2002) Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharide production. J Food Eng 52:211–218

    Article  Google Scholar 

  • Guo X, Wang S, Wang Q et al (2011) Properties of bio-oil from fast pyrolysis of rice husk. Chin J Chem Eng 19:116–121

    Article  CAS  Google Scholar 

  • Hamelinck CN, Faaij APC, den Uil H, Boerrigter H (2004) Production of FT transportation fuels from biomass; technical options, process analysis and optimization, and development potential. Energy 29:1743–1771

    Article  CAS  Google Scholar 

  • Hideno A, Inoue H, Tsukahara K et al (2009) Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresour Technol 100:2706–2711

    Article  CAS  Google Scholar 

  • Hossain FM, Hasanuzzaman M, Rahim NA, Ping HW (2015) Impact of renewable energy on rural electrification in Malaysia: a review. Clean Technol Environ Policy 17:859–871

  • Hsu TC, Guo GL, Chen WH, Hwang WS (2010) Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour Technol 101:4907–4913

    Article  CAS  Google Scholar 

  • Huang C-F, Lin T-H, Guo G-L, Hwang W-S (2009) Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresour Technol 100:3914–3920

    Article  CAS  Google Scholar 

  • IARI (2012) Crop residues management with conservation agriculture: Potential, constraints and policy needs. Indian Agricultural Research Institute, New Delhi vii + 32 pp

    Google Scholar 

  • Igliński B, Piechota G, Buczkowski R (2015) Development of biomass in polish energy sector: an overview. Clean Technol Environ Policy 17:317–329

  • Indian Petroleum and Natural Gas Statistics (2013–2014) Ministry of Petroleum and Natural Gas, Government of India, New Delhi

  • Isaksson J, Åsblad A, Berntsson T (2014) Pretreatment methods for gasification of biomass and Fischer–Tropsch crude production integrated with a pulp and paper mill. Clean Technol Environ Policy 16:1393–1402

    Article  CAS  Google Scholar 

  • Jin S, Chen H (2006a) Structural properties and enzymatic hydrolysis of rice straw. Process Biochem 41:1261–1264

    Article  CAS  Google Scholar 

  • Jin S, Chen H (2006b) Superfine grinding of steam-exploded rice straw and its enzymatic hydrolysis. Biochem Eng J 30:225–230

    Article  CAS  Google Scholar 

  • Jung S-H, Kang B-S, Kim J-S (2008) Production of bio-oil from rice straw and bamboo sawdust under various reaction conditions in a fast pyrolysis plant equipped with a fluidized bed and a char separation system. J Anal Appl Pyrolysis 82:240–247

    Article  CAS  Google Scholar 

  • Kargbo FR, Xing J, Zhang Y (2009) Pretreatment for energy use of rice straw: a review. Afr J Agric Res 4:1560–1565

    Google Scholar 

  • Karimi K, Emtiazi G, Taherzadeh MJ (2006) Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme Microbiol Technol 40:138–144

    Article  CAS  Google Scholar 

  • Karmakar MK, Mandal J, Haldar S, Chatterjee PK (2013) Investigation of fuel gas generation in a pilot scale fluidized bed autothermal gasifier using rice husk. Fuel 111:584–591

    Article  CAS  Google Scholar 

  • Keche AJ, Gaddale APR, Tated RG (2015) Simulation of biomass gasification in downdraft gasifier for different biomass fuels using ASPEN PLUS. Clean Technol Environ Policy 17:465–473

  • Kim I, Lee B, Park J-Y et al (2014) Effect of nitric acid on pretreatment and fermentation for enhancing ethanol production of rice straw. Carbohydr Polym 99:563–567

    Article  CAS  Google Scholar 

  • Kitchaiya P, Intanakul P, Krairish M (2003) Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure. J Wood Chem Technol 33:217–225

    Google Scholar 

  • Ko JK, Bak JS, Jung MW et al (2009) Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresour Technol 100:4374–4380

    Article  CAS  Google Scholar 

  • Koopmans A, Koppejan J (1998) Agricultural and forest residues: Generation, utilization and availability. In: Proceedings of the regional expert consultation on modern applications of biomass energy. FAO Regional Wood Energy Development Programme in Asia, Report No. 36, Bangkok

  • Lee K-H, Kang B-S, Park Y-K, Kim J-S (2005) Influence of reaction temperature, retreatment, and a char removal system on the production of bio-oil from rice straw by fast pyrolysis, using a fluidized bed. Energy Fuel 19:2179–2184

    Article  CAS  Google Scholar 

  • Lei Z, Chen J, Zhang Z, Sugiura N (2010) Methane production from rice straw with acclimated anaerobic sludge: effect of phosphate supplementation. Bioresour Technol 101:4343–4348

    Article  CAS  Google Scholar 

  • Li P, Miao X, Li R, Zhong J (2011a) In situ biodiesel production from fast-growing and high oil content Chlorella pyrenoidosa in rice straw hydrolysate. J Biomed Biotechnol 2011:1–8

    Google Scholar 

  • Li Y, Park J-Y, Shiroma R, Tokuyasu K (2011b) Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation. J Biosci Bioeng 111:682–686

    Article  CAS  Google Scholar 

  • Lim JS, Manan ZA, Alwi SRW, Hashim H (2012) A review on utilization of biomass from rice industry as a source of renewable energy. Renew Sust Energy Rev 16:3084–3094

    Article  CAS  Google Scholar 

  • Lin KS, Wang HP, Lin CJ, Juch CI (1998) A process development for gasification of rice husk. Fuel Proc Technol 55:185–192

    Article  CAS  Google Scholar 

  • Lin Y-C, Wu T-Y, Liu W-Y, Hsiao Y-H (2014) Production of hydrogen from rice straw using microwave-induced pyrolysis. Fuel 119:21–26

    Article  CAS  Google Scholar 

  • Liu H, Jiang GM, Zhuang HY, Wang KJ (2008) Distribution, utilization structure and potential of biomass resources in rural China: with special references of crop residues. Renew Sustain Energy Rev 12(5):1402–1418

    Article  Google Scholar 

  • Liu G, Larson ED, Williams RH, Kreutz TG, Guo X (2011) Making Fischer–Tropsch fuels and electricity form coal and biomass: performance and cost analysis. Energy Fuels 25:415–437

    Article  CAS  Google Scholar 

  • Liu H, Zhang L, Han Z et al (2013a) The effects of leaching methods on the combustion characteristics of rice straw. Biomass Bioenerg 49:22–27

    Article  CAS  Google Scholar 

  • Liu Y, Yuan X-Z, Huang H-J et al (2013b) Thermochemical liquefaction of rice husk for bio-oil production in mixed solvent (ethanol–water). Fuel Proc Technol 112:93–99

    Article  CAS  Google Scholar 

  • Lou R, Wu S-B, Lv G-J, Guo D-L (2010) Pyrolytic products from rice straw and enzymatic/mild acidolysis lignin (EMAL). BioResources 5:2184–2194

    CAS  Google Scholar 

  • Maiorella BI (1983) Ethanol industrial chemicals. Biochem Fuels. Pergamon Press, Oxford, pp 861–914

  • Mansaray KG, Ghaly AE, Al-Taweel AM et al (1999) Air gasification of rice husk in a dual distributor type fluidized bed gasifier. Biomass Bioenerg 17:315–332

    Article  CAS  Google Scholar 

  • Maroušek J, Hašková S, Zeman R et al (2014) Assessing the implications of EU subsidy policy on renewable energy in Czech Republic. Clean Technol Environ Policy 17:549–554

    Article  Google Scholar 

  • Mayer FD, Salbego PRS, de Almeida TC, Hoffmann R (2015) Quantification and use of rice husk in decentralized electricity generation in Rio Grande do Sul State, Brazil. Clean Technol Environ Policy 17:993–1003

  • Meshram JR, Mohan S (2007) Biomass power and its role in distributed power generation in India. 25 Years of Renewable Energy in India. Ministry of New and Renewable Energy, New Delhi, pp 109–134

    Google Scholar 

  • Ministry of New and Renewable Energy (2007) 25 Years of Renewable Energy in India, New Delhi

  • Moholkar VS, Nierstrasz VA, Warmoeskerken MMCG (2003) Intensification of mass transfer in wet textile processes by power ultrasound. AUTEX Res J 3:129–138

    Google Scholar 

  • Moholkar VS, Warmoeskerken MMCG, Ohl CD, Prosperetti A (2004) Mechanism of mass-transfer enhancement in textiles by ultrasound. AIChE J 50:58–64

    Article  CAS  Google Scholar 

  • Moniruzzaman M (1996a) Saccharification and alcohol fermentation of steam exploded rice straw. Bioresour Technol 55:111–117

    Article  CAS  Google Scholar 

  • Moniruzzaman M (1996b) Effect of steam explosion on the physicochemical properties and enzymatic saccharification of rice straw. Appl Biochem Biotechnol 59:283–297

    Article  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  Google Scholar 

  • Nakagawa H, Harada T, Ichinose T et al (2007) Biomethanol production and CO2 emission reduction from forage grasses, trees, and crop residues. Jpn Agric Res Q 41:173–180

    Article  CAS  Google Scholar 

  • Niu K, Chen P, Zhang X, Tan W-S (2009) Enhanced enzymatic hydrolysis of rice straw pretreated by alkali assisted with photocatalysis technology. J Chem Technol Biotechnol 84:1240–1245

    Article  CAS  Google Scholar 

  • Nouni MR, Mullick SC, Kandpal TC (2007) Biomass gasifier projects for decentralized power generation in India: a financial evaluation. Energy Policy 35:1373–1385

    Article  Google Scholar 

  • Noureldin MMB, Bao B, Elbashir NO, El-Halwagi MM (2014) Benchmarking, insights, and potential for improvement of Fischer–Tropsch-based biomass-to-liquid technology. Clean Technol Environ Policy 16:37–44

  • Oberoi HS, Babbar N, Sandhu SK et al (2012) Ethanol production from alkali-treated rice straw via simultaneous saccharification and fermentation using newly isolated thermotolerant Pichia kudriavzevii HOP-1. J Ind Microbiol Biotechnol 39:557–566

    Article  CAS  Google Scholar 

  • Okamoto K, Nitta Y, Maekawa N, Yanase H (2011) Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsute. Enzyme Microbiol Technol 48:273–277

    Article  CAS  Google Scholar 

  • Ooshima H, Aso K, Harano Y (1984) Microwave treatment of cellulosic materials for their enzymatic hydrolysis. Biotechnol Lett 6:289–294

    Article  CAS  Google Scholar 

  • Panepinto D, Viggiano F, Genon G (2014) The potential of biomass supply for energetic utilization in a small Italian region: Basilicata. Clean Technol Environ Policy 16:833–845

  • Park J-Y, Shiroma R, Al-Haq MI, Zhang Y et al (2010) A novel lime pretreatment for subsequent bioethanol production from rice straw—calcium capturing by carbonation (CaCCO) process. Bioresour Technol 101:6805–6811

    Article  CAS  Google Scholar 

  • Park J-Y, Ike M, Arakane M et al (2011) DiSC (direct saccharification of culms) process for bioethanol production from rice straw. Bioresour Technol 102:6502–6507

    Article  CAS  Google Scholar 

  • Patel SJ, Onkarappa R, Shobha KS (2006) Study of ethanol production from fungal pretreated wheat and rice straw. Int J Microbiol. http://ispub.com/IJMB/4/1/5966

  • Patidar R, Khanna S, Moholkar VS (2012) Physical features of ultrasound assisted enzymatic degradation of recalcitrant organic pollutants. Ultrason Sonochem 19:104–118

    Article  CAS  Google Scholar 

  • Pattiya A, Suttibak S (2012) Influence of a glass wool hot vapour filter on yields and properties of bio-oil derived from rapid pyrolysis of paddy residues. Bioresour Technol 116:107–113

  • Piccioni M, Cevolani D, Rizzitelli N (1989) Dizionario degli alimenti per il bestiame. 5th edn. Ed. Agricole: Bologna, pp 648–664

  • Quintero JA, Moncada J, Cardona CA (2013) Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: a process simulation approach. Bioresour Technol 139:300–307

    Article  CAS  Google Scholar 

  • Ranjan A, Moholkar VS (2011) Comparative study of various pretreatment techniques for rice straw saccharification for the production of alcoholic biofuels. Fuel 112:567–571

    Article  CAS  Google Scholar 

  • Ranjan A, Khanna S, Moholkar VS (2013a) Feasibility of rice straw as alternate substrate for biobutanol production. Appl Energy 103:32–38

    Article  CAS  Google Scholar 

  • Ranjan A, Mayank R, Moholkar VS (2013b) Development of semi-defined rice straw-based medium for butanol production and its kinetic study. 3 Biotech 3:353–364

    Article  Google Scholar 

  • Ranjan A, Mayank R, Moholkar VS (2013c) Process optimization for butanol production from developed rice straw hydrolysate using Clostridium acetobutylicum MTCC 481 strain. Biomass Convers Biorefinery 3:43–155

    Article  CAS  Google Scholar 

  • Riek I, Rücker A, Schall T, Uhlig M (6/2012) Renewable energy generation from biomass—biogas in India, Center for Applied International Finance and Development (CAIFD), University of Applied Sciences Nuremberg, Seminar Paper

  • Roberto IC, Mussatto SI, Rodrigues RCLB (2003) Dilute acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind Crops Prod 7:171–176

    Article  CAS  Google Scholar 

  • Saha BC (2003) Hemi-cellulose bioconversion. Ind Microbiol Biotechnol 30:279–291

    Article  CAS  Google Scholar 

  • Shi W, Jia J, Gao Y, Zhao Y (2013) Influence of ultrasonic pretreatment on the yield of bio-oil prepared by thermo-chemical conversion of rice husk in hot-compressed water. Bioresour Technol 146:355–362

    Article  CAS  Google Scholar 

  • Siemons RV (2001) Identifying a role for biomass gasification in rural electrification in developing countries: the economic perspective. Biomass Bioenerg 20:271–285

    Article  Google Scholar 

  • Silva JPA, Mussatto SI, Roberto IC (2010) The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate. Appl Biochem Biotechnol 162:1306–1315

    Article  CAS  Google Scholar 

  • Sindhu R, Binod P, Janu KU et al (2012) Organosolvent pretreatment and enzymatic hydrolysis of rice straw for the production of bioethanol. World J Microbiol Biotechnol 28:473–483

    Article  CAS  Google Scholar 

  • Sivasankar T, Moholkar VS (2009) Mechanistic approach to intensification of sonochemical degradation of phenol. Chem Eng J 149:57–69

    Article  CAS  Google Scholar 

  • Song Z, Yang G, Guo Y, Zhang T (2012) Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion. BioResources 7:3223–3236

    Google Scholar 

  • Song S-T, Saman N, Johari K, Mat H (2014) Surface chemistry modifications of rice husk toward enhancement of Hg(II) adsorption from aqueous solution. Clean Technol Environ Policy 16:1747–1755

    Article  CAS  Google Scholar 

  • Sugashini S, Begum KMMS (2013) Optimization using central composite design (CCD) for the biosorption of Cr(VI) ions by cross linked chitosan carbonized rice husk (CCACR). Clean Technol Environ Policy 15:293–302

    Article  CAS  Google Scholar 

  • Sumphanwanich J, Leepipatpiboon N, Srinorakutara T, Akaracharanya A (2008) Evaluation of dilute-acid pretreated bagasse, corn cob and rice straw for ethanol fermentation by Saccharomyces cerevisiae. Ann Microbiol 58:219–225

    Article  CAS  Google Scholar 

  • Suresh K, Ranjan A, Singh S, Moholkar VS (2014) Mechanistic investigations in sono-hybrid techniques for rice straw pretreatment. Ultrason Sonochem 21:200–207

    Article  CAS  Google Scholar 

  • Taniguchi M, Suzuki H, Watanabe D et al (2005) Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng 100:637–643

    Article  CAS  Google Scholar 

  • Tarkov H, Feist WC (1969) A mechanism for improving the digestibility of lignocellulosic materials with dilute alkali and liquid ammonia. Adv Chem Ser 95:197–218

    Article  Google Scholar 

  • Teghammar A (2013) Biogas production from lignocelluloses: pretreatment, substrate characterization, co-digestion, and economic evaluation. Ph.D. dissertation, Chalmers University of Technology, University of Boras, Göteborg

  • Tewfik SR, Sorour MH, Abulnour AMG et al (2011) Bio-oil from rice straw by pyrolysis: experimental and techno-economic investigations. J Am Sci 7:59–67

    Google Scholar 

  • Theander O, Aman P (1984) Anatomical and chemical characteristics. In: Sundstol F, Owen E (eds) Straw and other fibrous by products as feed. Elsevier, Amsterdam, pp 45–78

    Google Scholar 

  • Tijmensen MJA, Faaij APC, Hamelinck CN, van Hardeveld MRM (2002) Exploration of the possibilities for production of Fischer–Tropsch liquids and power via biomass gasification. Biomass Bioenerg 23:129–152

    Article  CAS  Google Scholar 

  • Trends in Global CO2 Emissions: 2014 Report (2014) PBL Netherlands Environmental Assessment Agency

  • Tsai WT, Lee MK, Chang YM (2006) Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J Anal Appl Pyrolysis 76:230–237

    Article  CAS  Google Scholar 

  • van Soest PJ (2006) Rice straw, the role of silica and treatments to improve quality. Anim Feed Sci Technol 130:137–171

  • Wang YH, Huang HC, Guo GL, Hwang WS (2011) Technology and production of cellulosic ethanol in a pilot plant in Taiwan. J Energy Power Eng 5:928–933

    Google Scholar 

  • Warmoeskerken MMCG, van der Vlist P, Moholkar VS, Nierstrasz VA (2002) Laundry process intensification by ultrasound. Colloid Surf A 210:277–285

    Article  CAS  Google Scholar 

  • Worasuwannarak N, Sonobe T, Tanthapanichakoon W (2007) Pyrolysis behaviors of rice straw, rice husk, and corncob by TG–MS technique. J Anal Appl Pyrolysis 78:265–271

    Article  CAS  Google Scholar 

  • Xiong J, Ye J, Liang WZ, Fan PM (2000) Influence of microwave on the ultrastructure of cellulose. Int J South China Univ Technol 28:84–89

    Google Scholar 

  • Yadav KS, Naseeruddin S, Prashanthi GS et al (2011) Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. Bioresour Technol 102:6473–6478

    Article  CAS  Google Scholar 

  • Yang C-Y, Fang TJ (2014) Combination of ultrasonic irradiation with ionic liquid pretreatment for enzymatic hydrolysis of rice straw. Bioresour Technol 164:198–202

    Article  CAS  Google Scholar 

  • Yang SY, Wu CY, Chen KH (2011) The physical characteristics of bio-oil from fast pyrolysis of rice straw. Adv Mater Res 328–330(Pt. 2):881–886

    Article  CAS  Google Scholar 

  • Yao R, Qi B, Deng S, Liu N, Peng S, Cui Q (2007) Use of surfactants in enzymatic hydrolysis of rice straw and lactic acid production from rice straw by simultaneous saccharification and fermentation. BioResources 2:389–398

    CAS  Google Scholar 

  • Yu CT, Chen WH, Men LC, Hwang WS (2009) Microscopic structure features changes of rice straw treated by boiled acid solution. Ind Crops Prod 29:308–315

    Article  CAS  Google Scholar 

  • Zamora R, Crispin JAS (1995) Production of an acid extract of rice straw. Acta Cient Venez 46:135–139

    CAS  Google Scholar 

  • Zhang QZ, Cai WM (2008) Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4-F3. Biomass Bioenerg 32:1130–1135

    Article  CAS  Google Scholar 

  • Zheng L, Hou Y, Li W et al (2012) Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes. Energy 47:225–229

    Article  CAS  Google Scholar 

  • Zhong C, Lau MW, Balan V et al (2009) Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw. Appl Microbiol Biotechnol 84:667–676

    Article  CAS  Google Scholar 

  • Zhu S, Wu Y, Yu Z et al (2005) Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochem 40:3082–3086

    Article  CAS  Google Scholar 

  • Zhu S, Wu Y, Yu Z et al (2006) The effect of microwave irradiation on enzymatic hydrolysis of rice straw. Bioresour Technol 97:1964–1968

    Article  CAS  Google Scholar 

  • Zolghadr S (2013) Bio-oil from rice straw by pyrolysis: experimental and techno-economic investigations. Int J Chem 2:19–31

    Google Scholar 

Download references

Acknowledgments

Dr. Amrita Ranjan and Dr. Hanif A. Choudhury gratefully acknowledge Ministry of New and Renewable Energy (MNRE), Govt of India for financial assistance through National Renewable Energy fellowship during their doctoral research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayanand S. Moholkar.

Additional information

Sankar Chakma and Amrita Ranjan have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakma, S., Ranjan, A., Choudhury, H.A. et al. Bioenergy from rice crop residues: role in developing economies. Clean Techn Environ Policy 18, 373–394 (2016). https://doi.org/10.1007/s10098-015-1051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-1051-5

Keywords

Navigation