Skip to main content

Advertisement

Log in

Pretreatment methods of lignocellulosic wastes into value-added products: recent advances and possibilities

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

A number of industries currently produce many tons of agroindustrial wastes with significant consequences on the environment and human and animal health. In recent years, increasing emphasis has been placed on reducing this negative impact. This review article aims to investigate the use of pretreatment methods that can be applied as an alternative to the usage of residual biomass. In addition, we seek to highlight the efficiency of the processes as well as possible weaknesses, which are associated with high energy and reagent consumption, low yields, and possible secondary impacts. Generally, the waste chemical composition consists mainly of cellulose, hemicellulose, and lignin; these can be fractionated, extracted, and purified to produce different value-added products, such as biofuels, organic acids, enzymes, biopolymers, and chemical additives. Despite the multiple possibilities to produce different products from lignocellulosic biomass, further research is still required to enhance the efficiency of the methods used nowadays and find new procedures.

Flowchart of pretreatment methods for lignocellulosic residues and some of the possible groups of products obtained with their processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nagendran R (2011) Agricultural waste and pollution. Waste Streams 2:341–355. https://doi.org/10.1016/B978-0-12-381475-3.10024-5

    Article  Google Scholar 

  2. Food and Agriculture Organization of the United Nations (2019) Crop residues. FAOSTAT

  3. Sadh PK, Duhan S, Duhan JS (2018) Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour Bioprocess 5:1–15. https://doi.org/10.1186/s40643-017-0187-z

    Article  Google Scholar 

  4. Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91. https://doi.org/10.1016/j.biortech.2015.08.029

    Article  Google Scholar 

  5. Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sust Energ Rev 90:877–891. https://doi.org/10.1016/j.rser.2018.03.111

    Article  Google Scholar 

  6. Pérez J, Muñoz-Dorado J, De La Rubia T, Martínez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63. https://doi.org/10.1007/s10123-002-0062-3

    Article  Google Scholar 

  7. Iqbal HMN, Kyazze G, Keshavarz T (2013) Advances in the valorization of lignocellulosic materials by biotechnology: an overview. BioResources 8:3157–3176. https://doi.org/10.15376/biores.8.2.3157-3176

    Article  Google Scholar 

  8. Gatt E, Rigal L, Vandenbossche V (2018) Biomass pretreatment with reactive extrusion using enzymes: a review. Ind Crop Prod 122:329–339. https://doi.org/10.1016/j.indcrop.2018.05.069

    Article  Google Scholar 

  9. Shahzadi T, Mehmood S, Irshad M et al (2014) Advances in lignocellulosic biotechnology: a brief review on lignocellulosic biomass and cellulases. Adv Biosci Biotechnol 05:246–251. https://doi.org/10.4236/abb.2014.53031

    Article  Google Scholar 

  10. Abraham A, Mathew AK, Sindhu R, Pandey A, Binod P (2016) Potential of rice straw for bio-refining: an overview. Bioresour Technol 215:29–36

    Article  Google Scholar 

  11. Zheng Y, Shi J, Tu M, Cheng Y-S (2017) Principles and development of lignocellulosic biomass pretreatment for biofuels. In: Advances in Bioenergy. Elsevier Ltd, pp 1–68

  12. Isikgor FH, Becer RC (2015) Lignocellulosic biomass: a sustainable platform for production of bio-based chemicals and polymers. Polym Chem. https://doi.org/10.1039/C5PY00263J

  13. Lemus R, Lal R (2005) Bioenergy crops and carbon sequestration. CRC Crit Rev Plant Sci 24:1–21. https://doi.org/10.1080/07352680590910393

    Article  Google Scholar 

  14. BCC Publishing (2018) Global markets for enzymes in industrial applications. Wellesley, MA

  15. Rajagopal D, Liu B (2020) The United States can generate up to 3.2 EJ of energy annually from waste. Nat Energy 5:18–19. https://doi.org/10.1038/s41560-019-0532-x

    Article  Google Scholar 

  16. Liu B, Rajagopal D (2019) Life-cycle energy and climate benefits of energy recovery from wastes and biomass residues in the United States. Nat Energy 4:700–708. https://doi.org/10.1038/s41560-019-0430-2

    Article  Google Scholar 

  17. Fedorova, Caló, Pongrácz (2019) Balancing socio-efficiency and resilience of energy provisioning on a regional level, case Oulun Energia in Finland. Clean Technol 1:273–293. https://doi.org/10.3390/cleantechnol1010019

    Article  Google Scholar 

  18. Food and Agriculture Organization of the United Nations (2019) Agricultural land. FAOSTAT

  19. Li W, Zhao W, Liu H et al (2018) Supercritical ethanolysis of wheat stalk over calcium oxide. Renew Energy. https://doi.org/10.1016/j.renene.2017.12.078

  20. Engindeniz S, Bolatova Z (2018) 29 th International conference of agriculture

  21. Ramos RC, Nachiluk K (2017) Geração de Bioenergia de Biomassa da Cana-de-açúcar nas Usinas Signatárias ao Protocolo Agroambiental Paulista, Safra 2015/2016. Análises e Indicadores do Agronegócio 12:7

    Google Scholar 

  22. Reinprecht Y, Arif M, Simon LC, Pauls KP (2015) Genome regions associated with functional performance of soybean stem fibers in polypropylene thermoplastic composites. PLoS One 10:1–33. https://doi.org/10.1371/journal.pone.0130371

    Article  Google Scholar 

  23. United States Departament of Agriculture (2018) International: World soybean production

  24. Howe J, Bowyer J, Pepke E, et al (2014) Municipal solid waste (msw) and construction and demolition (c&d) wood waste generation and recovery in the United States. Minneapolis

  25. Patel VR (2017) Cost-effective sequential biogas and bioethanol production from the cotton stem waste. Process Saf Environ Prot 111:335–345. https://doi.org/10.1016/j.psep.2017.07.019

    Article  Google Scholar 

  26. Wikandari R, Nguyen H, Millati R et al (2015) Improvement of biogas production from orange peel waste by leaching of limonene. Biomed Res Int 2015:6. https://doi.org/10.1155/2015/494182

    Article  Google Scholar 

  27. Nigam PS (2017) An overview: recycling of solid barley waste generated as a by-product in distillery and brewery. Waste Manag 62:255–261

    Article  Google Scholar 

  28. The Brewers of Europe (2017) Beer statistics. Brussels

  29. Montgomery DR (2007) Soil erosion and agricultural sustainability. Proc Natl Acad Sci U S A 104:13268–13272. https://doi.org/10.1073/pnas.0611508104

    Article  Google Scholar 

  30. Keesstra S, Pereira P, Novara A, Brevik EC, Azorin-Molina C, Parras-Alcántara L, Jordán A, Cerdà A (2016) Effects of soil management techniques on soil water erosion in apricot orchards. Sci Total Environ 551–552:357–366. https://doi.org/10.1016/j.scitotenv.2016.01.182

    Article  Google Scholar 

  31. Streeter MT, Schilling KE, St. Clair M, Demanett Z (2019) Soil sedimentation and quality within the roadside ditches of an agricultural watershed. Sci Total Environ 657:1432–1440. https://doi.org/10.1016/j.scitotenv.2018.12.113

    Article  Google Scholar 

  32. Moss B (2008) Water pollution by agriculture. Philos Trans R Soc B Biol Sci 363:659–666. https://doi.org/10.1098/rstb.2007.2176

    Article  Google Scholar 

  33. World Health Organization (1990) Public health impact of pesticides used in agriculture. England

  34. Ritchie H, Roser M (2017) Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ Res Lett 12:064016. https://doi.org/10.1088/1748-9326/aa6cd5

    Article  Google Scholar 

  35. Nicolopoulou-Stamati P, Maipas S, Kotampasi C et al (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 4:1–8. https://doi.org/10.3389/fpubh.2016.00148

    Article  Google Scholar 

  36. Väisänen T, Haapala A, Lappalainen R, Tomppo L (2016) Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: a review. Waste Manag 54:62–73. https://doi.org/10.1016/j.wasman.2016.04.037

    Article  Google Scholar 

  37. Yang J, Ching YC, Chuah CH (2019) Applications of lignocellulosic fibers and lignin in bioplastics: a review. Polymers (Basel) 11:1–26. https://doi.org/10.3390/polym11050751

    Article  Google Scholar 

  38. Rabemanolontsoa H, Saka S (2013) Comparative study on chemical composition of various biomass species. RSC Adv 3:3946–3956. https://doi.org/10.1039/c3ra22958k

    Article  Google Scholar 

  39. Toegepast Natuurwetenschappelijk Onderzoek (2019) ECN Phyllis Classification. https://phyllis.nl/. Accessed 30 Aug 2019

  40. Lv G, Wu S (2012) Analytical pyrolysis studies of corn stalk and its three main components by TG-MS and Py-GC/MS. J Anal Appl Pyrolysis 97:11–18. https://doi.org/10.1016/j.jaap.2012.04.010

    Article  Google Scholar 

  41. Rivas B, Torrado A, Torre P, Converti A, Domínguez JM (2008) Submerged citric acid fermentation on orange peel autohydrolysate. J Agric Food Chem 56:2380–2387. https://doi.org/10.1021/jf073388r

    Article  Google Scholar 

  42. Tibolla H, Pelissari FM, Martins JT et al (2018) Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: characterization and cytotoxicity assessment. Food Hydrocoll 75:192–201. https://doi.org/10.1016/j.foodhyd.2017.08.027

    Article  Google Scholar 

  43. Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  Google Scholar 

  44. Chen H, Wang L (2017) Microbial fermentation strategies for biomass conversion. Technol Biochem Convers Biomass:165–196. https://doi.org/10.1016/b978-0-12-802417-1.00007-7

  45. Moon RJ, Schueneman GT, Simonsen J (2016) Overview of cellulose nanomaterials, their capabilities and applications. Jom 68:2383–2394. https://doi.org/10.1007/s11837-016-2018-7

    Article  Google Scholar 

  46. Suhas, Gupta VK, Carrott PJM et al (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresour Technol 216:1066–1076. https://doi.org/10.1016/j.biortech.2016.05.106

    Article  Google Scholar 

  47. Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crop Prod 93:2–25. https://doi.org/10.1016/j.indcrop.2016.02.016

    Article  Google Scholar 

  48. Klemm D, Philpp B, Heinze T, Wagenknecht W (1998) Comprehensive celullose chemistry. Volume 1: fundamentals and analytical methods. Wiley-VHC Verlag GmbH, Winheim

    Book  Google Scholar 

  49. Ciolacu DE (2018) Biochemical modification of lignocellulosic biomass. Elsevier B.V

  50. Holmgren A, Brunow G, Henriksson G, Zhang L, Ralph J (2006) Non-enzymatic reduction of quinone methides during oxidative coupling of monolignols: implications for the origin of benzyl structures in lignins. Org Biomol Chem 4:3456–3461. https://doi.org/10.1039/b606369a

    Article  Google Scholar 

  51. Duval A, Molina-Boisseau S, Chirat C (2013) Comparison of kraft lignin and lignosulfonates addition to wheat gluten-based materials: mechanical and thermal properties. Ind Crop Prod 49:66–74. https://doi.org/10.1016/j.indcrop.2013.04.027

    Article  Google Scholar 

  52. Agrawal A, Kaushik N, Biswas S (2014) Derivatives and applications of lignin–an insight. SciTech J 1:30–36

    Google Scholar 

  53. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092. https://doi.org/10.1021/sc500087z

    Article  Google Scholar 

  54. Tolbert A, Akinosho H, Khunsupat R (2014) Characterization and analysis of the molecular weight of lignin for biorefi ning studies. Biofuels Bioprod Biorefin. https://doi.org/10.1002/bbb

  55. Ten E, Vermerris W (2015) Recent developments in polymers derived from industrial lignin. J Appl Polym Sci 132:1–13. https://doi.org/10.1002/app.42069

    Article  Google Scholar 

  56. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291. https://doi.org/10.1007/s10295-003-0049-x

    Article  Google Scholar 

  57. Rose JK (2003) The plant cell wall. Blackwell, Oxford

    Google Scholar 

  58. Ebringerová A, Thomas H (2005) Hemicellulose. Adv Polym Sci 186:1–67

    Article  Google Scholar 

  59. Zhou X, Li W, Mabon R, Broadbelt LJ (2017) A critical review on hemicellulose pyrolysis. Energy Technol 5:52–79. https://doi.org/10.1002/ente.201600327

    Article  Google Scholar 

  60. Liu J, Chinga-Carrasco G, Cheng F et al (2016) Hemicellulose-reinforced nanocellulose hydrogels for wound healing application. Cellulose 23:3129–3143. https://doi.org/10.1007/s10570-016-1038-3

    Article  Google Scholar 

  61. Farhat W, Venditti R, Quick A et al (2017) Hemicellulose extraction and characterization for applications in paper coatings and adhesives. Ind Crop Prod 107:370–377. https://doi.org/10.1016/j.indcrop.2017.05.055

    Article  Google Scholar 

  62. Segura N, Orozco F, Mora L, et al (2017) Synthesis and reinforcement of thermostable polymers from Costarican renewable resources. J Renew Mater

  63. Seidl PR, Goulart AK (2016) Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts. Curr Opin Green Sustain Chem 2:48–53. https://doi.org/10.1016/j.cogsc.2016.09.003

    Article  Google Scholar 

  64. Verardi A, De Bari I, Ricca E, Calabro V (2012) Hydrolysis of lignocellulosic biomass: current status of processes and technologies and future perspectives. Bioethanol. https://doi.org/10.5772/23987

  65. Kargarzadeh H, Ioelovich M, Ahmad I et al (2017) Methods for extraction of nanocellulose from various sources. Handbook of Nanocellulose and Cellulose Nanocomposites:1–49. https://doi.org/10.1002/9783527689972.ch1

  66. Liu H, Zhang YX, Hou T et al (2018) Mechanical deconstruction of corn stover as an entry process to facilitate the microwave-assisted production of ethyl levulinate. Fuel Process Technol 174:53–60. https://doi.org/10.1016/j.fuproc.2018.02.011

    Article  Google Scholar 

  67. Rasmussen H, Sørensen HR, Meyer AS (2014) Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms. Carbohydr Res 385:45–57. https://doi.org/10.1016/j.carres.2013.08.029

    Article  Google Scholar 

  68. Zeng Y, Zhao S, Yang S, Ding SY (2014) Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol 27:98–45. https://doi.org/10.1016/j.copbio.2013.09.008

    Article  Google Scholar 

  69. McIntosh S, Zhang Z, Palmer J, et al (2016) Pilot-scale cellulosic ethanol production using eucalyptus biomass pretreated by dilute acid and steam explosion. Biofuels, Bioprod Biorefining 246–256. https://doi.org/10.1002/bbb.1651

  70. Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48. https://doi.org/10.1016/j.biortech.2015.08.085

    Article  Google Scholar 

  71. Singh DP, Trivedi RK (1999) Acid and alkaline pretreatment of lignocellulosic biomass to produce ethanol as biofuel. Int J ChemTech 5:727–734

    Google Scholar 

  72. Kim S, Holtzapple MT (2006) Delignification kinetics of corn stover in lime pretreatment. Bioresour Technol 97:778–785. https://doi.org/10.1016/j.biortech.2005.04.002

    Article  Google Scholar 

  73. Mittal A, Katahira R, Donohoe BS et al (2017) Alkaline peroxide delignification of corn stover. ACS Sustain Chem Eng 5:6310–6321. https://doi.org/10.1021/acssuschemeng.7b01424

    Article  Google Scholar 

  74. Adeleye AT, Louis H, Temitope HA, et al (2019) Ionic liquids ( ILs ): advances in biorefinery for the efficient conversion of lignocellulosic biomass. Asian J Green Chem 3:391–417. https://doi.org/10.22034/ajgc.2018.146881.1100

  75. Menezes DB, Brazil OAV, Romanholo-Ferreira LF, Lourdes T. M. Polizeli M, Ruzene DS, Silva DP, Costa LP, Hernández-Macedo ML (2017) Prospecting fungal ligninases using corncob lignocellulosic fractions. Cellulose 24:4355–4365. https://doi.org/10.1007/s10570-017-1427-2

    Article  Google Scholar 

  76. Yamada R, Nakashima K, Asai-Nakashima N, Tokuhara W, Ishida N, Katahira S, Kamiya N, Ogino C, Kondo A (2017) Direct ethanol production from ionic liquid-pretreated lignocellulosic biomass by cellulase-displaying yeasts. Appl Biochem Biotechnol 182:229–237. https://doi.org/10.1007/s12010-016-2322-2

    Article  Google Scholar 

  77. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827. https://doi.org/10.1007/s00253-009-1883-1

    Article  Google Scholar 

  78. Ravindran R, Jaiswal AK (2016) A comprehensive review on pretreatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour Technol 199:92–102. https://doi.org/10.1016/j.biortech.2015.07.106

    Article  Google Scholar 

  79. Salapa I, Katsimpouras C, Topakas E, Sidiras D (2017) Organosolv pretreatment of wheat straw for efficient ethanol production using various solvents. Biomass Bioenergy 100:10–16. https://doi.org/10.1016/j.biombioe.2017.03.011

    Article  Google Scholar 

  80. Monika DS, Goyal S (2016) Pretreatment of lignocellulosic biomass for bioethanol production: a brief review. J Agric Sci Technol 5:1–7

    Google Scholar 

  81. Liu Q, Li W, Ma Q, An S, Li M, Jameel H, Chang HM (2016) Pretreatment of corn stover for sugar production using a two-stage dilute acid followed by wet-milling pretreatment process. Bioresour Technol 211:435–442. https://doi.org/10.1016/j.biortech.2016.03.131

    Article  Google Scholar 

  82. Shah Y, Pandit A, Moholkar V (1999) Cavitation reaction engineering. Springer Science+ Business Media LCC, New York

    Book  Google Scholar 

  83. Madison MJ, Coward-Kelly G, Liang C et al (2017) Mechanical pretreatment of biomass–part I: acoustic and hydrodynamic cavitation. Biomass Bioenergy 98:135–141. https://doi.org/10.1016/j.biombioe.2017.01.007

    Article  Google Scholar 

  84. Song X, Yang Y, Zhang M et al (2018) Ultrasonic pelleting of torrefied lignocellulosic biomass for bioenergy production. Renew Energy 129:56–62. https://doi.org/10.1016/j.renene.2018.05.084

    Article  Google Scholar 

  85. Zheng J, Rehmann L (2014) Extrusion pretreatment of lignocellulosic biomass: a review. Int J Mol Sci 15:18967–18984. https://doi.org/10.3390/ijms151018967

    Article  Google Scholar 

  86. Karunanithy C, Muthukumarappan K (2013) Thermo-mechanical pretreatment of feedstocks, in green biomass pretreatment for biofuels production. Berlin Heindelberg

  87. Duque A, Manzanares P, Ballesteros M (2017) Extrusion as a pretreatment for lignocellulosic biomass: fundamentals and applications. Elsevier Ltd

  88. Oliva JM, Negro MJ, Manzanares P et al (2017) A sequential steam explosion and reactive extrusion pretreatment for lignocellulosic biomass conversion within a fermentation-based biorefinery perspective. Fermentation 3:1–15. https://doi.org/10.3390/fermentation3020015

    Article  Google Scholar 

  89. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  Google Scholar 

  90. Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res (India) 67:849–864

    Google Scholar 

  91. Duque A, Manzanares P, Ballesteros I, Ballesteros M (2016) Steam explosion as lignocellulosic biomass pretreatment. Elsevier Inc.

  92. Singh R, Shukla A, Tiwari S, Srivastava M (2014) A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew Sust Energ Rev 32:713–728. https://doi.org/10.1016/j.rser.2014.01.051

    Article  Google Scholar 

  93. Medina JDC, Woiciechowski A, Filho AZ, Nigam PS, Ramos LP, Soccol CR (2016) Steam explosion pretreatment of oil palm empty fruit bunches (EFB) using autocatalytic hydrolysis: a biorefinery approach. Bioresour Technol 199:173–180. https://doi.org/10.1016/j.biortech.2015.08.126

    Article  Google Scholar 

  94. Salmén L (1984) Viscoelastic properties of in situ lignin under water-saturated conditions. J Mater Sci 19:3090–3096. https://doi.org/10.1007/BF01026988

    Article  Google Scholar 

  95. Zhuang X, Wang W, Yu Q, Qi W, Wang Q, Tan X, Zhou G, Yuan Z (2016) Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour Technol 199:68–75. https://doi.org/10.1016/j.biortech.2015.08.051

    Article  Google Scholar 

  96. Jiang W, Chang S, Li H, Oleskowicz-Popiel P, Xu J (2015) Liquid hot water pretreatment on different parts of cotton stalk to facilitate ethanol production. Bioresour Technol 176:175–180. https://doi.org/10.1016/j.biortech.2014.11.023

    Article  Google Scholar 

  97. Mohan M, Banerjee T, Goud VV (2015) Hydrolysis of bamboo biomass by subcritical water treatment. Bioresour Technol 191:244–252. https://doi.org/10.1016/j.biortech.2015.05.010

    Article  Google Scholar 

  98. Gu T, Held MA, Faik A (2013) Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production. Environ Technol (United Kingdom) 34:1735–1749. https://doi.org/10.1080/09593330.2013.809777

    Article  Google Scholar 

  99. Duarte SH, dos Santos P, Michelon M et al (2017) Recovery of yeast lipids using different cell disruption techniques and supercritical CO 2 extraction. Biochem Eng J 125:230–237. https://doi.org/10.1016/j.bej.2017.06.014

    Article  Google Scholar 

  100. Bhutto AW, Qureshi K, Harijan K et al (2017) Insight into progress in pretreatment of lignocellulosic biomass. Energy 122:724–745. https://doi.org/10.1016/j.energy.2017.01.005

    Article  Google Scholar 

  101. Zhao MJ, Xu QQ, Li GM et al (2019) Pretreatment of agricultural residues by supercritical CO 2 at 50–80 °C to enhance enzymatic hydrolysis. J Energy Chem 31:39–45. https://doi.org/10.1016/j.jechem.2018.05.003

    Article  Google Scholar 

  102. Chundawat SPS, Donohoe BS, Da Costa SL et al (2011) Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ Sci 4:973–984. https://doi.org/10.1039/c0ee00574f

    Article  Google Scholar 

  103. Bonner IJ, Thompson DN, Plummer M et al (2016) Impact of ammonia fiber expansion (AFEX) pretreatment on energy consumption during drying, grinding, and pelletization of corn stover. Dry Technol 34:1319–1329. https://doi.org/10.1080/07373937.2015.1112809

    Article  Google Scholar 

  104. Abdul PM, Jahim JM, Harun S, Markom M, Lutpi NA, Hassan O, Balan V, Dale BE, Mohd Nor MT (2016) Effects of changes in chemical and structural characteristic of ammonia fibre expansion (AFEX) pretreated oil palm empty fruit bunch fibre on enzymatic saccharification and fermentability for biohydrogen. Bioresour Technol 211:200–208. https://doi.org/10.1016/j.biortech.2016.02.135

    Article  Google Scholar 

  105. Perez-Pimienta JA, Flores-Gómez CA, Ruiz HA, Sathitsuksanoh N, Balan V, da Costa Sousa L, Dale BE, Singh S, Simmons BA (2016) Evaluation of agave bagasse recalcitrance using AFEX™, autohydrolysis, and ionic liquid pretreatments. Bioresour Technol 211:216–223. https://doi.org/10.1016/j.biortech.2016.03.103

    Article  Google Scholar 

  106. Kádár Z, Schultz-Jensen N, Jensen JS et al (2015) Enhanced ethanol production by removal of cutin and epicuticular waxes of wheat straw by plasma assisted pretreatment. Biomass Bioenergy 81:26–30. https://doi.org/10.1016/j.biombioe.2015.05.012

    Article  Google Scholar 

  107. Vanneste J, Ennaert T, Vanhulsel A, Sels B (2017) Unconventional pretreatment of lignocellulose with low-temperature plasma. ChemSusChem 10:14–31. https://doi.org/10.1002/cssc.201601381

    Article  Google Scholar 

  108. Ravindran R, Sarangapani C, Jaiswal S, Lu P, Cullen PJ, Bourke P, Jaiswal AK (2019) Improving enzymatic hydrolysis of brewer spent grain with nonthermal plasma. Bioresour Technol 282:520–524. https://doi.org/10.1016/j.biortech.2019.03.071

    Article  Google Scholar 

  109. Hassan SS, Williams GA, Jaiswal AK (2018) Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour Technol 262:310–318. https://doi.org/10.1016/j.biortech.2018.04.099

    Article  Google Scholar 

  110. De La Hoz A, Díaz-Ortiz Á, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34:164–178. https://doi.org/10.1039/b411438h

    Article  Google Scholar 

  111. Amin FR, Khalid H, Zhang H et al (2017) Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 7. https://doi.org/10.1186/s13568-017-0375-4

  112. Jiménez-Bonilla P, Salas-Arias J, Esquivel M, Vega-Baudrit JR (2014) Optimization of microwave-assisted and conventional heating comparative synthesis of poly(lactic acid) by direct melt polycondensation from agroindustrial banana (Musa AAA Cavendish) and pineapple (Ananas comosus) fermented wastes. J Polym Environ 22:393–397. https://doi.org/10.1007/s10924-014-0667-6

    Article  Google Scholar 

  113. Zhu Z, Rezende CA, Simister R et al (2016) Efficient sugar production from sugarcane bagasse by microwave assisted acid and alkali pretreatment. Biomass Bioenergy 93:269–278. https://doi.org/10.1016/j.biombioe.2016.06.017

    Article  Google Scholar 

  114. Jia X, Liu C, Song H, Ding M, du J, Ma Q, Yuan Y (2016) Design, analysis and application of synthetic microbial consortia. Synth Syst Biotechnol 1:109–117. https://doi.org/10.1016/j.synbio.2016.02.001

    Article  Google Scholar 

  115. Liu F, Monroe E, Davis RW (2019) Engineering microbial consortia for bioconversion of multisubstrate biomass streams to biofuels. In: Qubeissi AM (ed) Biofuels Challengues and Oportunities. IntechOpen, p 21

  116. Sharma HK, Xu C, Qin W (2019) Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valoriz 10:235–251. https://doi.org/10.1007/s12649-017-0059-y

    Article  Google Scholar 

  117. Darabzadeh N, Hamidi-Esfahani Z, Hejazi P (2019) Optimization of cellulase production under solid-state fermentation by a new mutant strain of Trichoderma reesei. Food Sci Nutr 7:572–578. https://doi.org/10.1002/fsn3.852

    Article  Google Scholar 

  118. Brethauer S, Studer MH (2014) Consolidated bioprocessing of lignocellulose by a microbial consortium. Energy Environ Sci 7:1446–1453. https://doi.org/10.1039/c3ee41753k

    Article  Google Scholar 

  119. Shirkavand E, Baroutian S, Gapes DJ, Young BR (2016) Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment-a review. Renew Sust Energ Rev 54:217–234. https://doi.org/10.1016/j.rser.2015.10.003

    Article  Google Scholar 

  120. Van Kuijk SJA, Sonnenberg ASM, Baars JJP et al (2015) Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review. Biotechnol Adv 33:191–202. https://doi.org/10.1016/j.biotechadv.2014.10.014

    Article  Google Scholar 

  121. Moya R, Berrocal A, Rodriguez-Zuñiga A et al (2014) Effect of silver nanoparticles on white-rot wood decay and some physical properties of three tropical wood species. Wood Fiber Sci 46:527–538

    Google Scholar 

  122. Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194. https://doi.org/10.1016/j.biotechadv.2008.11.001

    Article  Google Scholar 

  123. Hildén K, Mäkelä MR (2018) Role of fungi in wood decay. Ref Modul Life Sci 1–9. https://doi.org/10.1016/b978-0-12-809633-8.12424-0

  124. Dhiman SS, Haw JR, Kalyani D, Kalia VC, Kang YC, Lee JK (2015) Simultaneous pretreatment and saccharification: green technology for enhanced sugar yields from biomass using a fungal consortium. Bioresour Technol 179:50–57. https://doi.org/10.1016/j.biortech.2014.11.059

    Article  Google Scholar 

  125. Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases-production, applications and challenges. J Sci Ind Res (India) 64:832–844

    Google Scholar 

  126. Srivastava N, Srivastava M, Ramteke PW, Mishra PK (2019) Synthetic biology strategy for microbial cellulases. Elsevier B.V

  127. Jayasekara S, Ratnayake R (2019) Microbial cellulases : an overview and applications. In: Rodríguez A, Eugenio ME (eds) Cellulose. IntechOpen

  128. Mohanan K, Ratnayake RR, Mathaniga K et al (2014) Effect of co-culturing of cellulolytic fungal isolates for degradation of lignocellulosic material. J Yeast Fungal Res 5:31–38. https://doi.org/10.5897/jyfr2014.0134

    Article  Google Scholar 

  129. Ziemiński K, Kowalska-Wentel M (2015) Effect of enzymatic pretreatment on anaerobic co-digestion of sugar beet pulp silage and vinasse. Bioresour Technol 180:274–280. https://doi.org/10.1016/j.biortech.2014.12.035

    Article  Google Scholar 

  130. Alayoubi R, Mehmood N, Husson E et al (2019) Low temperature ionic liquid pretreatment of lignocellulosic biomass to enhance bioethanol yield. Renew Energy 145:1808–1816. https://doi.org/10.1016/j.renene.2019.07.091

    Article  Google Scholar 

  131. Liu Y, Xu J, Zhang Y et al (2015) Sequential bioethanol and biogas production from sugarcane bagasse based on high solids fed-batch SSF. Energy 90:1199–1205. https://doi.org/10.1016/j.energy.2015.06.066

    Article  Google Scholar 

  132. Terán Hilares R, Kamoei DV, Ahmed MA, da Silva SS, Han JI, Santos JCD (2018) A new approach for bioethanol production from sugarcane bagasse using hydrodynamic cavitation assisted-pretreatment and column reactors. Ultrason Sonochem 43:219–226. https://doi.org/10.1016/j.ultsonch.2018.01.016

    Article  Google Scholar 

  133. Zhang Y, Chen X, Gu Y, Zhou X (2015) A physicochemical method for increasing methane production from rice straw: extrusion combined with alkali pretreatment. Appl Energy 160:39–48. https://doi.org/10.1016/j.apenergy.2015.09.011

    Article  Google Scholar 

  134. Sheng T, Zhao L, Gao L et al (2018) Enhanced biohydrogen production from nutrient-free anaerobic fermentation medium with edible fungal pretreated rice straw. RSC Adv 8:22924–22930. https://doi.org/10.1039/C8RA03361G

    Article  Google Scholar 

  135. Bhatia SK, Gurav R, Choi TR, Han YH, Park YL, Park JY, Jung HR, Yang SY, Song HS, Kim SH, Choi KY, Yang YH (2019) Bioconversion of barley straw lignin into biodiesel using Rhodococcus sp. YHY01. Bioresour Technol 289:121704. https://doi.org/10.1016/j.biortech.2019.121704

    Article  Google Scholar 

  136. Zhang K, Xu R, Abomohra AE-F et al (2019) A sustainable approach for efficient conversion of lignin into biodiesel accompanied by biological pretreatment of corn straw. Energy Convers Manag 199:111928. https://doi.org/10.1016/j.enconman.2019.111928

    Article  Google Scholar 

  137. Mancini G, Papirio S, Lens PNL, Esposito G (2018) Increased biogas production from wheat straw by chemical pretreatments. Renew Energy 119:608–614. https://doi.org/10.1016/j.renene.2017.12.045

    Article  Google Scholar 

  138. Pérez-Rangel M, Quiroz-Figueroa FR, González-Castañeda J, Valdez-Vazquez I (2015) Microscopic analysis of wheat straw cell wall degradation by microbial consortia for hydrogen production. Int J Hydrog Energy 40:151–160. https://doi.org/10.1016/j.ijhydene.2014.10.050

    Article  Google Scholar 

  139. Tsafrakidou P, Bekatorou A, Koutinas AA et al (2018) Αcidogenic fermentation of wheat straw after chemical and microbial pretreatment for biofuel applications. Energy Convers Manag 160:509–517. https://doi.org/10.1016/j.enconman.2018.01.046

    Article  Google Scholar 

  140. Arevalo-Gallegos A, Ahmad Z, Asgher M, Parra-Saldivar R, Iqbal HMN (2017) Lignocellulose: a sustainable material to produce value-added products with a zero waste approach—a review. Int J Biol Macromol 99:308–318. https://doi.org/10.1016/j.ijbiomac.2017.02.097

    Article  Google Scholar 

  141. Song J, Yang W, Li Z et al (2016) Discovering the energy, economic and environmental potentials of urban wastes: an input-output model for a metropolis case. Energy Convers Manag 114:168–179. https://doi.org/10.1016/j.enconman.2016.02.014

    Article  Google Scholar 

  142. Kumar G, Bakonyi P, Periyasamy S et al (2015) Lignocellulose biohydrogen: practical challenges and recent progress. Renew Sust Energ Rev 44:728–737. https://doi.org/10.1016/j.rser.2015.01.042

    Article  Google Scholar 

  143. Sivagurunathan P, Kumar G, Mudhoo A et al (2017) Fermentative hydrogen production using lignocellulose biomass: an overview of pretreatment methods, inhibitor effects and detoxification experiences. Renew Sust Energ Rev 77:28–42. https://doi.org/10.1016/j.rser.2017.03.091

    Article  Google Scholar 

  144. Soltan M, Elsamadony M, Tawfik A (2017) Biological hydrogen promotion via integrated fermentation of complex agro-industrial wastes. Appl Energy 185:929–938. https://doi.org/10.1016/j.apenergy.2016.10.002

    Article  Google Scholar 

  145. Soltan M, Elsamadony M, Mostafa A, Awad H, Tawfik A (2019) Nutrients balance for hydrogen potential upgrading from fruit and vegetable peels via fermentation process. J Environ Manag 242:384–393. https://doi.org/10.1016/j.jenvman.2019.04.066

    Article  Google Scholar 

  146. Tagne TFR, Anagho GS, Ionel I et al (2019) Experimental biogas production from Cameroon lignocellulosic waste biomass. J Environ Prot Ecol 20:1335–1344

    Google Scholar 

  147. Buitrón G, Hernández-Juárez A, Hernández-Ramírez MD, Sánchez A (2019) Biochemical methane potential from lignocellulosic wastes hydrothermally pretreated. Ind Crop Prod 139:111555. https://doi.org/10.1016/j.indcrop.2019.111555

    Article  Google Scholar 

  148. Dahunsi SO, Oranusi S, Efeovbokhan VE (2017) Optimization of pretreatment, process performance, mass and energy balance in the anaerobic digestion of Arachis hypogaea (peanut) hull. Energy Convers Manag 139:260–275. https://doi.org/10.1016/j.enconman.2017.02.063

    Article  Google Scholar 

  149. Panigrahi S, Dubey BK (2019) Electrochemical pretreatment of yard waste to improve biogas production: understanding the mechanism of delignification, and energy balance. Bioresour Technol 292:121958. https://doi.org/10.1016/j.biortech.2019.121958

    Article  Google Scholar 

  150. Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci 7:163–173. https://doi.org/10.1016/j.jrras.2014.02.003

    Article  Google Scholar 

  151. Patthawaro S, Lomthaisong K, Saejung C (2019) Bioconversion of agro-industrial waste to value-added product lycopene by photosynthetic bacterium Rhodopseudomonas faecalis and its carotenoid composition. Waste Biomass Valoriz:1–12. https://doi.org/10.1007/s12649-018-00571-z

  152. Lee JJL, Cooray ST, Mark R, Chen WN (2019) Effect of sequential twin screw extrusion and fungal pretreatment to release soluble nutrients from soybean residue for carotenoid production. J Sci Food Agric 99:2646–2650. https://doi.org/10.1002/jsfa.9476

    Article  Google Scholar 

  153. Sandmann G (2001) Carotenoid biosynthesis and biotechnological application. Arch Biochem Biophys 385:4–12. https://doi.org/10.1006/abbi.2000.2170

    Article  Google Scholar 

  154. Jiménez-Quero A, Pollet E, Zhao M, Marchioni E, Averous L, Phalip V (2017) Fungal fermentation of lignocellulosic biomass for itaconic and fumaric acid production. J Microbiol Biotechnol 27:1–8. https://doi.org/10.4014/jmb.1607.07057

    Article  Google Scholar 

  155. Zhang L, Xi G, Yu K et al (2017) Furfural production from biomass–derived carbohydrates and lignocellulosic residues via heterogeneous acid catalysts. Ind Crop Prod 98:68–75. https://doi.org/10.1016/j.indcrop.2017.01.014

    Article  Google Scholar 

  156. Asgher M, Wahab A, Bilal M, Nasir Iqbal HM (2016) Lignocellulose degradation and production of lignin modifying enzymes by Schizophyllum commune IBL-06 in solid-state fermentation. Biocatal Agric Biotechnol 6:195–201. https://doi.org/10.1016/j.bcab.2016.04.003

    Article  Google Scholar 

  157. Xu X, Lin M, Zang Q, Shi S (2018) Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification. Bioresour Technol 247:88–95. https://doi.org/10.1016/j.biortech.2017.08.192

    Article  Google Scholar 

  158. Chen Z, Liu G, Zhang J, Bao J (2019) A preliminary study on L-lysine fermentation from lignocellulose feedstock and techno-economic evaluation. Bioresour Technol 271:196–201. https://doi.org/10.1016/j.biortech.2018.09.098

    Article  Google Scholar 

  159. Zhou PP, Meng J, Bao J (2017) Fermentative production of high titer citric acid from corn stover feedstock after dry dilute acid pretreatment and biodetoxification. Bioresour Technol 224:563–572. https://doi.org/10.1016/j.biortech.2016.11.046

    Article  Google Scholar 

  160. Bai Z, Gao Z, Sun J, Wu B, He B (2016) D-Lactic acid production by Sporolactobacillus inulinus YBS1-5 with simultaneous utilization of cottonseed meal and corncob residue. Bioresour Technol 207:346–352. https://doi.org/10.1016/j.biortech.2016.02.007

    Article  Google Scholar 

  161. Salvachúa D, Smith H, St. John PC et al (2016) Succinic acid production from lignocellulosic hydrolysate by Basfia succiniciproducens. Bioresour Technol 214:558–566. https://doi.org/10.1016/j.biortech.2016.05.018

    Article  Google Scholar 

  162. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599. https://doi.org/10.1021/cr900354u

    Article  Google Scholar 

  163. PNNL (2004) Top value added chemicals from biomass volume I—results of screening for potential candidates from sugars and synthesis gas energy efficiency and renewable energy. National Renewable Energy Laboratory, Oak Ridge

    Google Scholar 

  164. Liguori R, Amore A, Faraco V (2013) Waste valorization by biotechnological conversion into added value products. Appl Microbiol Biotechnol 97:6129–6147. https://doi.org/10.1007/s00253-013-5014-7

    Article  Google Scholar 

  165. Sindhu R, Gnansounou E, Binod P, Pandey A (2016) Bioconversion of sugarcane crop residue for value added products–an overview. Renew Energy 98:203–215. https://doi.org/10.1016/j.renene.2016.02.057

    Article  Google Scholar 

  166. El-Bakry M, Abraham J, Cerda A et al (2015) From wastes to high value added products: novel aspects of SSF in the production of enzymes. Crit Rev Environ Sci Technol 45:1999–2042. https://doi.org/10.1080/10643389.2015.1010423

    Article  Google Scholar 

  167. Das A, Yoon SH, Lee SH, Kim JY, Oh DK, Kim SW (2007) An update on microbial carotenoid production: application of recent metabolic engineering tools. Appl Microbiol Biotechnol 77:505–512. https://doi.org/10.1007/s00253-007-1206-3

    Article  Google Scholar 

  168. Montazer-Rahmati MM, Rabbani P, Abdolali A, Keshtkar AR (2011) Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae. J Hazard Mater 185:401–407. https://doi.org/10.1016/j.jhazmat.2010.09.047

    Article  Google Scholar 

  169. Abdolali A, Guo WS, Ngo HH, Chen SS, Nguyen NC, Tung KL (2014) Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review. Bioresour Technol 160:57–66. https://doi.org/10.1016/j.biortech.2013.12.037

    Article  Google Scholar 

  170. Awal A, Rana M, Sain M (2015) Thermorheological and mechanical properties of cellulose reinforced PLA bio-composites. Mech Mater 80:87–95. https://doi.org/10.1016/j.mechmat.2014.09.009

    Article  Google Scholar 

  171. Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R (2016) Poly(lactic acid)—mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev 107:333–366. https://doi.org/10.1016/j.addr.2016.03.010

    Article  Google Scholar 

  172. Camargo LA, Pereira SC, Correa AC, Farinas CS, Marconcini JM, Mattoso LHC (2016) Feasibility of manufacturing cellulose nanocrystals from the solid residues of second-generation ethanol production from sugarcane bagasse. Bioenergy Res 9:894–906. https://doi.org/10.1007/s12155-016-9744-0

    Article  Google Scholar 

  173. Bondancia TJ, Mattoso LHC, Marconcini JM, Farinas CS (2017) A new approach to obtain cellulose nanocrystals and ethanol from eucalyptus cellulose pulp via the biochemical pathway. Biotechnol Prog 28. https://doi.org/10.1002/btpr.2486

  174. Camacho M, Ureña YRC, Lopretti M et al (2017) Synthesis and characterization of nanocrystalline cellulose derived from pineapple peel residues. J Renew Mater 5:271–279. https://doi.org/10.7569/JRM.2017.634117

    Article  Google Scholar 

  175. Abdo HS, Elzatahry AA, Alharbi HF, Khalil KA (2016) Electrical conductivity behavior of biopolymer composites. Elsevier Inc.

  176. Herzele S, Veigel S, Liebner F et al (2016) Reinforcement of polycaprolactone with microfibrillated lignocellulose. Ind Crop Prod 93:302–308. https://doi.org/10.1016/j.indcrop.2015.12.051

    Article  Google Scholar 

  177. Kataria R, Woods T, Casey W et al (2018) Surfactant-mediated hydrothermal pretreatment of ryegrass followed by enzymatic saccharification for polyhydroxyalkanoate production. Ind Crop Prod 111:625–632. https://doi.org/10.1016/j.indcrop.2017.11.029

    Article  Google Scholar 

  178. Yin F, Li D, Ma X, Zhang C (2019) Pretreatment of lignocellulosic feedstock to produce fermentable sugars for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production using activated sludge. Bioresour Technol 290:121773. https://doi.org/10.1016/j.biortech.2019.121773

    Article  Google Scholar 

  179. Sawant SS, Salunke BK, Kim BS (2015) Degradation of corn stover by fungal cellulase cocktail for production of polyhydroxyalkanoates by moderate halophile Paracoccus sp. LL1. Bioresour Technol 194:247–255. https://doi.org/10.1016/j.biortech.2015.07.019

    Article  Google Scholar 

  180. Satari B, Karimi K, Zamani A (2016) Oil, chitosan, and ethanol production by dimorphic fungus Mucor indicus from different lignocelluloses. J Chem Technol Biotechnol 91:1835–1843. https://doi.org/10.1002/jctb.4776

    Article  Google Scholar 

  181. Moreno G, Ramirez K, Esquivel M, Jimenez G (2019) Biocomposite films of polylactic acid reinforced with microcrystalline cellulose from pineapple leaf fibers. J Renew Mater 7:9–20. https://doi.org/10.32604/jrm.2019.00017

    Article  Google Scholar 

  182. Kellersztein I, Amir E, Dotan A (2016) Grafting of wheat straw fibers with poly (ε-caprolactone) via ring-opening polymerization for poly(lactic acid) reinforcement. Polym Adv Technol 27:657–664. https://doi.org/10.1002/pat.3736

    Article  Google Scholar 

  183. Bilal M, Asgher M, Iqbal HMN, Hu H, Zhang X (2017) Biotransformation of lignocellulosic materials into value-added products—a review. Int J Biol Macromol 98:447–458. https://doi.org/10.1016/j.ijbiomac.2017.01.133

    Article  Google Scholar 

  184. Vega-Baudrit J, González-Paz R, Miranda M, Corrales Y (2016) Biorefinery by the hand of the nanotechnology: biodegradable polymers from industrial biomass waste. J Nanosci Technol

  185. Ten E, Vermerris W (2013) Functionalized polymers from lignocellulosic biomass: state of the art. Polymers (Basel) 5:600–642. https://doi.org/10.3390/polym5020600

    Article  Google Scholar 

  186. Iqbal H (2015) Development of bio-composites with novel characteristics through enzymatic grafting. University of Westminster

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Roberto Vega-Baudrit.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batista Meneses, D., Montes de Oca-Vásquez, G., Vega-Baudrit, J.R. et al. Pretreatment methods of lignocellulosic wastes into value-added products: recent advances and possibilities. Biomass Conv. Bioref. 12, 547–564 (2022). https://doi.org/10.1007/s13399-020-00722-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00722-0

Keywords

Navigation