Skip to main content
Log in

Low Frequency Magnetoelectric Effect in Bi0.5Na0.5TiO3–Ni0.5Zn0.5Fe2O4 Particulate Composites

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We report structural, dielectric, ferroelectric, magnetic, and low frequency magnetoelectric (ME) properties of (1−x) Bi0.5Na0.5TiO3 (BNT)–xNi0.5Zn0.5Fe2O4 (NZFO) (x = 0.05–0.30) microwave sintered particulate composites. Distinct phases of BNT and NZFO were confirmed by X-ray diffraction and scanning electron microscopy. Raman spectroscopy measurement showed the absence of micro-strains within the composite. The temperature dependent dielectric studies revealed the ferroelectric to anti-ferroelectric transition at 220 °C and anti-ferroelectric to paraelectric transition at 320 °C. The ac conductivity showed both frequency dependent and independent behavior. Temperature dependent dc conductivity showed that upto 200 °C charge conduction is due to hopping of electrons, whereas at higher temperature diffusion of oxygen vacancies are responsible for the conduction. Ferroelectric and leakage current density measurements showed enhanced conduction losses with NZFO content. The maximum ME coefficient at 10 Hz frequency is obtained for 0.80BNT–0.20NZFO (4.33 mV/cm.Oe at 800 Oe).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chu, Z., Pourhosseiniasl, M., Dong, S.: Review of multi-layered magnetoelectric composite materials and devices applications. J. Phys. D Appl. Phys. 51, 1–21 (2018). https://doi.org/10.1088/1361-6463/aac29b

    Article  CAS  Google Scholar 

  2. Yu, S., Huang, H., Zhou, L., et al.: Structure and properties of PMN–PT/NZFO laminates and composites. Ceram. Int. 34, 701–704 (2008). https://doi.org/10.1016/j.ceramint.2007.09.011

    Article  CAS  Google Scholar 

  3. Rani, A., Kolte, J., Vadla, S.S., Gopalan, P.: Structural, electrical, magnetic and magnetoelectric properties of Fe doped BaTiO3 ceramics. Ceram. Int. 42, 8010–8016 (2016). https://doi.org/10.1016/j.ceramint.2016.01.205

    Article  CAS  Google Scholar 

  4. Pradhan, D.K., Kumari, S., Rack, P.D.: Magnetoelectric composites: applications, coupling mechanisms, and future directions. Nanomaterials 10, 1–22 (2020). https://doi.org/10.3390/nano10102072

    Article  CAS  Google Scholar 

  5. Li, P., Wen, Y., Huang, X., et al.: Wide-bandwidth high-sensitivity magnetoelectric effect of magnetostrictive/piezoelectric composites under adjustable bias voltage. Sensors Actuators A Phys. 201, 164–171 (2013). https://doi.org/10.1016/j.sna.2013.07.005

    Article  CAS  Google Scholar 

  6. Zhou, Y., Apo, D.J., Priya, S.: Dual-phase self-biased magnetoelectric energy harvester. Appl. Phys. Lett. 103, 1–5 (2013). https://doi.org/10.1063/1.4829151

    Article  CAS  Google Scholar 

  7. Song, H., Hwang, G.-T., Ryu, J., Choi, H.: Stable output performance generated from a magneto-mechano-electric generator having self-resonance tunability with a movable proof mass. Nano Energy 101, 107607 (2022). https://doi.org/10.1016/j.nanoen.2022.107607

    Article  CAS  Google Scholar 

  8. Annapureddy, V., Palneedi, H., Hwang, G.T., et al.: Magnetic energy harvesting with magnetoelectrics: an emerging technology for self-powered autonomous systems. Sustain. Energy Fuels 1, 2039–2052 (2017). https://doi.org/10.1039/c7se00403f

    Article  CAS  Google Scholar 

  9. Pattanayak, R., Raut, S., Kuila, S., et al.: Multiferroism of [Na0.5Bi0.5TiO3–BaFe12O19] lead-free novel composite systems. Mater. Lett. 209, 280–283 (2017). https://doi.org/10.1016/j.matlet.2017.08.023

    Article  CAS  Google Scholar 

  10. Fernandez Perdomo, C.P., Kiminami, A.R.H.G., Garcia, D.: Microwave assisted sintering of nanocristalline PMN–PT/CoFe2O4 prepared by rapid one pot pechini synthesis: dielectric and magnetoelectric characteristics. Ceram. Int. 45, 7906–7915 (2019). https://doi.org/10.1016/j.ceramint.2019.01.101

    Article  CAS  Google Scholar 

  11. Guo, R., Cross, L.E., Park, S.E., et al.: Origin of the high piezoelectric response in PbZr1-xTixO3. Phys. Rev. Lett. 84, 5423–5426 (2000). https://doi.org/10.1103/PhysRevLett.84.5423

    Article  CAS  Google Scholar 

  12. Tyagi, M., Kumari, M., Chatterjee, R., Sharma, P.: Large magnetoelectric response in modified BNT based ternary piezoelectric [72.5(Bi1/2Na1/2TiO3)–22.5(Bi1/2K1/2TiO3)–5(BiMg1/2Ti1/2O3)]-magnetostrictive (NiFe2O4) particulate (0–3) composites. Appl. Phys. Lett. 106, 1–4 (2015). https://doi.org/10.1063/1.4921521

    Article  CAS  Google Scholar 

  13. Ryu, J., Kang, J.E., Zhou, Y., et al.: Ubiquitous magneto-mechano-electric generator. Energy Environ. Sci. 8, 2402–2408 (2015). https://doi.org/10.1039/c5ee00414d

    Article  CAS  Google Scholar 

  14. Annapureddy, V., Na, S.M., Hwang, G.T., et al.: Exceeding milli-watt powering magneto-mechano-electric generator for standalone-powered electronics. Energy Environ. Sci. 11, 818–829 (2018). https://doi.org/10.1039/c7ee03429f

    Article  CAS  Google Scholar 

  15. Song, H., Patil, D.R., Yoon, W.H., et al.: Significant power enhancement of magneto-mechano-electric generators by magnetic flux concentration. Energy Environ. Sci. 13, 4238–4248 (2020). https://doi.org/10.1039/d0ee01574a

    Article  CAS  Google Scholar 

  16. Venkata Ramana, E., Zavašnik, J., Graça, M.P.F., Valente, M.A.: Magnetoelectric studies on CoFe2O4/0.5(BaTi0.8Zr0.2O3)-0.5(Ba0.7Ca0.3TiO3) lead-free bilayer thin films derived by the chemical solution deposition. J. Appl. Phys. 120, 1–10 (2016). https://doi.org/10.1063/1.4961394

    Article  CAS  Google Scholar 

  17. Shrout, T.R., Zhang, S.J.: Lead-free piezoelectric ceramics: Alternatives for PZT? J. Electroceram. 19, 111–124 (2007). https://doi.org/10.1007/s10832-007-9047-0

    Article  CAS  Google Scholar 

  18. Saito, Y., Takao, H., Tani, T., et al.: Lead-free piezoceramics. Nature 432, 84–87 (2004). https://doi.org/10.1038/nature03028

    Article  CAS  Google Scholar 

  19. Singh, P., Laishram, R., Sharma, P., Kolte, J.: Giant magnetocapacitance in magnetoelectric BNT/NFO particulate composites. J. Mater. Sci. Mater. Electron. 32, 21288–21296 (2021). https://doi.org/10.1007/s10854-021-06631-w

    Article  CAS  Google Scholar 

  20. Niranjan, M.K., Karthik, T., Asthana, S., et al.: Theoretical and experimental investigation of Raman modes, ferroelectric and dielectric properties of relaxor Na0.5Bi0.5TiO3. J. Appl. Phys. 113, 1–7 (2013). https://doi.org/10.1063/1.4804940

    Article  CAS  Google Scholar 

  21. Karthik, T., Asthana, S.: Polarization extension mechanism revealed through dynamic ferroelectric hysteresis and electric field driven structural distortions in lead free Na0.5Bi0.5TiO3 ceramic. J. Phys. D Appl. Phys. 50, 1–6 (2017). https://doi.org/10.1088/1361-6463/aa7fa7

    Article  CAS  Google Scholar 

  22. Sahu, M., Karthik, T., Srinivas, A., Asthana, S.: Structural and microstructural correlation with ferroelectric and dielectric properties of nanostructured Na0.5Bi0.5TiO3 ceramics. J. Mater. Sci. Mater. Electron. 26, 9741–9746 (2015). https://doi.org/10.1007/s10854-015-3643-6

    Article  CAS  Google Scholar 

  23. Narendra Babu, S., Hsu, J.H., Chen, Y.S., Lin, J.G.: Magnetoelectric response in lead-free multiferroic NiFe2O4–Na0.5Bi0.5TiO3 composites. J. Appl. Phys. 109, 1–3 (2011). https://doi.org/10.1063/1.3540623

    Article  CAS  Google Scholar 

  24. Bichurin, M., Petrov, V., Zakharov, A., et al.: Magnetoelectric interactions in lead-based and lead-free composites. Materials (Basel) 4, 651–702 (2010). https://doi.org/10.3390/ma4040651

    Article  CAS  Google Scholar 

  25. Jaffe, H.: Piezoelectric ceramics. J. Am. Ceram. Soc. 41, 494–498 (1958). https://doi.org/10.1111/j.1151-2916.1958.tb12903.x

    Article  CAS  Google Scholar 

  26. Costa, A.C.F.M., Silva, V.J., Cornejo, D.R., et al.: Magnetic and structural properties of NiFe2O4 ferrite nanopowder doped with Zn2+. J. Magn. Magn. Mater. 320, 370–372 (2008). https://doi.org/10.1016/j.jmmm.2008.02.159

    Article  CAS  Google Scholar 

  27. Zhang, Y.Z., Kang, Z.T., Chen, D.: Process of synthesizing high saturation magnetization Ni0.5Zn0.5Fe2O4 by microwave assisted ball milling. Mater. Lett. 133, 259–261 (2014). https://doi.org/10.1016/j.matlet.2014.07.031

    Article  CAS  Google Scholar 

  28. Atif, M., Nadeem, M., Grössinger, R., Turtelli, R.S.: Studies on the magnetic, magnetostrictive and electrical properties of sol–gel synthesized Zn doped nickel ferrite. J. Alloys Compd. 509, 5720–5724 (2011). https://doi.org/10.1016/j.jallcom.2011.02.163

    Article  CAS  Google Scholar 

  29. Kumar, Y., Yadav, K.L., Manjusha, J., et al.: Structural, dielectric, magnetic and magnetoelectric properties of (x)Bi0.5Na0.5TiO3–(1–x)Ni0.2Co0.8Fe2O4 composites. Mater. Res. Exp. 3, 1–9 (2016). https://doi.org/10.1088/2053-1591/3/6/065701

    Article  CAS  Google Scholar 

  30. Manjusha, Yadav KL., Adhlakha, N., et al.: Strain mediated magnetoelectric coupling induced in (x)Bi0.5Na0.5TiO3–(1–x)MgFe2O4 composites. Phys. B Condens. Matter. 514, 41–50 (2017). https://doi.org/10.1016/j.physb.2017.03.027

    Article  CAS  Google Scholar 

  31. Kumar, Y., Yadav, K.L., Shah, J., Kotnala, R.K.: Investigation of magnetoelectric effect in Bi0.5Na0.5TiO3–CoMn0.2Fe1.8O4 composites. IEEE Trans. Dielectr. Electr. Insul. 26, 561–567 (2019). https://doi.org/10.1109/TDEI.2019.007577

    Article  CAS  Google Scholar 

  32. Bhasin, T., Agarwal, A., Sanghi, S., et al.: Crystal structure, dielectric, magnetic and improved magnetoelectric properties of xNiFe2O4–(1–x)Na0.5Bi0.5TiO3 composites. Mater. Res. Exp. 5, 1–15 (2018). https://doi.org/10.1088/2053-1591/aad9e3

    Article  CAS  Google Scholar 

  33. Jadhav, J., Biswas, S., Yadav, A.K., et al.: Structural and magnetic properties of nanocrystalline Ni–Zn ferrites: in the context of cationic distribution. J. Alloys Compd. 696, 28–41 (2017). https://doi.org/10.1016/j.jallcom.2016.11.163

    Article  CAS  Google Scholar 

  34. Xu, C., Lin, D., Kwok, K.W.: Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics. Solid State Sci. 10, 934–940 (2008). https://doi.org/10.1016/j.solidstatesciences.2007.11.003

    Article  CAS  Google Scholar 

  35. Tan, X., Ma, C., Frederick, J., et al.: The antiferroelectric ↔ ferroelectric phase transition in lead-containing and lead-free perovskite ceramics. J. Am. Ceram. Soc. 94, 4091–4107 (2011). https://doi.org/10.1111/j.1551-2916.2011.04917.x

    Article  CAS  Google Scholar 

  36. Jones, G., Thomas, P.A.: Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogr. Sect. B 58, 168–178 (2002)

    Article  CAS  Google Scholar 

  37. Ciomaga, C.E., Neagu, A.M., Pop, M.V., et al.: Ferroelectric and dielectric properties of ferrite-ferroelectric ceramic composites. J Appl Phys 113, 1–8 (2013). https://doi.org/10.1063/1.4792494

    Article  CAS  Google Scholar 

  38. Rathore, S.S., Vitta, S.: Large low field room temperature magneto-dielectric response from (Sr0.5Ba0.5)Nb2O6/Co(Cr0.4Fe1.6)O4 bulk 3–0 composites. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 204, 1–7 (2016). https://doi.org/10.1016/j.mseb.2015.11.002

    Article  CAS  Google Scholar 

  39. Elliott, S.R.: A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–217 (1987). https://doi.org/10.1080/00018738700101971

    Article  CAS  Google Scholar 

  40. Long, A.R.: Frequency-dependent loss in amorphous semiconductors. Adv. Phys. 31, 553–637 (1982)

    Article  CAS  Google Scholar 

  41. Jonscher, A.K.: Review a new understanding of the dielectric relaxation of solids. J. Mater. Sci. 16, 2037–2060 (1981)

    Article  CAS  Google Scholar 

  42. Solid, P.S., Chem, S.: Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111–195 (1993)

    Article  Google Scholar 

  43. Sharma, R., Pahuja, P., Tandon, R.P.: Structural, dielectric, ferromagnetic, ferroelectric and ac conductivity studies of the BaTiO3-CoFe1.8Zn0.2O4 multiferroic particulate composites. Ceram. Int. 40, 9027–9036 (2014). https://doi.org/10.1016/j.ceramint.2014.01.115

    Article  CAS  Google Scholar 

  44. Tirupathi, P., Mandal, S.K., Chandra, A.: Effect of oxygen annealing on the multiferroic properties of Ca2+ doped BiFeO3 nanoceramics. J. Appl. Phys. 116, 1–14 (2014). https://doi.org/10.1063/1.4904861

    Article  CAS  Google Scholar 

  45. Dietz, G.W., Antpöhler, W., Klee, M., Waser, R.: Electrode influence on the charge transport through SrTiO3 thin films. J. Appl. Phys. 78, 6113–6121 (1995). https://doi.org/10.1063/1.360553

    Article  CAS  Google Scholar 

  46. Li, G., Wu, X., Ren, W., Shi, P.: Effect of excessive K and Na on the dielectric properties of (K, Na)NbO3 thin films. Thin Solid Films 548, 556–559 (2013). https://doi.org/10.1016/j.tsf.2013.09.027

    Article  CAS  Google Scholar 

  47. Ryu, J., Priya, S., Uchino, K., Kim, H.: Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J Electroceram. 8, 107–119 (2002). https://doi.org/10.1023/A:1020599728432

    Article  CAS  Google Scholar 

  48. Kang, M.G., Sriramdas, R., Lee, H., et al.: High power magnetic field energy harvesting through amplified magneto-mechanical vibration. Adv. Energy Mater. 8, 1–11 (2018). https://doi.org/10.1002/aenm.201703313

    Article  CAS  Google Scholar 

  49. Annapureddy, V., Kim, M., Palneedi, H., et al.: Low-loss piezoelectric single-crystal fibers for enhanced magnetic energy harvesting with magnetoelectric composite. Adv. Energy Mater. 6, 1–10 (2016). https://doi.org/10.1002/aenm.201601244

    Article  CAS  Google Scholar 

  50. Krishnaiah, R.V., Srinivas, A., Kamat, S.V., et al.: Effect of CoFe2O4 mole percentage on multiferroic and magnetoelectric properties of Na0.5Bi0.5TiO3/CoFe2O4 particulate composites. Ceram. Int. 40, 7799–7804 (2014). https://doi.org/10.1016/j.ceramint.2013.12.123

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge DRDO, New Delhi for providing the grant through project (No. ERIP/ER/201709007/M/01/1731) to carry out this research. We are very thankful to DST (FIST-I & II) for providing VSM, FEG-SEM, Raman, and multiferroic measurement facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Laishram, R., Kolte, J. et al. Low Frequency Magnetoelectric Effect in Bi0.5Na0.5TiO3–Ni0.5Zn0.5Fe2O4 Particulate Composites. Electron. Mater. Lett. 19, 442–451 (2023). https://doi.org/10.1007/s13391-023-00423-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-023-00423-6

Keywords

Navigation